
Reuse and Refactoring of GPU Kernels to Design Complex Applications

Santonu Sarkar∗, Sayantan Mitra∗, Ashok Srinivasan†
∗Infosys Labs, Infosys Ltd. Bangalore 560100, India

Email: {santonu sarkar01,sayantan mitra01}@infosys.com
†Dept. of Computer Science, Florida State University, Tallahassee, FL 32306, USA

Email: asriniva@cs.fsu.edu

Abstract—Developers of GPU kernels, such as FFT, linear
solvers, etc, tune their code extensively in order to obtain op-
timal performance, making efficient use of different resources
available on the GPU. Complex applications are composed
of several such kernel components. The software engineering
community has performed extensive research on component-
based design to build generic and flexible components, such that
a component can be reused across diverse applications, rather
than optimizing its performance. Since a GPU is used primarily
to improve performance, application performance becomes a
key design issue. The contribution of our work lies in extending
component based design research in a new direction, dealing
with the performance impact of refactoring an application
consisting of the composition of highly tuned kernels. Such
refactoring can make the composition more effective with
respect to GPU resource usage especially when combined with
suitable scheduling. Here we propose a methodology where
developers of highly tuned kernels can enable application
designers to optimize performance of the composition. Kernel
developers characterize the performance of a kernel through its
“performance signature”. The application designer combines
these kernels such that the performance of the refactored
kernel is better than the sum of the performances of the
individual kernels. This is partly based on the observation
that different kernels may make unbalanced use of different
GPU resources like different types of memory. Kernels may
also have the potential to share data. Refactoring the kernels,
combining them, and scheduling them suitably can improve
performance. We study different types of potential design
optimizations and evaluate their effectiveness on different
types of kernels. This may even involve choosing non-optimal
parameters for an individual kernel. We analyze how the
performance signature of the composition changes from that of
the individual kernels through our techniques. We demonstrate
that our techniques lead to over 50% improvement with some
kernels. Furthermore, the performance of a basic molecular
dynamics application can be improved by around 25.7%, on a
Fermi GPU, compared with an un-refactored implementation.

Keywords-gpu, component reuse, kernel composition, refac-
toring

I. INTRODUCTION

There is a growing recognition of the need for good
software design support on parallel platforms [1]. With
the growing popularity of general purpose computing on
Graphics Processing Units (GPU), the need for a suitable
design methodology and tool for the creation of complex ap-
plications on GPUs is becoming increasingly apparent. Such

applications are composed of a large number of kernels.
For example, a GPU port of the QMCPack Quantum Monte
Carlo software [2] consists of around 120 GPU kernels. A
variety of other applications, such as linear flow solvers, are
also built by composing several kernel components. Devel-
opers of such complex GPU applications spend significant
effort and time to fine tune the code for optimal usage of the
GPU resources. Often, the kernel components are generic in
nature and have a potential of being reused in other applica-
tion contexts. An application comprising of a set of kernel
components may have data dependencies, requiring that they
be run in sequence, or they may be run concurrently. A
design methodology, that promotes construction of generic
kernels which can be composed later in other applications to
yield good performance, can significantly reduce the design
effort of complex GPU applications.

The key design concern here is to enable an application
consisting of a set of kernel components to make optimal
use of the hardware resources available in a GPU. Assume
that a reusable kernel is well written, and it has some tunable
parameters, such as the granularity of parallelization, with
a good choice of parameters enabling optimal performance.
Even in such a case, the optimal parameters for the applica-
tion, which is a composition of kernels, does not necessarily
correspond to choosing the optimal parameters for each
component. To illustrate this point, consider two kernel
components A and B, written by GPU experts. Each of them
runs optimally with the entire resource at its disposal. The
resources could be the amount of shared memory used or the
fraction of Streaming Multiprocessor (SM) used. However,
these developers are obviously unaware of the context in
which these modules will be used in future. It could very
well be the case that A and B can be run concurrently,
with 60% of the resources allocated to A and 40% to B,
for optimal performance on some application. Thus, in a
real situation, it will be necessary to optimize functional,
architectural and hardware parameters (number of blocks,
threads per block, register usage etc) of both A and B to
arrive at these magic figures. It has been shown that these
parameters are discrete [3] and even a simple version of an
optimization problem becomes NP-hard.

Constructing a complex software by composing a set of
reusable components has been well studied by the software



engineering research community [4] and many off-the-shelf
design tools are available for building and reuse of compo-
nent libraries. The software is designed to run on a sequential
hardware, where the main design concern has been to make
a component as flexible and generic as possible for maximal
reuse. However, when the underlying hardware becomes
massively data parallel like a GPU, the composition from the
performance point of view becomes extremely challenging,
and the subject has remained relatively less explored.

