
Hybrid Dynamic Iterations for the Solution of Initial

Value Problems

Yanan Yu and Ashok Srinivasan

Department of Computer Science, Florida State University, Tallahassee, FL32306

Abstract

Many scientific problems are posed as Ordinary Differential Equations (ODEs).
A large subset of these are initial value problems, which are typically solved
numerically. The solution starts by using a known state-space of the ODE
system to determine the state at a subsequent point in time. This process is
repeated several times. When the computational demand is high due to large
state space, parallel computers can be used efficiently to reduce the time to
solution. Conventional parallelization strategies distribute the state space of
the problem amongst cores and distribute the task of computing for a single
time step amongst the cores. They are not effective when the computational
problems have fine granularity, for example, when the state space is relatively
small and the computational effort arises largely from the long time span of
the initial value problem. We propose a hybrid dynamic iterations method1

which combines conventional sequential ODE solvers with dynamic iterations
to parallelize the time domain. Empirical results demonstrate a factor of two
to four improvement in performance of the hybrid dynamic iterations method
over a conventional ODE solver on an 8 core processor. Compared to Picard
iterations (also parallelized in the time domain), the proposed method shows
better convergence and speedup results when high accuracy is required.

Keywords: time parallelization, hybrid dynamic iterations, ODE solver

Email address: {yu,asriniva}@cs.fsu.edu (Yanan Yu and Ashok Srinivasan)
1This paper is an extended version of a conference paper [1]. In this paper, we have

considered an additional underlying ODE solver for the hybrid method, empirically eval-
uated with more ODE systems, and also evaluated the relative performance with low and
high accuracy requirements.

Preprint submitted to Journal of Parallel and Distributed Computing October 28, 2010



1. Introduction

Many scientific computations involve solving initial value Ordinary Dif-
ferential Equation (ODE) problems. The problems are solved by iteratively
computing the state of the physical system described by the differential equa-
tions, until the required time span is covered. The computational effort of
solving initial value problems arises from two aspects: 1) the state space of
the system is large; 2) the time span of the problem is long. A common
strategy to deal with the great computational effort is through some type
of parallelization. Conventional approaches parallelize the computation by
decomposing the state space of a system into smaller sub-domains, and they
are effective for large scale systems.

A current technological trend has resulted in the need for alternative ap-
proaches to parallelization, as discussed below. In recent years, there has
been a trend for providing increased computing power through greater num-
ber of cores on a chip, rather than through higher clock speeds. Desktops
are equipped with multiple cores. Parallel processing is no longer restricted
to the HPC community. Non-HPC users often have a need to solve smaller
problems than the HPC community. For such applications, the speed of solu-
tion can still be important. For example, reducing the time to solve an ODE
from a minute to around ten seconds is a noticeable difference in solution
time. Any available parallelism should be efficiently exploited in order for
better performance. However, for small systems in which the computational
effort is caused predominantly by the large number of time steps (long time
span), the conventional decomposition methods are less effective, as the com-
munication overhead due to the synchronization at the end of each time step
will dominate the computation cost of each sub-domain in the decomposition.

A possible solution to tackle the computational effort arising from the
long time scale is to directly parallelize the time domain. The idea is to
divide the entire time span of the simulation into smaller intervals and have
each core simulate one interval at a time. However, time is an intrinsically
sequential quantity. In proposing a time parallel method, the difficulty lies in
that each time interval must complete before the next one can start, since we
are solving an initial value problem. This leads to an essentially sequential
process.

A few methods have been proposed by others to parallelize the time do-
main of initial value problems. Dynamic iterations [2, 3], were well studied in
the 1980s and 1990s. These methods start out with a guess for the solution

2



over the entire time span, and in each iteration, they refine the approxi-
mate solution from the previous iteration. They are parallelized by dividing
the time span into time intervals, and having each core update a different
time interval in each iteration. These methods have a couple of limitations.
The first is that they have high memory requirements. The second is that
their convergence is slow for many realistic ODEs, which leads to low par-
allel efficiency. With multicore processors widely available, we believe it is
time to reevaluate the applicability of dynamic iterations to solving initial
value problems, especially in situations where conventional methods do not
yield any speedup. We show in our empirical results that Picard iterations,
a type of dynamic iterations, achieve a factor of two improvement in speed
over a conventional ODE solver on an 8-core processor when low accuracy is
acceptable.

In this paper, we propose an improved dynamic iterations method, namely
hybrid dynamic iterations. The hybrid dynamic iterations method combines
the conventional sequential ODE solver with dynamic iterations. The method
guarantees that at least one time interval converges in each iteration, and
thus the total computation time of the hybrid method is no worse than an
equivalent ODE solver, apart from a small parallelization overhead. Empiri-
cal results demonstrates a factor of two to four improvement in performance
of the hybrid dynamic iterations method over an equivalent conventional se-
quential solver on an 8-core processor. Compared to Picard iterations (also
parallelized in the time domain), the proposed method shows better conver-
gence and speedup results when high accuracy is required.

