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Abstract— Molecular Dynamics(MD) is an important atomistic
simulation technique, with widespread use in computational
chemistry, biology, and materials. An important limitation of
MD s that the time step sizeis typically restricted to the order
of femto (10~1%) secondsTherefore, a large number of iterations
arerequiredto reachrealistictime scalesln fact, this is acknowl-
edgedas the major bottleneck in MD. While parallelization has
beeneffective for dealingwith the computational effort that arises
in simulating large systems(that is, having a large number of
atoms), conventional parallelization is not effective in simulating
small physical systemsto long time scales. Such simulations
are often required for evaluating the physical, mechanical, and
chemical properties at micro and nano scales. We recently
intr oduced a new approach to parallelization, through guided
simulations, where data from related prior simulations are used
to parallelize a new computation along the time domain. In
our prior work, the size of the physical systemin the current
simulation neededto be identical to that of the prior simulations.
The significanceof this paper liesin demonstrating a strategy that
enablesthis approachto be usedeven when the physical systems
differ in size. Furthermor e, this method scaled up to almost
1000 processorswith closeto ideal speedupin one case,where
corventional methods scaleto only 2 — 3 processorslt achieved
420MFlops per atom, which we believe is the largestflop rate per
atom attained in classical Molecular Dynamics computations so
far.

I. INTRODUCTION

Nandechndogy impactsa rangeof fields thatincludes ma-
terials, electronis, pharmay, and hedth care,amorg others.
Molecuar dynamics is widely usedto simulatethe behavior
of physical systemsin such applicdions, with resolutionat
the atomic scale. However, a serious limitation of MD is
its inability to simulate phenomera that take long time, for
reasonsgiven belov. MD computationsinvolve the iterative
solution of an initial value problem with time stepsof the
orderof afemto (10~1%) secoml. So, even after a few million
iterations,which requiresthe orderof a day of conputation&
effort even for a small systemwith 1000 atoms,we canonly
simulateup to the orderof narosecons. This is not sufficient
to get a realistic picture of the belavior of a physical system.
Any methal that addessesthis tempaal scalelimitation is
expectedto have tremendas impact, and this hasbeeniden-
tified asan importantchallerge in nanascalesimulationsand
computational materialsscience[13], [6], andin simulations
of biological molecues [8].

Ashok Srinivasan
Dept. of Computer Sciene
Florida StateUniversity
TallahasseeFL 3230, USA
Emal: asrinva@cs.fsu.edu

NamasChandra
Dept. of Mechanical Engneering
Florida StateUniversity
Tallahassed-L 32310, USA
Email: chanda@eng.fsu.edu

In this pape, we corsidera singlewalled CarbonNandube
(CNT) asan example physical system,and seekto detemine
its mechaical propeties unde tension (that is, wheniit is
pulled). Detailsregarding this apgdication, on MD, andon the
importanceof the time scale,are given in § Il. Since MD
is usedin a variety of otha applicdions too, we can expect
the impactof this work to be much broacder thanthis specifc
applicdion.

The usual appoachto dealing with conmputationa effort
that arisesfrom large physical systemsis to parallelizeit.
However, corventiond parallelizdion is through sometype
of decanpositionof the statespaceof a system.This is not
effective with small physical systems,since fine granulaity
leadsto communication costsdominding the computational
cost.Whenthe conmputationa effort arisesfrom the long time
required, parallelizationof the time domain appearsto be a
natural possibility However, time is not a quantity that is
easily parallelized We recertly propcsed a datadriven time
parallelizationapproach,which we called guided simulations
whereresultsfrom relatedsimulationswereusedto parallelize
alongthe time domain.

Thebasicideais to have eat processorsimulatea different
interval of time. The problemis that eachprocessoneed the
state of the systemat the beginning of the time interval it
simulatessincewe solve aninitial valueproblem We obsere
that, typically, the currentsimulationis not the first one that
is being performed usually the resultsof manyrelatedprior
simulationsare availalbde. We useresultsfromonesud related
simulation (which we call the basesimulation)to predid the
state of the current simulationat the beginning of ead time
interval. The relationshipbetwee the basesimulationandthe
currentsimulationis update& dynanically as the simulation
procedls, to comeup with increaingly betterprediction.The
predicted statesare verified in parallel through exad@ MD
compuations,to ensureaccuacgy of the results.We explain
this appro@h in greaterdetailin § III.