In this paper we study the composition of GPU kernels,
to build an application and subsequent refactoring1 of the
application for performance tuning. Here we do not propose
any approach to optimize individual kernels. Rather, we
have assumed that kernel developers have provided highly
tuned kernels. We propose a design methodology where
the responsibility of a kernel developer is to provide a
“performance signature” to characterize the performance of
a kernel, alongwith its implementation. Assuming that a
set of kernel implementations including the optimal imple-
mentation, and corresponding performance signatures are
available, we show various ways in which an application
developer can compose these kernels such that the resulting
performance is better than the sum of the performances of
the individual kernels. Further, we analyze why particular
compositions work better on different GPU architectures
– an NVIDIA S1050 Tesla and a GTX 480 (Fermi). Our
analysis reveals that different kernels may make unbalanced
use of different GPU resources like different types of
memory. Kernels may also have the potential to share data.
Refactoring the kernels, combining them, and scheduling
them suitably can improve performance.

The paper has been organized as follows. In Section II
we summarize relevant features of the GPU architectures
and CUDA programming. Next, we discuss our design
methodology in Section III. We discuss the experimental
study in Section IV. We compare our work with related work
in Section VII and finally summarize our conclusions.

II. GPU ARCHITECTURE

GPU architecture varies across different versions and
makes. Here, we provide a brief overview of a typical
NVIDIA GPU. A GPU consists of several streaming mul-
tiprocessors (SMs) and an SM can execute one of more
blocks of threads, where a block of threads can synchronize
efficiently through hardware. A GPU has a large global
memory which can be accessed by several SMs. Each SM
has a shared memory which can be accessed by threads
in a thread block. In addition, an SM has several registers
which are exclusively owned by a thread. Threads in a given
thread block, are partitioned into groups called warps. The
GPU scheduler treats a warp as a scheduling unit, where all

1Refactoring involves modifications to the implementation while main-
taining the semantics of a module.

the threads in a warp run in a lock-step fashion, i.e. each
thread in a warp, executes the same instruction in parallel,
on different data.

General purpose GPU programming was popularized by
CUDA2 [5], which is an extension to C. In CUDA, the part
of the code (and the associated data structure) that needs to
run in a data parallel manner is called a kernel function. The
process running on the host (CPU) copies relevant data to
the device (GPU) and then calls a kernel. A kernel function
is executed in a GPU by many threads. Once the kernel
completes, its output data needs to be copied back to the
host memory.

Programmers need to fine tune resource usage under
the architectural constraints (which often turns out to be a
complex decision) so as to get an optimal performance [3].
These architectural features include efficient access to dif-
ferent types of memory, such as the global memory, shared
memory, and constant memory, efficient synchronization
within a thread block in contrast to kernel level synchroniza-
tion between blocks, enabling data parallelism by reducing
branch divergence within a warp, etc.

III. DESIGN METHODOLOGY

In order to ensure that a kernel is designed and reused
keeping an optimal performance in mind, we propose a two
pronged approach. We describe two specfic roles, one the
kernel developer and the other, the application developer;
along with their responsibilities.

A. Kernel Tuning by Kernel Developer

Kernel developers fine tune the kernel for optimal utiliza-
tion of the GPU resource. As mentioned earlier, we do not
propose any optimization approach for the kernel developer.
We assume that the kernel developer has tested and fine
tuned the kernel such that its performance is optimal. We
also assume that the kernel developer is able to write a
kernel as a library function and make it generic. The kernel
developer often develops multiple implementations of the
code, such as a global memory implementation and a shared
memory implementation, evaluates them with different algo-
rithmic and hardware related parameters, such as threads per
block, and releases the optimal version. We propose that the
kernel developer publishes all the different implementations
of the kernel, including the optimal one and suboptimal ones.
Each implementation is associated with a metadata, called
performance signature.

1) Performance Signature: A performance signature is
a characterization of the performance and resource usage
as a function of parameters under the application develop-
ers control. For example, for a basic molecular dynamics
application shown in Fig.1a, we define the performance

2While OpenCL is a standard, CUDA is still popular, and so we describe
it. In any case, the methodology described in this paper is independent of
the programming language used.



Figure 1. Molecular Dynamics Application:(a)Flow Diagram (b)Design
and Refactoring Strategies

signature for kernel K by values of PS(K,Arch) =<
Reg, T/B,Mem, T ime > for a given GPU architecture
Arch. The input Arch takes a nominal value such as
“tesla” or “fermi”. Here Reg indicates the number of
registers per thread required by the given implementation of
K. The next attribute T/B indicates the number of threads
per block required, and Mem attribute characterizes the
type of memory used in the implementation. This attribute
value is also nominal, and is like “global”, “shared”
etc. The performance signature corresponding to the im-
plementation that has optimal performance, is denoted by
PSopt(K,Arch).

The notion of multiple implementations, conforming to an
interface is well-known in the domain of modular software
design. This concept, pioneered by Parnas and others [6],
suggests that a software is a composition of modules where
a module has an interface, with one or more implementations
of the interface. Here we extend this concept from the
performance point of view. Here the kernel developer not
only provides the optimal version, but also provides a sub-
optimal version of these kernels and their performance
signatures. For example, if a kernel performs optimally
when the data resides in shared memory, the developer also
provides an alternate global memory based implementation
of the kernel. In the next section we demonstrate that
multiple kernel implementations become different design
choices for application developers for the optimal design
of an application.