2. Hybrid Dynamic Iterations

2.1. Dynamic Iterations

In this section, we consider the problem of solving an Initial Value Prob-
lem involving first order Ordinary Differential Equations (ODE). A simple
description of the problem and the conventional approach to solving it are
given below. A first order ODE is often given in the form,

u̇ = f(t, u), u(0) = u0 (1)

where u is the state of a physical system and may be a vector, and t is
typically time. The initial state of the system, u(t0) at time t0, is provided
in an Initial Value Problem. The problem is to determine the value of u at

3



subsequent values of time, up to some time span T . An ODE solver iteratively
determines the values of u by starting from the known initial value u(t0), and
uses u(ti) to find u(ti+1). In this paper, we consider the first order ODEs.
Higher order ODEs can be expressed as a first order ODE system using a
standard transformation [4].

For small ODE systems, the solution time may still be significant if the
number of time steps is large, for example, the problem is solved for a long
time span. Direct parallelization of the time domain appears promising then.
Dynamic iterations are a class of methods that are often suitable for time
parallelization. The idea of dynamic iterations is to start out with an initial
guess for the entire time domain, and then iteratively improve the solution
until it converges. Dynamic Iterations solve eqn. 1 recursively with the fol-
lowing equation,

u̇m+1 − g(um+1, um) = f(t, um), um+1(0) = u0 (2)

The recursion starts with the initial guess u0(t) = u0 and g is defined
such that g(u, u) = 0. If the iterations converge, they converge to the exact
solution of f , provided that eqn. 2 is solved exactly [3]. The choice of g
affects the rate of convergence. In practice, numerical methods are always
used to solve eqn. 2, and g also affects the cost of the numerical integration.

Picard iterations, which predate modern ODE solvers by a few decades,
is a special case of dynamic iterations. If g in eqn. 2 is chosen such that
g(y, z) = 0, then the solver is equivalent to the Picard iterations. We have
u̇m+1 = f(t, um). The solution is found by iteratively solving a sequence
of equivalent integrals. Initially, the value of u0 is stored at discrete time
points for the entire time domain. In the (m+ 1)th iteration, the first step is
to evaluate u̇m+1 by f(t, um). Then f is numerically integrated using some
quadrature method. This leads to the following expression for determining
the value of um+1, when the integration is exact.

u(t)m+1 = u0 +

∫ t

0

f(s, um(s)) ds. (3)

Picard iterations can be easily parallelized in time. Let ti be a sequence
of time intervals and u0i denote the value of u at the ith interval, where
i ∈ (0..n) and n is the total number of the time intervals. In each of the
interval of (ti, t

i+1), the values of u is known for several discrete time points.

4



We can rewrite the above equation as follows.

um+1
i+1 = um+1

i +

∫ ti+1

ti

f(s, um(s)) ds (4)

Core i, 0 ≤ i ≤ P is responsible for determining the values of um+1 in the
interval (ti, ti+1]. First, it evaluates the integrals in eqn. 4 for the discrete time
points using some quadrature method, for which it also needs some boundary
values of um from neighbor cores. Then a parallel prefix computation collects
the integrals from each core and computes the cumulative integrals from the
interval t0 to tn−1. After this, each core independently updates the value
of um+1 for the discrete time points in its interval. In this parallel scheme,
communication is required by the parallel prefix for updating the boundary
values of each time interval. Therefore, parallelization is efficient only if each
time interval contains sufficient time points for evaluating the integral in
eqn. 4 and the computation cost is much larger than the prefix overhead.

However, they were not suitable for most of the realistic problems due
to their slow convergence. Picard iterations also impose a high memory
requirement, because the solution at all time steps in the previous iteration
is needed for the update in the next iteration. For example, in order to
simulate n time steps, all the values of um at the n time points need to be
stored. Usually the total time domain is divided into smaller windows, and
the solution for one window converges before computing for the next window.
However, the number of time steps in each window can still be high. The
performance will also be affected by the increased number of cache misses.

2.2. A Hybrid Scheme

This paper proposes a hybrid scheme, which combines exact ODE solvers
with dynamic iterations. The hybrid method is presented as an intuitive
improvement to Picard iterations to deal with one of the latter’s shortcoming
– its high memory requirement.

Consider the initial value problem defined in eqn. 1. The exact solution
is given as follows,

ui+1 = ui +

∫ ti+1

ti

f(s, u(s))ds (5)

If we compare the above exact solver to the Picard iterations, as in eqn. 4,
we see that Picard iterations replace u with um in the integral, where um is

5



the latest approximation to u in the iterative process. The values of um at
each time step in [ti, ti+1] need to be stored for the next iteration.

In the hybrid method, each core solves the exact ODE as in eqn. 5 with
initial condition ûi(ti) = umi at time ti, up to time ti+1 as in eqn. 6, where
i ∈ [1 . . . P ] and P is the total number of cores.