The appoach in this paper is along the lines of the
former work [10]. However, compared to the experimental

1someMD applications,involving computationof physical or thermody-
namic properties,are trivially parallelizdle, with the resultsof independent
simulationsbeing averaged.Such a schemeis not possiblein general,such
asin the problemwe consider



results which scaledto 50 processorsn [10], the stratgy
presentedn this pager letsit scaleto almost1000 processors
with efficiency over 97%, for a problemwhere corventiond
parallelizationscalesto only 2 — 3 processors.In [11], we
shaved how reducel order modding can be usedto predid
the state from a datalaseof several simulationresultswithout
much a-priori knowledge of the physics of the problem
The experimentalresultsthere scaledto 400 processorswith
efficiency around90%. We summarizeour prior work, aswell
asrelatedwork by othes, in § IV.

In cortrast to [11], the prediction stratgy in this pape
doesnot requirethat the sizesof the physical systemsn the
basesimulationand the currentone be identical, but it uses
knowledgeof the physics of the problem to a certainextert.
The ability to simulate a different sized systemis useful,
becaiseit permitsa singlerun, with a smallertube size (and
smaller spanof time), to endle a numker of more realistic
simulationsthat uselarger physical systemgqfor a longer span
of time 2). The effectivenessof this stratgy is demastratedn
tensiletestsof CNTs,wherethelengthof the CNTsare1, 1.2,
1.6, and2 timesthatin the basesimulation,andusingdifferent
simulation paraméers (pulling speed)than in the base.§ V
gives the details of thesenumericd experiments,along with
other teststhat validae their acarag. We also suggst the
use of flops per atom as a measureof the ability to reach
long time scalessincethe larger it is, the longe is the time
period that can be simulatedin a fixed period of time. We
achiere 420 MFlops per atom, for a total flop rate of 420
GFlops.We believe that our flops per atomrate is the largest
attainedin classicalmolealar dynanics comptationsof real
applicdions so far.

We finally summarizeour conclwsions, and presentdirec-
tions for future work, in § VI.

Il. CARBON NANOTUBE APPLICATION
A. TensileTeston CNT

The physical systemwe conside is a CNT. A CNT consists
of Carbonatomsthatareboncdedto eat otherto form amolec
ular “tube’. They possessa combindion of propeties never
seenbefore;they have electricalcorductivity highea thanCop
per, thermalcorductiity greate thanDiamond stiffnessmuch
greaterthan steel, strengthlarger than Titanium, and weight
lighter thanfeather They are,therefore,animportanttopic of
studyin mary poterial apgications of narotechrology. One
importantapplicationof CNTs is in naneacompositeswhere
CNTsareembedledin a polymea matrix. It is hoped that the
CNT will impart much of its strengthto the nanecomposite.

In such applicdions, it becanes importantto determine
the mechaical propeties of the CNT. Oneimportart simula-
tion/experimentis the tensiletest in which the CNT is pulled

2The time t requiredto simulatea CNT with N atomswhen pulled at
velocity v until it startsbreakingis roughly proportionalto N2 /v. Thereason
for this is thatthe CNT’s lengthis proportionalto NV, and so the numberof
time stepsrequiredto reacha fixed value of strain (which is definedlater)
is proportionalto N/v. Furthermorethe time requiredfor eachiteration is
proportionalto N.

at a constan velocity, as shavn in Fig. 1. The responseof
the materialis charaterized by the stress(force requiredto
pull the tube, divided by it cross-sectionahrea)for a given
strain (the elongation of the nandube, relative to its original
length). A stressstrain curve as shavn in Fig. 5 (bottom)
later, describs the belavior of the materialwhenit is pulled
at the specifiedvelodty (more formally, strain-rate). Suc
a curwe, for exanple, could be usedby a multi-scalefinite
elemen codeto detemine the effect of the polymea matrix
on the CNT, and vice-versa. Another important property is
the strainat which the CNT startsto break.