B. Design Choice Exploration by Application Developer

Given a set of kernels with their performance signatures,
we now describe how an application developer will com-
pose these kernels to build an application. The application
developer begins with a flow graph to define a composite
application created out of a set of predefined kernels such
as the one shown in Figure 1b for molecular dynamics,
which is explained later. Here, K2 and K3 do not have any
dependency whereas K5, K6, and K7 have dependencies.
The dotted line in this figure denotes anti-dependence [7],
[8], that is, the input set to the first kernel intersects the

Figure 2. Merge Strategy

output set to the next kernel. Similarly the developer can
specify that the kernel K4 in this figure is a reduction
kernel (a design hint, indicating that a shared memory
implementation will yield better performance).

1) Refactoring through Kernel Merging: Merging kernels
can be useful if each kernel makes unbalanced use of GPU
resources, such as registers or threads permitted per block,
so that the combination can make better use of them. Such
merging can also be useful when kernels share data; it
may so happen that the shared memory is not useful for
a particular kernel because there is not enough data reuse,
but the combined kernel has enough data reuse to make
the shared memory useful. If the output of one kernel is
the input to the next, then merging can also reduce data
movement. The performance signature and flow graph can
help identify kernels to be merged. For example, if the
optimal implementation of two kernels, when combined,
will not exhaust the resources available, such as registers
and threads per block, then they may be merged. More
interestingly, there may be a benefit to merging even if non-
optimal parameters will not exhaust the resources, if the
performance for non-optimal parameters is not very different
from the performance for optimal parameters. We later show
how the performance signature for the merged kernels differ
from that of a direct combination of the original kernels. We
next describe three strategies for merging kernels.

Strategy 1: In this strategy kernel Ki’s instructions
are executed before Kj’s. When Kj has a strict data-
dependency on Ki this is the only feasible merge strategy,
if the dependence can be enforced in each thread block. The
idea is illustrated in Figure 2b.

Next, let’s consider a more complex scenario. The data
flow analysis reveals an anti-dependence [7], [8] between
K5 and K6 which can be removed through the standard
technique of variable cloning and renaming. The next two
merge strategies can be used. These two strategies can also
be used if there is no dependence. Though co-scheduling,
which is described later, could be more effective, unless
the kernels share common input which will make merging
beneficial.

Strategy 2: As shown in Figure 2c, we keep the number
of thread blocks same, and different warps perform the
computations of the different original kernels. This implies
that each thread performs double the computation of the
standalone scenario (Figure 2a).



Strategy 3: Here we let different warps of the same
thread block do computations on different kernels (Figure
2d). However, we keep the workload of each thread to be
the same, which increases the number of blocks, providing
the potential to decrease global memory access latency.

2) Co-Scheduling: Design decisions can be influenced by
hardware architecture. Since a Fermi GPU allows concurrent
execution of kernels, the designer can opt for concurrent
execution of kernels which do not have data dependencies. In
the experiment section we show performances of two inde-
pendent kernels K2 and K3 in Figure 1. We also investigate
the use of this strategy for pseudo parallel execution of two
kernels K7 and K1 in Figure 1, as explained below. The
computation in this flow graph is repeated in a loop. Such
loops are fairly common in scientific applications. In this
particular application, computation of K7 in iteration i is
independent of the computation of K1 in iteration i + 1.
They can, consequently, be executed concurrently.

3) Optimal Design Choice: Given above strategies, what
could be the optimal design choice? Given a set of per-
formance signatures for each kernel, including the optimal
signature, which implementation of kernels, say, K5 and K6
should one choose during merging? Is it always the case
that selection of optimal implementations of two kernels
yield optimal result when they are merged? We show in
the following section that this is always not the case and
explain the reason.

The next question is, which merge strategy will work best
in this case? Furthermore, in a flow graph like 1b, should
one merge K5 & K6 or K6 & K7 or K5, K6, & K7? In
the following section we investigate these issues through an
experimental study.

IV. EXPERIMENTAL STUDY

For our analysis, we have taken a simple example of a
molecular dynamics simulation, shown in Figure 1a, which
works as follows.

1. Initialize: Start with a set of particles, placed in a
3-dimensional box, with initial positions, velocities, and
accelerations drawn from a specified distribution.

2. Compute: Compute the potential energy or force of
each particle using a Lennard-Jones potential. Also compute
the kinetic energy of each particle and then compute total
energies of all particles.

3. Update: Update the position, velocity and acceleration
of each particle.

4. Advance the time-step and go to Step 2 again.
We have converted the above example to CUDA from the

original source3.
In Figure 1b we have shown their data dependencies

in a flow graph, where we have used symbolic names
{K1,K2, · · ·K7} for these kernels. Kernel K1 to K7 has

3http://people.sc.fsu.edu/j̃burkardt/f src/md open mp/md open mp.f90

been run repeatedly for each time step. Note that in this
application, the time taken per iteration is small; however,
the total time for the computation is large because an
extremely large number of iterations are required for a
realistic computation.

In the first part of the experiment, presented in the follow-
ing subsection, we have explained the process of collecting
optimal as well as sub-optimal performance signatures by
a kernel developer. Next we have switched to the role of
an application developer, where the kernel components,
their implementations and performance signatures have been
assumed to be present. Here we have elaborated the selection
of appropriate kernel implementation and composition of
kernels through experimental analysis.