ûi(ti+1) = ûi(ti) +

∫ ti+1

ti

f(s, ûi(s))ds (6)

The hat on u indicates that the solution with an exact ODE solver might
start from a possibly incorrect initial condition. We then have the following
expression for the (m+ 1)th iteration,

ûi(ti+1)− umi =

∫ ti+1

ti

f(s, ûi(s))ds (7)

where, the initial condition is assumed as ûi(ti) = umi after the mth iteration
at time ti. If we replace the integral in the Picard iterations recurrence in
eqn. 4 with the integral in eqn. 7, and in turn, replace the integral with
the integral with the left hand side of the expression in eqn. 7, we get the
recurrence for the hybrid method as follows.

um+1
i+1 = um+1

i + ûi(ti+1)− umi (8)

Fig. 1 shows a schematic of the hybrid dynamic iterations method. Each
core starts from some initial state umi , represented by the dashed line and
computes ûi(ti+1) by solving the ODE system independently. The results are
shown by the solid line with arrow. A parallel prefix is then performed to
compute the new approximation of um+1

i+1 , represented by the dash-dot-dot
line. The process repeats until ui converges. An intuitive way of thinking
about the hybrid method is as follows. If umi is accurate, then ûi(ti+1) is
the exact solution for u at time ti+1, and um+1

i+1 converges to umi+1. However,
most likely the initial states are incorrect, since they can only be approxi-
mated without solving the ODE system exactly for the entire time domain.
We denote the differences observed for u at time ti between two successive
iterations as ei = um+1

i − umi . We add ei back to ûi(ti+1) as a corrector and
get um+1

i+1 . Algorithm 2.1 gives a formal description of the parallel hybrid
method.

If the iterations in the hybrid method converge, then they converge to
the exact solution of the ODE system, provided that the ODE is solved

6



Figure 1: A schematic of hybrid dynamic iterations.

exactly in each iteration. Of course, the ODE is actually solved numerically,
with approximation errors. At convergence, um+1

i = umi , for i ∈ [1, P ]. From
eqn. 8, we then have um+1

i+1 = ûi(ti+1). Since core 0 starts from the exact initial
condition which is given, um+1

1 = û0(t1) is always the exact solution. Because
u converges and um+1

1 = um1 , um1 is also exact. Since the computation on core
1 is started from the exact um1 to determine the value û1(t2), u

m+1
2 = û1(t2)

is exact too. By induction, we can show that um+1
i on all the cores are the

exact solution to the ODE.

Algorithm 2.1: Hybrid-method(u0i = u0, Number of cores P)

repeat

do


for each core i ∈ {0..P − 1}

do

{
ûm(i)(ti+1)← Solve ODE with initial condition umi )

∆i ← ûm(i)(ti+1)− umi
Gi ← Parallel prefix on ∆i

um+1
i+1 ← Gi + u0

until Convergence

7



If the ODE solver is exact, it can be proved that the hybrid method
converges in a finite number of iterations. In each iteration, note that core
0 always starts from the exact initial condition u0 and thus the solution on
core 0 converges after the first iteration. In the second iteration, the initial
condition on core 1 is also exact (as u11 from core 0), and so is the solution
u22 for time t2 on core 1. By induction, the hybrid method will converge in
n iterations if there are n intervals to solve for the entire time domain of
the ODE system, which is the worst case for the parallel hybrid method. In
other words, the solution converges at most n iterations, and the parallel
performance will not be worse than an equivalent conventional sequential
solver, if the parallel overhead is small. Of course, if the parallel hybrid
method solves the ODE in n iterations, no speed-up would be gained over
an equivalent sequential ODE solver. In practice, we expect that the hybrid
method converges in less than n iterations.

Compared to Picard iterations, the hybrid method is expected to con-
verge faster. The hybrid method differs from Picard iterations in how the
term

∫ ti+1

ti
f(s, u(s))ds in eqn. 5 is estimated, without knowing the actual

solution of u. Picard iterations perform a quadrature computation with the
approximation of um to get um+1. In the hybrid method, though the ini-
tial condition um may also be incorrect, the integration is computed with an
exact ODE solver. Intuitively speaking, we expect that the solution in the
hybrid method be better than Picard iterations, which always use the old
approximation of um for the entire time domain from the previous iteration
to compute um+1. Also note that the memory consumption of the hybrid
method is small - only the results at certain time points ti are stored. We
do not need to store the results at all intermediate time steps in the time
interval of [ti, ti+1] in eqn. 6, whereas the values at all the intermediate steps
are necessary for Picard iterations to numerically evaluate the quadrature.
Unlike Picard iterations, the memory requirement by the hybrid method is
roughly the same as a sequential solver and it is independent of the size of
the time step and the number of time steps in a time interval.

3. Empirical Evaluation

3.1. Numerical Examples

We consider six first order ODE examples. The first three are linear, and
the rests are nonlinear. The second, fourth and sixth systems are also used

8



in [5, 6] as the test problems for comparing different numerical methods.
The exact solutions to the six ODEs are shown in fig. 2.

Example ODEs:

1. The initial value problem:{
y1′ = y2 y1(0) = 0
y2′ = −y1 y2(0) = 1

The exact solution for this system is, y1 = sin(t), y2 = cos(t).
2. The initial value problem:{

y1′ = y1 + y2 y1(0) = 0
y2′ = −y1 + y2 y2(0) = 1

The exact solution for this system is, y1 = sin(t)et, y2 = cos(t)et

3. The initial value problem:{
y1′ = y2 y1(−6) = 1
y2′ = −y1t y2(−6) = 1

It is also known as the Airy equation, which is seen in physics and
astronomy.