B. Moleaular Dynamics

We describeMD in the contet of the CNT applicaion,
thoughit is, of couse,a more geneal technique which can
be used for simulating the behavior of a set of atoms or
molecues The stateS; of the systemat ary time ¢ is defined
by the position and velodty vectors, at time ¢, of the Carbm
atomsthatform the CNT. If thereare IV atomsin the systems,
thenthereare6 N quartiti es(threepositioncoordnatesandthe
threevelodty coadinatesper atom)that defire the state.The
propertiesof the CNT attime ¢t canbe deteminedfrom these.
Given S;, we cancompue S;; A, atthe next time stept + At,
as follows, thus tracking the time evolution of the state,and
consegently the CNT propeties. The forceson eachatom
are compued basedon the positionsof the atoms.Oncethe
forces on the atomsare computed, the new positionsof the
atomscan be calclated using Newton's laws of motion. A
numericad time integration schemeis usedfor this. Accuracy
and stability consideratios limit At to the order of a femto
second(10~!s), in MD.

C. Time Scales

The small step size mentionel above proves to be an
impedimen to effective MD compuation. To illustrate this,
let us corsidera CNT with 1000 atoms,having initial length
10 nm (nanometers),and let At be 0.5 femto second. Let
us pull the CNT fast enaugh so that it elongates by arourd
10% in a us (micro secondl. This is a large strain rate, and
the velocity at which one end is pulled is then 0.001 m/s.
The CNT breals at around20% strain, and so to simulate
up to that point, we would require four billion time steps—
that is, over a yea of sequatial comptational effort. For
lower strainrates the time requiredis correspodingly highe.
Furthermore this compuation will not parallelize efficiently
onmorethan2-3 processorsusingcorventiond parallelization,
and so the time required,even in a parallel conputation, is
the order of a yea. As an alternatve, researches typically
simulateat a fasterrate, typically 10 m/sfor a CNT this size,
in which casethe samestrainis reachd in theorderof anhour.
It is assumedhat the stress-Bain relationshipdeterminedat
this highe strain rate is the sameas that which would be
obtainel undera lower strainrate. However, it is known that
suchan assumptioris not acarratewhen the strainratesvary
by severd ordersof magnitua [14]. On the otherhard, if we
wereableto parallelizethe computation efficiently on a large
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Fig. 1. Schemat of the tensiletestproblem.The top figure shavs aninitial configuration,andthe lower figure the configurationat a differentpointin time.

numker of processorsthenwe could reachthe desiredtime
scalewith more realistic strain-rategoo. We wish to usethe
existing high-velocity simulationresultsto performrelatively
more realistic lower-velodty simulationson a large numbe
of processorsMD simulationsin nanemechaits are often
performedwith simulation parametes that are more extreme
than is realistic, due to the time-scaleproblem mentionel
above. Consegently, similar prior resultsare often available,
and so our appoach can be extendedto a larger class of
applicdions.

I1l. TIME PARALLELIZATION THROUGH GUIDED
SIMULATIONS

We recently introducel the geneal idea of guided simu-
lations to pardlelize along the time domain [10], [11]. We
describdt below, for comgetenessbut specidized to the CNT
applicdaion. A more gereral descriptionis provided in [10].
We then describethe specificpredictionstratey usedin this
work.

A. Time Parallelization

Let usdivide thetime periodfor which the computationhas
to be performedinto a numker of time intervals, suchthatthe
numter of time intervals is much greaterthan the numkber of
processorsln this section,we will let ¢; dende the beginning
of thei th timeinterval. Each timeinterval mayrequire several
stepsof the time integration algorithm. In fact, we use500 or
1000 time stepsper time interval in our experimelts.

Fig. 2 shavs a schemé#c of the time parallelizationidea
while algorithm 11l.1 describest formally. In the algorithm,
the function Predict(S;,i,1) predcts the stateat time [ > i,
given a stateS; attime 4, usingcertainpredidion paraneters,
which are explained later for the CNT apgication. The func-
tion Update Prediction Parameters learnsto predict better
from the differencebetwee the predidion andthe verificaion
states.