A. Infrastructure Used
We have reported our results both on an NVIDIA S1050

Tesla and on an NVIDIA GTX 480 Fermi GPU. For both
these devices, the host is an Intel Xeon 2.5 GHz CPU
running Linux kernel version 2.6.18. The host code has
been compiled using gcc version 4.1.2 and the kernel code
has been compiled with NVCC version 3.2 and 4.0 on the
Tesla and Fermi GPU respectively. We have reported the
performance using a RDTSC timer on the host that has a
resolution of 1ns. Each kernel execution has been repeated
for a sufficiently large number of times. We have ignored
the time for the first iteration, in order to discount the
GPU warmup overhead from our measurement, and then
have reported the average execution time for the subsequent
iterations. We have noted the kernel launch overhead on the
Tesla to be 21µs, while on the Fermi it is 7µs.

V. EXPERIMENTS BY KERNEL DEVELOPER

We have run the application by varying the number of
threads per block for a given number of particles. We have
observed the time taken by each kernel. We have also noted
the number of registers being used per thread by each kernel.
Table I shows the performance results of each kernel when
they have been executed on a Tesla (T) and Fermi (F)
respectively. The first part of the table shows the results
when the data resides in global memory.

We have re-implemented kernels K2 to K7 as shared
memory variants and reported their results in the second part
of Table I. We have renamed the shared memory variant of
these kernels as K2sh, K3sh etc.

A. Performance Signature
From Table I the kernel developer derives

PS(K,Arch) =< Reg, TB,Mem, T ime > for the
kernels K1· · ·K7. Table II shows the optimal signature
PSopt for these kernels in Tesla and Fermi GPUs for 10000
molecules.

Note that the shared memory versions of K5 and K6
perform optimally for Tesla, but for Fermi, it is the global
memory versions of these two kernels that perform the best.



Kernel #reg./ Execution time for kernels for varying
thread #threads/block when data is in GLOBAL memory

32 64 128 256 512
K1(T) 32 75.907 73.761 73.593 86.532 86.985
K1(F) 32 24.054 22.907 21.343 21.385 25.651
K2(T) 5 129.885 104.247 105.63 103.763 109.35
K2(F) 10 40.793 39.956 51.670 40.119 50.234
K3(T) 5 980.849 849.206 845.075 842.143 875.417
K3(F) 10 345.88 345.296 333.389 361.69 341.983
K4(T) 4 218.244 168.593 150.256 130.614 117.129
K4(F) 12 86.073 74.858 56.519 49.868 44.868
K5(T) 10 42.763 33.796 33.165 33.524 33.505
K5(F) 12 18.570 13.652 12.014 12.806 12.643
K6(T) 10 44.224 31.396 31.695 31.681 31.601
K6(F) 12 18.001 12.621 10.938 11.729 12.148
K7(T) 2 30.706 23.868 23.362 24.538 24.261
K7(F) 8 12.162 10.173 8.985 9.361 9.259

Execution time for kernels for varying
#threads/block when data is in SHARED memory
32 64 128 256 512

K2sh(T) 4 26.011 23.883 23.936 25.114 25.394
K2sh(F) 8 21.001 19.905 10.363 10.450 11.164
K3sh(T) 4 149.61 142.946 113.348 122.57 130.503
K3sh(F) 8 50.903 47.363 30.918 32.221 36.068
K4sh(T) 4 54.469 51.107 50.842 29.046 29.781
K4sh(F) 8 29.882 25.018 22.991 15.191 16.209
K5sh(T) 8 33.258 32.979 33.696 36.405 36.949
K5sh(F) 13 14.756 13.207 13.081 14.024 13.846
K6sh(T) 8 31.254 30.651 33.121 34.692 36.089
K6sh(F) 10 14.430 12.684 12.244 13.519 13.162
K7sh(T) 3 27.2328 25.858 25.003 26.880 26.485
K7sh(F) 8 13.043 10.909 9.9881 10.272 10.382

Table I
PERFORMANCE OF GLOBAL AND SHARED MEMORY IMPLEMENTATIONS

OF KERNELS ON A TESLA (T) AND FERMI (F) GPU FOR 10000
MOLECULES. OPTIMAL PERFORMANCE IS SHOWN IN BOLD AND THE

CORRESPONDING KERNEL IMPLEMENTATION IS IN ITALICS.

Kernel PSopt(K,Tesla) PSopt(K,Fermi)
Reg TB Mem Reg TB Mem

K1 32 128 G 32 128 G
K2 4 64 S 8 128 S
K3 4 128 S 8 128 S
K4 4 256 S 8 256 S
K5 8 64 S 12 128 G
K6 8 64 S 12 128 G
K7 2 128 G 8 128 G

Table II
PERFORMANCE SIGNATURE OF KERNELS ON A TESLA AND FERMI GPU

FOR 10000 MOLECULES. S(DATA RESIDES IN SHARED MEMORY),
G(DATA RESIDES IN GLOBAL MEMORY)

VI. DESIGN CHOICE EXPLORATION- EXPERIMENTS BY
APPLICATION DEVELOPER

Using performance signatures and implementations of
K1· · ·K7 from kernel developers, we now study the efficacy
of various design strategies introduced in Section III-B, and
present the performance of the overall application.