4. The initial value problem:
y1′ = 2y22 y1(0) = 1
y2′ = e−ty1 y2(0) = 1
y3′ = y2 + y3 y3(0) = 0

The exact solution for this system is, y1 = e2t, y2 = et, y3 = tet.
5. The initial value problem:{

y1′ = y2 y1(−6) = 1
y2′ = γcos(ω + φ)− δy2 − βy31 − ω2

0y1 y2(−6) = 1

where, γ = 2.3, ω = 1, φ = 0, δ = 0.1, β = 0.25, ω0 = 1.
This ODE system is known as the Duffing equation and it is often used
to describe the motion of a damped oscillator.

6. The initial value problem:
y1′ = −y1 y1(0) = 1
y2′ = y1 − y22 y2(0) = 0
y3′ = y22 y3(0) = 0

This nonlinear system represents a nonlinear chemical reaction [6].

9



(a) ODE1 (b) ODE2

(c) ODE3 (d) ODE4

(e) ODE5 (f) ODE6

Figure 2: Exact solutions of the six example ODEs.

10



In the experimental results, we also need to report the empirical global
errors of the hybrid method. Since there are no closed form solutions to
the Airy function, the Duffing function and ODE6, the exact solutions are
approximated by the results from ode45 in Matlab, with both the absolute
error and relative error set to 10−12. In the experiments, we choose the step
size of an ODE solver such that the global error is of the order of 10−6; so, the
accuracy in the approximated exact solution is sufficient for the comparisons
in this report.

3.2. Experiment Setup

The experimental tests are performed on a two-socket Quad-core Intel
Xeon processor with 8GB memory. OpenMPI 1.2 is used for inter-process
communications. Both the sequential code and parallel code are compiled
using gcc with highest optimization level of the compiler. The speedup is
reported by comparing the parallel result with that of equivalent conven-
tional sequential solvers; parallelization of the conventional solvers, with ei-
ther OpenMP or MPI, led to a slow-down in performance. An assembly
timing routine, which accesses the time-stamp counter through the rdtsc in-
struction on Intel processors is used for timing the results. The resolution of
the timer is 0.05µs, which is sufficiently small for the timing purpose in this
paper, since the timing results are at least the order of a few microseconds.

In order to compare the hybrid method and Picard iterations, the ODE
solver used by the hybrid method and the quadrature evaluation method in
Picard iterations should have the same order of accuracy. A single-step 4th
order Runge-Kutta method and a multi-step 4th order Adams-Bashforth-
Moulton method are implemented as the underlying exact ODE solvers of
the hybrid method. The Simpson’s rule is used to evaluate the quadrature
in Picard iterations. The accuracy of the Simpson’s rule is also of order 4.
All the computations are in double precision.

We also need to clarify the terms tolerance and error used in the discus-
sion. The latter refers to the absolute difference between the exact solution
and the computed solution. The term tolerance is a parameter passed to the
iterative solver to determine convergence. When an iterative method is used,
the solution is considered to have converged if the absolute difference between
the two solutions at successive iterations is smaller than a threshold, which
is referred to as the tolerance. The error may be larger than the tolerance.
For a sequential ODE solver, tolerance has its conventional meaning.

11



3.3. Experiment Results

3.3.1. Choice of Step Size

We first explain our choices of the time step size for the exact ODE solvers
in the hybrid method. The step size has to be small enough for stability and
accuracy concerns. However, if the time step size is smaller than necessary,
then the granularity of the computation is coarser, and thus the communica-
tion overheads will be artificially made small, relative to the computational
effort in the parallel implementation. In order to avoid these artificial effects
caused by too small time step size, we first determine the accuracies of the
sequential ODE solver and quadrature evaluation for different step sizes, and
we choose the one that gives sufficiently good accuracy. We also compare the
exact solutions with the results from using Matlab ode45, a medium order
ODE solver, with both the relative error tolerance and absolute error toler-
ance set equal to 10−6. We choose the step size such that the errors are the
same order as that of Matlab ode45, approximately the order of 10−6.

For Runge-Kutta 4th order method, for example, a step size of 0.005 is
sufficiently small for solving ODE1 stably. However, a much smaller step size
is usually required for high accuracy. Fig. 3 (a)-(f) compare the errors in the
solutions from ode45 function in Matlab (with parameters of absolute error
= 10−6 and relative error = 10−6) and Runge-Kutta 4th order method with
two different time step sizes for the six ODE examples. For ODEs (1, 3, 5,
6), the step size is determined as 10−7, and as 10−6 for ODEs (2,4). The
same analysis and step sizes are also used in the multi-step Adams-Bashforth-
Moulton method and the Simpson’s rule for the quadrature evaluations in
Picard iterations, as they are all the same order with respect to time step
size.