In Fig. 2, processori, for ead i € {1---4}, predicts(as
describedater) the statesattime ¢; 1 and¢; (with the stateat
time tq beinga known initial stateSy), usingthe resultsof the
basesimulation,andits relationshipto the currert simulation.

Then each processori performs accuate MD simulations
startingfrom the predictedstatefor timet;_; uptotimet;, and
verifiesif the predction for ¢; was accuate. Both predidion

andverification are performedin parallel.Note that processor
1'sinitial stateis known to beacarate.Soits computedresults
for time t; are accuate. In Fig. 2, since theseresultsare
close to the predictel statefor time ¢, the predcted state
for time ¢; too is acairate, which implies that the computed
stateon processor2 for time t, too is accuate, beauseit

startedfrom an acairateinitial state.The computedresultsin

processoeR, in turn, arecloseto the predictal resultsattime ¢,

implying thatthe computedresultson processor3 for time ¢

areacairate.The predictel statefor t3 wasinacarrate,andwe

saythatprocessor3 erred Compuationsfor subseqgantpoints
in time too have to be discardedsincethey may have started
from incorrectinitial statesThe next phasestartsfrom time ¢3

(sincethe verification stepactudly compued the corred state
for t3), and compues statesfor timest,, ts5, tg, andt;. The
errorsobsered in the previous verification step can be used
to improve the predictorby betterdetemining the relationship
betwee the currert simulationand prior ones.Note that the
outputsof the simulation are always statescomputed using
MD, and not predictel states.

Note the following: (i) Processor1's accuate MD result
is correct, since it always startsfrom a state known to be
accuate. So the computation always progresses(ii) All the
processorsnustusethe samepredicta; otherwiseverificaion
of predictionat time ¢; on processor: doesnot imply thatthe
predictionfor initial stateattime ¢; on processoi+ 1 wascor
rect. (iii) The answes given will be acairate,if our defirition
of the predided and verified statesbeing “sufficiently close”
is corred. A goad predictorenales greate speedp, while a
poor oneleadsto it becaning a sequetial computation.

B. Prediction

The mostimportantfeatureof our stratey is our ability to
predict the state,which senes as the starting point for eah
processarfrom its relationshipwith a basesimulation. The
predictorshouldbe both,accuate mud of thetime, andmuch
fasterthanthe verifier.
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Fig. 2. Schematioof parallelizationof time.

Predictionover a long period of time is difficult. So we
will nottry to predid the stateat somearbitrarypointin time
directly. Instead,if S; is the most recently computed state
thatis accuate, thenwe will predid the changesbetwea S,
and the statesat the timesrequired as shovn in the calls to
Predict in algorithm ll.1. We acoomplishthis by predicting
the change in eachcoadinate (of the positionsof the atoms)
indeendently. In the descriptionhere, we normalizeall the
coordirates so that they are in [0,1], by letting the origin
be 0 and then dividing by the length of the CNT along that
coordirate direction. It is easyto charge between the actua
andnormalizedcoardinates.Usingthe normalizedcoardinates
is advartageous, beauseit enablesusto usebaseand currert
simulationsthat use CNTs of different sizes. Similarly, for
prediction purposesalone the relative timesin the baseand
in the current simulationsare normalizedby multiplying by
the velocity with which one end of the tube is pulled and
dividing by the original lengthof the tube For exanple, if the
currentsimulationis pulled at one tenth the velocity as the
base,thentime ¢ in the currentsimulationis relatedto time
t/10 in the base.

Let z; represent (normalized)coadinateat (normalized
time ¢. Using two termsof the Taylor's series,we have

Tipar = Tt + XeparAt, 1)

whereX;, a; is the actua slopedzx/dt at somepoint in [¢,t+
At]. We do notknow thevalue of X;1 A, but will try to predid
it.