A. Merge Strategies

Table III shows the performance of different combinations
of kernels and different merge strategies. For K5, K6, and
K7, we have merged K5 and K6 (K56), then K6 and

Kernel #reg./
thr.

Exec. time(µs) for kernels for varying #thr/ blk

32 64 128 256 512
K5sh(T) 8 33.258 32.979 33.696 36.405 36.949
K5(F) 12 18.570 13.652 12.014 12.806 12.643
K6sh(T) 8 31.254 30.651 33.121 34.692 36.089
K6(F) 12 18.001 12.621 10.938 11.729 12.148
K7(T) 2 30.706 23.868 23.362 24.538 24.261
K7(F) 8 12.162 10.173 8.985 9.361 9.259

Merging K5 and K6
K56Mg1(T) 14 42.426 40.134 39.691 40.640 40.879
K56Mg1(F) 18 16.603 13.873 13.727 14.107 14.237
K56Msh1(T) 13 42.859 40.614 40.055 41.035 41.382
K56Msh1(F) 16 17.333 14.744 14.069 14.737 15.13
K56Mg2(T) 13 NA 54.820 54.173 55.071 56.008
K56Mg2(F) 16 NA 15.233 14.694 15.918 17.946
K56Msh2(T) 13 NA 54.621 54.596 55.059 56.445
K56Msh2(F) 18 NA 14.812 14.731 17.569 19.161
K56Mg3(T) 10 NA 44.641 44.282 45.480 45.166
K56Mg3(F) 12 NA 16.359 14.311 15.615 15.793
K56Msh3(T) 10 NA 50.421 49.884 50.659 50.676
K56Msh3(F) 14 NA 14.965 14.718 15.566 16.180

Merging K6 and K7
K67Mg1(T) 11 37.126 36.382 36.124 37.286 37.776
K67Mg1(F) 14 13.868 11.760 11.438 11.565 12.108
K67Msh1(T) 11 36.804 35.379 35.361 37.367 37.776
K67Msh1(F) 13 15.133 12.375 11.843 12.476 12.726
K67Mg2(T) 10 NA 46.961 47.986 48.181 47.750
K67Mg2(F) 14 NA 13.375 12.310 12.503 14.419
K67Msh2(T) 11 NA 44.915 45.827 45.724 45.859
K67Msh2(F) 16 NA 13.348 12.841 13.367 14.317
K67Mg3(T) 10 NA 37.148 36.848 37.858 37.573
K67Mg3(F) 12 NA 13.964 12.193 12.394 13.014
K67Msh3(T) 10 NA 37.494 37.528 38.093 38.113
K67Msh3(F) 12 NA 13.419 12.675 13.289 13.885

Merging K5, K6 and K7
K567Mg1(T) 14 49.791 48.168 47.844 50.998 50.292
K567Mg1(F) 18 18.840 15.351 14.203 15.426 15.524
K567Msh1(T) 13 48.363 47.267 47.681 50.122 50.297
K567Msh1(F) 20 17.033 14.573 14.084 15.125 15.282

Table III
PERFORMANCE RESULTS AFTER MERGING KERNELS K5, K6, AND K7 A

TESLA (T) AND FERMI (F) GPU FOR 10000 MOLECULES. THE FINAL
SUFFIX DENOTES THE MERGE STRATEGY USED. OPTIMAL

PERFORMANCE IS SHOWN IN BOLD

K7 (K67) and finally K5, K6 and K7 (K567). For each
combination, we have used three merge strategies introduced
in Section III-B. While merging, we have taken both global
and shared memory implementations of these kernels. To
distinguish, we have used the suffix “Mg” to denote global
memory version and “Msh” to denote the shared memory
version of the merged kernel.

The table is divided into four parts. The first part shows
the execution time of the best performing versions of K5,
K6 and K7 as per their PSopt, shown in Tables I, and II.
We have not run our experiment for block size 32 in case
of the 2nd and 3rd kernel merging strategies because that
would certainly lead to a branch divergence within a warp
leading to poor performance.

Optimal Merging: Table III shows that all strategies
improve performance. We find that when the global memory
implementation of K5 and K6 are merged together using
merge strategy 1, the merged kernel K56Mg1 gives the best



performance on Tesla as well as on Fermi GPU.
Next, from Table III, we observe that when the shared

memory versions of K6 and K7 are merged, the merged
kernel K67Msh gives the best performance on Tesla. How-
ever, when the global memory version of K6 and K7 are
merged, the merged kernel gives optimal performance on
Fermi. Once again, strategy 1 gives the best performance.
The best performance is obtained when K5, K6, K7 are
merged all together using strategy 1, as compared to merging
two kernels at a time.

Register Usage: Register usage is an important factor
in merging kernels, because the merged kernel has a higher
register usage than either kernel. Some previous works [9],
[10] have assumed that merged kernels have register usage
which is the sum of the register usage of each individual
kernel. However, a comparison of the register usage of
the original kernels and the merged kernels from their
performance signatures above shows that the register usage
for the merged kernels is much less than the sum.