3.3.2. Effects of Windowing

Three variants of the hybrid method are considered: (i) The entire time
span T of the ODE system is divided into T/P intervals on P cores and
each core solves for one time interval; (ii) T is divided into a number of
windows of width W , and the number of windows is much larger than P .
The cores solve the ODE system for the first P windows (one window per
core) and proceed to the next P windows only if all the cores have converged.
This type of windowing technique has been shown to be more effective than
solving for the entire time domain in dynamic iterations [7, 8]. (iii) In the
above windowing method, after the first few cores converge, they no longer
perform any useful work rather than repeating the computation. These cores,

12



(a) ODE1 (b) ODE2

(c) ODE3 (d) ODE4

(e) ODE5 (f) ODE6

Figure 3: Accuracy of 4th order Runge-Kutta method with different step
sizes.

13



(a) Runge-Kutta Method (b) Adams-Bashforth-Moulton Method

Figure 4: Number of iterations per window.

instead, can be used for computing new windows. We call this method sliding
windows. We also note that a core cannot be considered as having converged,
unless it has locally converged and all the cores handling smaller values of
the time intervals have also converged.

Fig. 4 shows the number of iterations per window from using the three
different windowing methods on 8 cores with Runge-Kutta and Adams-
Bashforth-Moulton methods. Fig. 5 compares the speedup results for the six
example ODEs. For non-windowing method, each core computes for about
107 time steps. For the two windowing methods, the window size is 104 time
steps and the tolerance is 10−6. As we can see, sliding windows yield a better
speedup than fixed windows, since once a core has converged, it will be used
for new computation. The non-windowing method does not perform well for
such small number of cores, because eight iterations are required to converge
for the given time span on eight cores. Given these observations, we will only
use the results from the sliding windows method for the discussions that will
follow.

Speedup Results. The speedup results are reported as comparing the hybrid
method and Picard iterations with a conventional ODE solver. If we compare
against a sequential implementation of dynamic iterations, speedup is close
to linear. However, in order to realistically evaluate the usefulness of dynamic
iterations, we need to compare them against a conventional ODE solver. The
total computational work of a sequential solver is less than that of dynamic
iterations, and so the speedup results are lower than if compared with a
sequential implementation of dynamic iterations.

14



(a) Runge-Kutta Method (b) Adams-Bashforth-Moulton Method

Figure 5: Speedup results.

The hybrid method is implemented with MPI for inter-process communi-
cations. In particular, the method with sliding windows requires three MPI
function calls per iteration: 1) MPI Scan is used for the parallel prefix sum-
mation; 2) MPI Allreduce is called in testing for convergence; 3) MPI Isend
and MPI Recv communicate the latest updated value between certain cores.
Across eight cores, MPI Scan, MPI Isend and MPI recv take less than 1µs
and MPI Allreduce takes less than 10µs. The computation time per step for
the example ODEs using Runge-Kutta method or Adams-Bashforth-Moulton
method takes less than 1µs. For speedup results shown in the following dis-
cussions, the window size is at least 103 time steps, in which case, the granu-
larity of the computation is in the order of a hundred microseconds, and the
overall communication overhead is at most the order of 10%.

We now discuss the choice of window size. As mentioned earlier, the
window size used in the hybrid method directly determines the granularity
of the parallel computation. Smaller granularity indicates relatively larger
communication overhead, and the speedup can be expected to decrease as
the window size becomes smaller. In the hybrid method, the window size can
also affect the total number of iterations for convergence. Larger number of
iterations will lead to lower speedup. We experimented with three different
window sizes and each includes 103, 104 and 105 time steps respectively. Fig. 6
compares the average number of iterations per window with two underlying
conventional ODE solvers. The tolerance for convergence is 10−6. Fig. 7
shows the speedup when different window sizes are used for the example
ODEs with same tolerance. The empirical results show that the smaller the
window size is, the faster the method converges.

15



(a) Runge-Kutta Method (b) Adams-Bashforth-Moulton Method

Figure 6: Number of iterations per window. Error tolerance is 10−6.

(a) Runge-Kutta Method (b) Adams-Bashforth-Moulton Method

Figure 7: Speedup results for different window sizes. Error tolerance is 10−6.

16



(a) Runge-Kutta Method (b) Adams-Bashforth-Moulton Method

Figure 8: Comparison of the relative average number of iterations per win-
dow. The bars show the ratio obtained by dividing the results of Picard
iterations against that of the hybrid method. Error tolerance is 10−6.

Table 1: Ratio of the differences in computation time per time step. The
computation time of Picard iterations is set as 1.

ODE RK4 ABM Simpson

ODE1 1.9 2.4 1
ODE2 1.9 2.4 1
ODE3 1.9 2.5 1
ODE4 2.2 2.9 1
ODE5 3.0 1.7 1
ODE6 1.9 3.7 1

Comparison with Picard iterations. Fig. 8 shows the comparisons of the num-
ber of iterations between the Picard iterations and the hybrid method for the
same parameters of window size, time step size and error tolerance. Picard
iterations in this paper are also implemented with sliding windows method.
The step sizes used in Simpson’s method to compute the quadrature inte-
gration of Picard iterations are the same as that used by the conventional
ODE solvers in the hybrid method for each example ODE system. The error
tolerance is also 10−6. The y-axis shows the ratio of the number of iterations
required by Picard iterations versus the number of iterations required by the
hybrid method.