We will consider a finite set of basis functions,
oo, 1, ---, Ok, Which are functiors of the coordnatesof the
atompositions,and expressx in termsof it. For example, we
can take a polynomial basis 1, z, 2. Thesebasis functiors
shouldideally be chosenso that they representhe types of
charges that can occu unde physicd pheromenathat the
CNT might experience For example,for the tensiletest, we
use only the 2 term for the coordimates orthogmal to the

Algorithm 11l .1: TIMEPARALLELIZE(Initial State Sy,
Number of processors P, Number of time intervals m)

10

SO — So

while i < m

for each processor j € [1, min(P,m — i — 1)]

Tiyj1 < Predict (Si,i,i+j—1)

Tiyj — Predict (S;,i,i 4 7)

S’iﬂ- — AccurateComputation(
StartState =154 ;_1,
StartTime =i + j — 1,

do EndTime =i + j)

UpdatePredictionParameters(

do CurrentParameters, SZ-H, Tits)

if IsDifferenceTooLarge(S;;, i+ ;)

then Next; < j

elseNext; « P
k «— AllReduce(Next, min)
if j=k

then Broadcast S‘iﬂ-, prediction parameters
for each processor j € [1, P]

doi—i+k

direction in which the CNT is pulled and 1 and z for the
directionin which it is pulled This makes it suitablefor the
tensiletest problem.

Let Xerar = >, aieratdi(x). Oncewe have performed
an accuate simulationfor time ¢, we know the actua x; for
eachatom,andcanperforma leastsquaredit to determinethe
coeficientsa; ;. We canexpresschangesin the basesimilarly,
and determineits codficients,say b, ;. If the basesimulation
and the currentsimulation are almostidertical, then we can
approxmatea; ¢4 Az by b; +1 A However, the simulationswill
typically differ, andsowe wish to correctby addng the differ-
encebetween the two simulationsR; 4 A+ = a@; t4-At — bi 1At
which is unknown. As a first approximation, we can assume
that Ry A+ = a;+ — b; ¢ t0 yield the approxmation a; s+ a¢ ~
bitrae + Rigyae = biipar +aiy — bip. Ononehand using
the latesta; ;, availade might give the bestestimate.On the
otherhard, randan fluctuaionsin the MD simulationleadto
somevhat poorresultsif we dependon only evaluation at one
pointin time. Sowe setR;ar = (1 — B) Ry + B(ais — bit),
where 3 is the weight assignedo the latestvalue The term
R; representdhe relationshipbetween the baseand current
simulations,and updding it at ead time step representsa
simple form of learning. Note that if values of b, , are not
available, only the values of a;; areused.

Sincea; o andb; o areunknown, we needto chosea suitable
methodof startingthis processWe assumea linear increase
with time, in the values of the coordimatesof atoms,in the
direction in which the CNT is pulled, with the corstant of
proportiondity beinga function of its normalizedcoadinates.



Thisis notavery godd initial chace whentheinterval of time
is very large. But after the first phaseof compuationsin the
while loop in algorithm IIl.1, the error due to this choiceis
reducel rapidly.

The velocity distribution of the atomsis predided to be
the distribution at the previous point in time for the curren
simulation. Since the numericé simulationswere carried out
at constantempeature, this was sufiicient?.

C. \erification

Fig. 3.
interestingis happeningo the system.

Atoms vibrate around some mean position even when nothing

The verification stepcorsistsof anaccuateMD simulation,
startingfrom a possiblyinaccuateinitial state.The compued
stateis then compaed with the predictel statefor the same
point in time. We needto determineif the two statesare
sufficiently close.

MD simulationsbring an interestingissue — that of de-
termining the equivalene@ of two dynamic states.In natue,
atomsvibrate aroundtheir meanposition, even whennothing
interestingis happening to the physical system.MD simu-
lations track thesevibrations, as shawvn in Fig. 3. So if we
look at the statesof a physical systemin equilibrium, at two
different points in time, it will be unlikely that the atoms
will bein the samepositions,even thoughthey representhe
samesystem.So we camot expect the predided stateto have
atomsin the samepositionsas in the accuate simulations
either (this can be more formally justified using Poincae’s
theorem).Instead,we obsene that the specificstateobsened
in the MD simulation can be considereda samplefrom an
infinite number of possiblestates.We nedal to verify if the
predictedand the accuate statescoud be samplesfrom the
same distribution. In the parlane of MD, the two states
should be samplesfrom the sameensenble. Different types
of ensenbles are defined in statistical mechaics, basedon
certain overall propertiesof the system(such as numter of
atoms, volume and temperéure) being idertical. We use a
stricter definition than those, since significart differen@s in
micro-states(that is, statesof portions of the CNT) may
affect our results. We determinethe differencein positions
of correspading atomsin the predictedand computed states.
If the averagedifferenceis belov a threshold,defired by the
differenceexpectedfor equivalentsystemsthenthe difference
is consideredaceptable. Similar thresholdsare set for the
maximum differencebetwea ary two correspoding atoms,