1) Analysis of Merging K5 and K6: The merged kernel
having its data in global memory performs better than
merged kernels with data in shared memory in this case. The
version using merging strategy 1, K56Mg1, is 38% faster
than when optimally tuned K5sh and K6sh run in sequence
one after another on a Tesla GPU. On a Fermi GPU, this
merged kernel is 40% faster compared to optimally tuned K5
and K6 executed in sequence. While merging of kernels has
an obvious advantage of kernel launch overhead reduction
(reported in Sec. IV-A), we observe the following additional
performance benefits in favor of global memory. Through
CUDA Visual Profiler we have found that storing data in
the shared memory does not bring down the number of
global memory load instructions significantly for K56Mg1.
This implies that there is not enough data to be re-used
when K5 and K6 are merged. Furthermore, a Fermi GPU
caches global memory reads. Using a CUDA Visual Profiler,
we have seen that the ratio of L1 cache hits to misses for
K56Mg1 is higher than that of K56Msh1.

Next, we have investigated the reason for strategy 1
to work better here. To begin with, K5 and K6 are not
computation-heavy. To ensure that K5 and K6 run in dif-
ferent warps, the application developer has to write extra
operations in the merged kernel involving modulo operations
having a low instruction throughput. CUDA Visual Profiler
has shown that additional number of instructions added due
to such operations is significantly high in case of strategy 2
and 3, compared to the strategy 1.

Next, recall as per strategy 2 (Fig 2c), K56Msh2 performs
double the computations per thread. This leads to two
threads of the same half warp on a Tesla GPU and two
threads in the same warp on a Fermi GPU to access the
same memory bank, resulting in bank conflicts and thus
degrading the performance of this merged kernel. Finally,
as per strategy 3 (Fig 2d), the number of blocks executed

by a merged kernel is twice than that created by strategy
1. Doubling the number of thread blocks adds to the thread
creation overhead, which makes an impact on performance
because K5 and K6 are not computationally intensive.

2) Analysis of Merging K6 and K7: Table III shows
that at 128 threads per block (T/B) on the Tesla GPU,
K67Msh1 gives the best performance and is 37.4 % faster
than when optimally tuned K6sh (64 T/B)and K7 (128 T/B)
are executed in sequence. However, on the Fermi GPU,
the best performing merged kernel K67Mg1 runs 42.57%
faster than optimally tuned K6 and K7. On both the Tesla
and the Fermi GPUs, the reasons for kernels merged using
strategy 1, to perform better than those kernels merged using
strategies 2 and 3; are similar to the reasons discussed earlier
for K56Mg1 and K56Msh1.

Unlike merging of K5 and K6, the reason for K67Msh1
where the data resides in the shared memory, to perform
marginally better than K67Mg1 is as follows. Using CUDA
Visual Profiler, we have found that though K67Mg1 executes
10% fewer instructions than K67Msh1, the number of global
memory load instructions for K67Mg1 is 25% more than
K67Msh1. So any performance improvement obtained by
K67Mg1 by executing fewer instructions than K67Msh1 is
offset by a performance degradation due to more global
memory access. This leads to a marginal performance im-
provement for K67Msh1 over K67Mg1.

On a Fermi GPU we find the reverse. Using CUDA
Visual Profiler, we have found that K67Mg1 executes 12%
lesser number of instructions compared to K67Msh1. The
number of global memory load instructions for K67Mg1
is 25% more than K67Msh1. The ratio of L1 cache hits
to misses for K67Mg1 is higher than K67Msh1. Hence
we see that i) a higher ratio of L1 cache hits, combined
with ii) lesser number of instructions to execute, offsets
any performance degradation due to more global memory
access by K67Mg1. This leads to a marginal performance
improvement for K67Mg1 over K67Msh1.

3) Analysis of Merging K5, K6 and K7: Table III shows
that kernel K567Msh (data in shared memory) gives a better
performance consistently than K567Mg. At 64 threads per
block (T/B), K567Msh is 45.66% faster than when optimized
version of K5sh, K6sh (both at 64 T/B) and K7 (128 T/B) are
run in sequence on the Tesla GPU. On the Fermi GPU and at
128 T/B, K567Msh is 57% faster than when optimized K5,
K6 and K7 are run in sequence. The result is quite expected
as there is enough reusable data in the merged kernel and
hence storing such data in the shared memory hides global
memory latency better; the shared data in this case is twice
the amount of shared data in the K5-K6 or K6-K7 merger
cases.