For the six example ODEs, Picard iterations require 1 - 2 times more
iterations to converge than the hybrid method. Fig. 9 shows the comparison

17



(a) Runge-Kutta Method (b) Adams-Bashforth-Moulton Method

Figure 9: Comparison of relative speedup results. The bars show the ratio
of the speedup results of the hybrid method divided by that of the Picard
iterations. Error tolerance is 10−6.

in the speedup results between the hybrid method and Picard iterations on
8 cores. Note that the improvement in the convergence rate of the hybrid
method does not directly translate to a proportional improvement in the
speedup over Picard iterations. The disparity in speedup and convergence
rate is due to the difference in the computation complexity of the exact ODE
solvers (Runge-Kutta method and Adams-Bashforth-Moulton method) in the
hybrid method and the integrator (Simpson’s rule) in Picard iterations. For
each time step, Runge-Kutta method and Adams-Bashforth-Moulton method
require more computation time than the Simpson’s rule. Table. 1 compares
the differences in computation time per time step for the three methods and
the differences are reported as the ratio of the differences compared to Picard
iterations. Though Picard iterations need more iteration to converge, they
achieve better speedup results. However, we also need to check the global
error when the solution converges. The actual speedup of the two methods
should be compared given that the solution has the same order of global
errors as an equivalent sequential solver.

3.3.3. Accuracy of solution

For dynamic iterations, both the window size and the error tolerance
may affect the numerical accuracy of the final solution. Fig. 10 and fig. 11
show the global errors in the solution of the hybrid method with Runge-
Kutta method. Similar results are also observed for the hybrid method with
Adams-Bashforth-Moulton method. For different window sizes and different

18



error tolerance, the accuracy of the solution varies. For example, if the
window size is identical, then higher tolerance results in lower accuracy of
the final solution.

The window size and the error tolerance also affect the accuracy and con-
vergence rate of Picard iterations. Fig. 12 and fig. 13 show the global errors
in the solution of Picard iterations for different window sizes and different
values of tolerance. Compared to the hybrid method, for the same window
size and same tolerance, Picard iterations have higher global errors. To ob-
tain the global errors that are the same order as the hybrid method, Picard
iterations would require lower error tolerance for convergence and thus more
iterations.

In order to compare the actually speedup of the hybrid method and Picard
iterations over an equivalent sequential ODE solver, we need to compare the
results when the hybrid method and Picard iterations have the same order
of global error as the sequential ODE solver. We choose the window size and
tolerance for both the hybrid method and Picard iterations such that the
global error is in the order of 10−6, as shown in fig. 10 - fig. 13. Fig. 14 shows
the comparison of the speedup results between the hybrid method and Picard
iterations, given the same order of global errors by the two methods. As we
can see, the hybrid method with Runge-Kutta method is faster than Picard
iterations, except for ODE5. The hybrid method with Adams-Bashforth-
Moulton multistep ODE solver is faster than Picard iterations for half of the
example ODEs.

3.3.4. Lower order of accuracy

When higher order of global error is acceptable for solving an ODE sys-
tem, Picard iterations can achieve better performance than a sequential ODE
solver and the hybrid method on multicore processors. For example, if the
sequential ODE solver uses time step size of 10−4 for the same six example
ODEs, the global error is in the order of 10−3. Since the window size in
the hybrid method has to be at least in the order of 103 due to the parallel
overheads and thus the total number of windows significantly decreases in
the time span of the six ODE systems, the performance of the hybrid method
is close to its equivalent sequential ODE solver. The same is also true for
Picard iterations and Picard iterations actually require more than 8 itera-
tions per window to converge on 8 cores. Though the total computation is
larger in Picard iterations than a sequential ODE solver, Picard iterations can
still expect some speedup because of the disparity in the computation time

19



(a) ODE1. Tolerance = 10−6 (b) ODE1. Tolerance = 10−4

(c) ODE2. Tolerance = 10−6 (d) ODE2. Tolerance = 10−4

(e) ODE3. Tolerance = 10−6 (f) ODE3. Tolerance = 10−4

Figure 10: Global error in the solution of the hybrid method.

20



(a) ODE4. Tolerance = 10−6 (b) ODE4. Tolerance = 10−4

(c) ODE5. Tolerance = 10−6 (d) ODE5. Tolerance = 10−4

(e) ODE6. Tolerance = 10−6 (f) ODE6. Tolerance = 10−4

Figure 11: Global error in the solution of the hybrid method.

21



(a) ODE1. Tolerance = 10−6 (b) ODE1. Tolerance = 10−7

(c) ODE2. Tolerance = 10−6 (d) ODE2. Tolerance = 10−8

(e) ODE3. Tolerance = 10−6 (f) ODE3. Tolerance = 10−8

Figure 12: Global error in the solution of Picard iterations.

22



(a) ODE4. Tolerance = 10−6 (b) ODE4. Tolerance = 10−8

(c) ODE5. Tolerance = 10−6 (d) ODE5. Tolerance = 10−8

(e) ODE6. Tolerance = 10−6 (f) ODE6. Tolerance = 10−8

Figure 13: Global error in the solution of Picard iterations.