4) Merge Strategies: Merge strategies 2 and 3 too lead
to significant improvement in performance over the unrefac-
tored code, even though strategy 1 performs better than
them with in the application we have considered here. We



Kernel Exec. time(µs) for kernels for varying #thr/ block
32 64 128 256 512

K2sh 21.001 19.905 10.363 10.450 11.164
K3sh 50.903 47.363 30.918 32.221 36.068
K23Psh 60.514 58.607 37.290 38.333 42.806

Table IV
PERFORMANCE COMPARISON BETWEEN K2 AND K3 AND CONCURRENT

EXECUTION OF THE SAME KERNELS (K23PSH) ON A FERMI GPU FOR
10,000 MOLECULES. OPTIMAL PERFORMANCE IS IN BOLD

Kernel Exec. time(µs) for kernels for varying #thr/ block
32 64 128 256 512

K7, ith itr 12.162 10.173 8.985 9.361 9.259
K1, (i+1)th itr 24.054 22.907 21.343 21.385 25.651
K71P 28.643 26.253 23.939 24.297 28.109

Table V
PERFORMANCE COMPARISON BETWEEN K7 AND K1 AND PSEUDO

PARALLEL EXECUTION OF THE SAME (K71P) ON A FERMI GPU FOR
10,000 MOLECULES. OPTIMAL PERFORMANCE IS IN BOLD

can expect them to perform better than strategy 1 in other
applications. For example, strategy 3 has greater parallelism
and so can potentially hide global memory access latency
better than strategies 2 or 3. However, in this particular
application, the extra computation for the modulus proved to
be a significant overhead because the amount of computation
was very small.

B. Concurrent Execution of Kernels

As discussed in Section III-B2, it is possible to run kernels
K2 and K3 concurrently since they don’t have any data
dependencies. It is also possible to interleave the execution
of ith time-step of K7 with (i + 1)th of K1 as they don’t
have dependencies either. As Tesla GPU does not support
concurrent kernel execution, we present the results from the
next set of experiments only for the Fermi GPU.

1) Concurrent execution of K2 and K3: Both K2 and K3
are data independent kernels that execute the same number
of thread blocks for a given number of molecules. Table
IV shows the performance comparison of concurrent kernel
K23Psh with that of standalone kernels K2 and K3 that have
been implemented with the data in shared memory.

Clearly, at 128 threads/block K23Psh performs 9.67%
better over the standalone kernels when executed one after
another. We explain the reason later.

2) Executing kernels K7 and K1 in parallel: For any
given iteration, we execute kernel K7 of that iteration with
K1 of the next iteration. Let K71P represent such a pseudo
kernel whose performances have been shown in Table V.
In this table we compare the performance of K71P with
that of standalone kernels K7 and K1 of the next time-step,
both of which have been implemented with their data in
global memory. At 128 threads per block, K71P performs
21% better over the standalone kernels when executed one
after another.

Each of these four kernels (K1, K2, K3 K7) is able to run
8 blocks per SM. In our experiment, for 10,000 molecules

each of these kernels execute 79 blocks leading to 67%
GPU occupancy. Thus, with CUDA stream based concurrent
execution, execution of kernels K2 and K3 are overlapped as
also that of K7 and K1 with pseudo parallelism, leading to a
better GPU utilization and overall performance improvement
over sequential execution of kernels.

C. Optimal Design of the Application

Based on performance results of various merge and
concurrent scheduling strategies, the application designer
can now build a complete application. From the complete
application perspective, we still have two design choices.
We have to see if merging of K5, K6, K7 is better than
merging K5, K6 and then execute K7, K1 concurrently. We
have compared execution times4 of three versions of the
application using Unix wall clock time on the Fermi GPU,
as discussed below.

1) The first version uses optimized kernels, K1, K2sh,
K3sh, K4sh, K5, K6, and K7 without any further
design optimization. The application takes 12.442s.

2) The second version uses K1, K23P, K4sh, K567Msh
(data in shared memory) as per the optimal design
choice. The application takes 9.243s.

3) The third version uses K1, K23P, K4sh, K56Mg1 (data
in global memory), K7K1P. The application takes
9.368s.

The reason why choice 3 is not as good as 2 is because
K7 takes O(N) while K1 takes O(N2), where N is the
number of molecules. As a result, we do not get the desired
performance benefit when we run them in parallel. Overall,
the design choice 2, which is the optimal composition, gives
us a 25.7% improvement compared to the trivial composition
of optimized kernels in choice 1.

VII. RELATED WORK

Several papers [11], [12], [13], [14], [15], [17] discuss
porting applications to GPUs and improving performance
through an optimal assignment of architectural parameters
to achieve overall execution efficiency. Our goal, in contrast,
deals with a design methodology that improves performance
of an application that consists of a composition of kernels.
Merging kernels plays an important role in this. Merging
kernels has been considered by a couple of other works.
Guevara et.al. [9] consider scheduling independent kernels,
corresponding to independent jobs, on a pre-Fermi GPU.
Due to the absence of concurrent execution on that GPU,
they merge the kernels such that different blocks perform
the work of different kernels. Wang et.al. [10] use merging
to optimize power consumption by GPU. While both the
above works in [9], [10] merge kernels, the main purpose
of their work is quite different. In our work, we perform
an experimental study on composition of kernels and their

4The number of iterations was fewer than in a production run



impact on the performance, which involves different issues,
such as better performance through reuse of data in shared
memory. Of course, the design methodology that we present
is also an important focus of our work.

VIII. CONCLUSION

In this paper we have studied the composition of GPU
kernels, and subsequent refactoring for performance tuning
to build an application. We have proposed a design method-
ology where kernel developers focus on optimal kernel
development and provide performance signatures of a kernel
alongwith different versions of implementations for subse-
quent reuse. From an application developer’s perspective,
we have analyzed various kernel merging techniques and
have shown under what circumstance a particular technique
performs the best. We have also analyzed two different
ways to schedule kernels concurrently when there is no
data dependency between them. Finally we have shown how
an application developer selects the best design strategy to
compose a complete application.

We notice from our study that standalone kernels might
be tuned to give an optimal performance using shared
memory or by using higher number of threads per block
so as to hide global memory latency better. But when
refactoring techniques such as kernel merging is applied
to such optimized kernels, sometimes sub-optimal strategies
when applied to the merged kernel, give us a better result.
We observe that in certain cases the merged kernel produces
a better performance when either the data is moved to the
global memory (in those cases where there is not much
scope for data to be re-used in the merged kernel), or for
smaller number of threads per block or both. In a different
context, the authors [16] had shown that a sub-optimal
data layout for DFTs could help the application, on the
whole, to perform better. The work present here further
substantiates the argument that when designing a complex
application, optimal choices may not correspond to making
optimal choices for each individual component separately.

Our work can be extended in several directions.
We are currently developing an application design tool
MarpleASSIST , which will incorporate different design de-
cisions that we have described here and which will automate
a part of the decision selection strategy. We intend to
investigate if the attributes from a performance signature
is sufficient to predict the performance when the kernel is
reused in a larger application context. Another worthwhile
extension of our work could be partial automation of appli-
cation optimization through the composition of kernels.

ACKNOWLEDGMENT

Ashok Srinivasan acknowledges partial funding for this
work from ORAU/ORNL under the HPC grant program.

REFERENCES

[1] D. Patterson and J. Hennessy, Graphics and Computing
GPUs: Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann, 2009.

[2] K. Esler, J. Kim, L. Shulenburger, and D. Ceperley, “Fully
Accelerating Quantum Monte Carlo Simulations of Real
Materials on GPU Clusters,” Computing in Science and
Engineering, vol. 99, no. PrePrints, 2010.

[3] S. Ryoo, C. I. Rodriguesy, S. S. Baghsorkhiy, S. S. Stoney,
D. Kirk, and Wen-Mei W. Hwu, “Optimization Principles and
Application Performance Evaluation of a Multithreaded GPU
Using CUDA,” in Proc. ACM SIGPLAN Symp. on PPoPP.
2008.

[4] G. T. Heineman and W. T. Councill, Component-based Soft-
ware Engineering: Putting the Pieces Together. Addison-
Wesley Longman Publishing Co., Inc., 2001.

[5] D. Kirk and Wen-Mei W. Hwu, Programming Massively
Parallel Processors. Morgan Kaufmann, 2010.

[6] D. Parnas, P. Clements, and D. Weiss, “The Modular Struc-
ture of Complex Systems,” IEEE Transactions on Software
Engineering, vol. 11, no. 3, pp. 259–266, 1985.

[7] M. Burke and R. Cytron, “Interprocedural Dependence
Analysis and Parallelization,” in Proc of the ACM SIGPLAN
Symp. on Compiler construction, 1986, pp. 162–175.

[8] S. Horwitz, P. Pfeiffer, and T. Reps, “Dependence Analysis
for Pointer Variables,” in ACM SIGPLAN Conf. on PLDI,
1989, pp. 28–40.

[9] M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron,
“Enabling Task Parallelism in the CUDA Scheduler,” in
Proceedings of the Workshop on PMEA, 2009, pp. 69–76.

[10] G. Wang, Y. Lin, and W. Yi, “Kernel Fusion : an Effective
Method for Better Power Efficiency on Multithreaded GPU,”
in IEEE/ACM Intl Conf. on Green Computing and Commu-
nications, 2010, pp. 344–350.

[11] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ra-
manujam, A. Rountev, and P. Sadayappan, “Automatic Data
Movement and Computation Mapping for Multi-level Parallel
Architectures with Explicitly Managed Memories,” in Proc.
ACM SIGPLAN Symp. on PPoPP. 2008.

[12] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanu-
jam, A. Rountev, and P. Sadayappan., “A Compiler Frame-
work for Optimization of Affine Loop Nests for GPGPUs,”
in Proc. International Conference on Supercomputing, 2008.

[13] S. Ueng, M. Lathara, S. S. Baghsorkhi, and Wen-
Mei W. Hwu, “Cuda-lite: Reducing GPU Programming Com-
plexity.” in Proc. Workshops on Languages and Compilers for
Parallel Computing, 2008.

[14] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-
Z. Ueng, J. A. Stratton, and Wen-Mei W. Hwu, “Program
Optimization Space Pruning for a Multithreaded GPUs.” in
IEEE/ACM Intl Symp. on Code Generation and Optimization.
2008.

[15] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU Com-
piler for Memory Optimization and Parallelism Management,”
in ACM SIGPLAN Conference on PLDI. 2010.

[16] S. Mitra and A. Srinivasan, “Small Discrete Fourier Trans-
forms on GPUs,” in 11th IEEE/ACM Intl Symp. on CCGrid,
2011, pp. 33–42.

[17] D. Li, S. Byna and S. Chakradhar, “Energy-Aware Workload
Consolidation on GPU,” in 40th Intl Conf. on Parallel Pro-
cessing Workshops (ICPPW), 2011, pp. 389–398.