23



Figure 14: Relative speedup results, with global error in the order of 10−6.
The bars show the relative speedup results of the hybrid method divided
against that of Picard iterations.

per time step between the quadrature computation (Simpson’s rule) and the
ODE solver (Runge-Kutta method and Adams-Bashforth-Moulton method).
Fig. 15 shows the speedup of Picard iterations on 8 cores over two sequen-
tial ODE solvers with Runge-Kutta method and Adams-Bashforth-Moulton
method respectively.

4. Related Work

Two other important dynamic iterations methods are the Waveform Ja-
cobi method and the Waveform Gauss-Seidel method. The definitions of g
for these are provided in [3].

The Waveform Jacobi recurrence is like that of equation (3), except that
in the evaluation of the j th component of f , the j th component of um is
replaced by the j th component of um+1. This decomposes the ODE with n
variables into n ODEs where one variable is updated in each ODE. In the
evaluation of f , the value of um(s) is used for all other variables.

Similarly, the Waveform Gauss-Seidel recurrence is like that of equation
(3), except that in the evaluation of the j th component of f , all components
of um with index less than or equal to j are replaced by the corresponding
components of um+1. This decomposes the ODE with n variables into n

24



Figure 15: Speedup of Picard iterations over sequential ODE solvers on 8
cores.

ODEs where one variable is updated in each ODE. The ODE for the first
component is solved as in Waveform Jacobi. The ODE for the second com-
ponent uses the values of the first component of um+1(s) evaluated before,
and the values of um(s) for the third and higher indexed components, in each
evaluation of f . This process continues, with the ODE for each component
using the values of um+1(s) for components with smaller indices, and um(s)
for components with larger indices, in each evaluation of f .

Note that, despite the use of an ODE solver instead of quadrature by
these methods, they are quite different from the hybrid-scheme. Their basic
goal is to decouple the computation of each component of the system. They
have the high memory requirement of the Picard iteration, because um needs
to be stored for all time steps.

Each iteration of Waveform Jacobi can be parallelized by having the ODE
for each component solved on a different core. This is advantageous for large
systems, especially when different time steps can be used for different com-
ponents. However, the communication cost can be high, because the compo-
nents of u at all time points will need to be sent to other cores. Parallelizing
it along the time domain is difficult in general. Some special cases can,
however, be parallelized in time [3].

A wavefront approach is used to parallelize Waveform Gauss-Seidel [3].
The idea behind this is basically pipelining. Note that once the first time

25



step of the first component of um+1 has been completed, the first time step of
the second component can be started, while the second time step of the first
component is simultaneously started. If we need to perform m iterations with
n time steps each, then the total of nm evaluations of f can be performed
in n + m steps in parallel. This appears to be a good reduction in time.
However, we note that a conventional sequential ODE solver will solve the
same problem in n time steps. Thus, even with parallelization, this method
is not faster than an equivalent conventional solver2.

The above processes of splitting the ODE into subcomponents can be
generalized by keeping blocks of variables that are strongly coupled together.
The blocks may also overlap [9]. When (2) is solved exactly, the solution
converges superlinearly ([3, 10]) on a finite time interval. However, numer-
ical methods have to be used to solve it in practice. Theoretical results on
convergence for discrete version of dynamic iterations are presented in [11, 3].
Estimates of suitable window sizes for good convergence are provided in [12].
In realistic situations, this class of methods has often been found to converge
slowly, which is a major limitation of these methods in practice.

Different strategies have been proposed to speed up the convergence of
dynamic iterations. Coarse time step size for the earlier iterations, and finer
time steps for later iterations, is proposed in [10]. A two-step-size scheme
for solving Picard iterations is proposed in [7]. A fine step size is used for a
fixed number of iterations in all the sub-systems to smooth the iterations. A
coarse step size is then used to solve the residue of the solution restricted to
the coarse time-mesh. Multigrid techniques have also been used for acceler-
ating convergence ([13, 14]). Reduced order modeling techniques have been
combined with dynamic iterations, in order to help propagate the change in
one component of the system faster to the rest of the system in [15].

A different approach to time parallelization uses a coarse-grained model
to guess the solution, followed by correction. The Parareal method can be
considered an example of this ([16, 17]). Dynamic data-driven time paral-
lelization ([18, 19, 20]) uses results from prior, related, runs to construct a
coarse-grained model.

Conventional parallelization of ODEs is through distribution of the state

2However, this method may be useful for other reasons, such as when widely different
time steps can be used for different components. But the order in which variables are
solved has to be chosen carefully, to prevent the variable with small times steps from
becoming a bottleneck to variables that depend on it [3].

26



space, as mentioned earlier. The difficulty with small systems is that the
computation time per time step is small. For example, each step in our
computation takes the order of a tenth of a microsecond using the Runge-
Kutta method. This will be even smaller when the state space is distributed
across the cores. On the other hand, MPI communication overhead is of the
order of microseconds. One could use threads for better speed. However, the
thread synchronization overhead is then significant.

5. Conclusion

We showed that the hybrid dynamic iterations yield significantly better
performance than an equivalent sequential ODE solver. This is important
because conventional parallelization in the spatial domain is not feasible for
small ODE systems, as the communication overhead surpasses the compu-
tation time. In the hybrid method, the overall parallelization overheads are
comparably smaller than the computation for the window size. The loss in
the efficiency of the hybrid method is primarily due to the number of itera-
tions required for convergence. The hybrid method can provide substantial
benefit when effective, and it is no worse than an equivalent sequential solver
when less effective.

We have considered three variants of the hybrid method: (i) solving for
the entire time span; (ii) using fixed windows; (iii) using sliding windows.
The former two have been studied for dynamic iterations. We demonstrated
through the speedup results that the parallel efficiency of the sliding window
method is better than the other two. We also showed that the convergence
behavior of the hybrid method is better than Picard iterations. For higher
accuracy solutions, the hybrid method achieves better speedup than Picard
iterations. When lower accuracy solutions are acceptable, Picard iterations
can have better performance than the hybrid method.

Acknowledgments

This work was funded by NSF grant #DMS 0626180. The authors would
like to thank Xin Yuan at Florida State University for for permitting use of
his Linux cluster. A.S. gratefully acknowledges his debt to Sri S. S. Baba,
whose help and inspiration were crucial to the success of this work.

27



References

[1] Y. Yu, A. Srinivasan, Dynamic iterations for the solution of ordinary dif-
ferential equations on multicore processors, in: Proceedings of the 23rd
International Parallel and Distributed Processing Symposium (IPDPS),
IEEE, 2009.

[2] E. Lelarasmee, A. E. Ruehli, A. L. Sangiovanni-Vincentelli, The wave-
form relaxation method for time-domain analysis of large scale inte-
grated circuits, IEEE transactions on CAD IC systems 1 (1982) 131–
145.

[3] C. W. Gear, Waveform methods for space and time parallelism, Journal
of Computational and Applied Mathematics 38 (1991) 137–147.

[4] L. F. Shampine, Numerical Solution of Ordinary Differential Equations,
Chapman & Hall, 1994.

[5] I. K. Youssef, H. A. El-Arabawy, Picard iteration algorithm combined
with gauss-seidel technique for initial value problems, Applied Mathe-
matics and Computation 190 (2007) 345–355.

[6] T. E. Hull, W. H. Enright, B. M. Fellen, A. E. Sedgwick, Comparing
numerical methods for ordinary differential equations, SIAM Journal of
Numerical Analysis 9 (1972) 603–737.

[7] B. Leimkuhler, Timestep acceleration of waveform relaxation, SIAM
Journal on Numerical Analysis 35 (1998) 31–55.

[8] J. Sun, H. Grotstollen, Fast time-domain simulation by waveform re-
laxation methods, IEEE Transactions on Circuit and Systems 44 (1997)
660–666.

[9] R. Jeltsch, B. Pohl, Waveform relaxation with overlapping splittings,
SIAM Journal on Scientific Computing 16 (1995) 40–49.

[10] O. Nevanlinna, Remarks on Picard Lindelöf iteration, BIT Numerical
Mathematics 29 (1989) 328–346.

[11] M. Bjorhus, A note on the convergence of discretized dynamic iterations,
BIT Numerical Mathematics 35 (1995) 291–296.

28



[12] B. Leimkuhler, Estimating waveform relaxation convergence, SIAM
Journal on Scientific Computing 14 (1993) 872–889.

[13] C. Lubich, A. Ostermann, Multi-grid dynamic iterations for parabolic
equations, BIT Numerical Mathematics 27 (1987) 216–234.

[14] S. Vandewalle, R. Piessens, On dynamic iteration methods for solv-
ing time-periodic differential equations, SIAM Journal on Numerical
Analysis 30 (1993) 286–303.

[15] M. Rathinam, L. R. Petzold, Dynamic iteration using reduced order
models: A method for simulation of large scale modular systems, SIAM
Journal on Numerical Analysis 40 (2002) 1446–1474.

[16] L. Baffico, S. Bernard, Y. Maday, G. Turinici, G. Zerah, Parallel-in-
time molecular-dynamics simulations, Physical Review E (Statistical,
Nonlinear, and Soft Matter Physics) 66 (2002) 57701–57704.

[17] Y. Maday, G. Turinici, Parallel in time algorithms for quantum control:
Parareal time discretization scheme, International Journal of Quantum
Chemistry 93 (2003) 223–238.

[18] A. Srinivasan, N. Chandra, Latency tolerance through parallelization of
time in scientific applications, Parallel Computing 31 (2005) 777–796.

[19] A. Srinivasan, Y. Yu, N. Chandra, Application of reduced order model-
ing to time parallelization, in: Proceedings of HiPC 2005, Lecture Notes
in Computer Science, volume 3769, Springer-Verlag, 2005, pp. 106–117.

[20] Y. Yu, A. Srinivasan, N. Chandra, Scalable time-parallelization of
molecular dynamics simulations in nano mechanics, in: Proceedings
of the 35 th International Conference on Parallel Processing (ICPP),
IEEE, 2006, pp. 119–126.

29