3SMD does not automatically presere temperature.So a processcalled
“thermostating”is performed,which modifiesvelocities,using randomnum-
bers,to keeptemperatureonstant.This occursboth in the sequentiabndin
the parallel algorithms.

andfor the potertial andkinetic enagiesof the system.More
detailsare given in [12].

D. Time Requied

The overhead of pardlelization, such as prediction and
communication, are small conparedwith that of the “useful”
compuations(asperformedby the sequentialalgorithm).Ead
processoperformsMD conputationsfor its time interval. For
example, corsider a time interval of 1000 time stepsand a
1000-atom CNT. Sequentialcompuationsfor 1000 time steps
requirearoundl3 secomls on an Intel Xeon processorrunning
ataround3.2 GHz andaround46 secom ona 375 MHz IBM
POWER 3 processar

The parallel overheals are due to time loss in predic-
tion, communication and file 1/0 from disk. Eat processor
performstwo predctions. This requirestwo file reads,and
nine least squarescompuations (three coordinaes each for
the base simulation at two time points, and for the cur
rent simulation after the verificaion step). The leastsquares
compuation takes time linear in the size of the system,but
quadatic in the numter of coeficients (the latter is a small
constant).An AllRedu@ on one integer (a processrank) is
performedto determinethe smallestindexed processorthat
erred.A broadastof the entire stateof this processor andthe
coeficientsof its predctor basisfunctiors, is performed so
thatall processorwill have the samecoeficients.

The overheal for all theseoperdionsis much smallerthan
the compuation time and so the efficiency is very high, even
on a large numbe of processors.For example, on an Intel
Xeon clusterat NCSA, the leastsquareand other predidion
relatedcomputationstakes ~ 107 3s, file read~ 0.01 — 0.2s
second, the AllReduce ~ 10~* — 10~3s, and Broactast
~ 107! —10~2s between50-100 processord.oadimbalane
is not an issue, since eat processor performs, essentially
the same amowt of computation. All the overhead are
insignificart (total < 0.4s), relative to the computation time
(=~ 13s) for simulatinga singletime intenal.

E. Error Propagation

To verify thatthe errorsin our schemedid not propajate,
we compaed the stressstrain results from the parallel run
with the exact sequetial run. This gives empgrical evidence
for the stability of our method Detailson both numericé and
physical reasondor this are given in [12].

IV. RELATED WORK
A. Prior Work

We introduceed the idea of guided simulations for time
parallelizationof scientific applicaions in [9], [10]. We also
demorstratedthe effectivenessof the techique in practice,
using a CNT compuation with tensile test as an example
in [10]. The predictionstrateyy in the currentwork improves
on that in [10]. This enales the compuation to scale effi-
ciently on up to 990 processorsin contrastto 50 processors
in the prior work. Furthermorejn the currentwork, a 10m/s



basesimulation predictsa 1m/s simulation, whereasthe two
velocities were much closerin the previous work.

In [11], we shaved how basis functions can be selected
in a more mathenatical manne. The basis functions there
neead datafrom a CNT (or ary otherphysical systembeing
studied)of the samesizeasthe currentsimulation.In contrast,
the predictorin the currentwork does not assumethat. The
amount of databroad@astin this predictoris greaterthanthat
in [11]. However, the actud efficiency is slightly highe, even
thoudh the current experimentsare run on a larger numbe
of processorsperhas beausethereis oneextra send/recve
in [11].

B. Other Approaches

Works on parallelizationof MD calculdions on CNTSs, as
well asseveral pulicationson parallelizingMD computations
on other physical systemsn gereral, are summarizedn [12].
Among theseworks, notally, LAMMP S [4] hasbeenusedto
perform a 4 billion atom MD simulationrecenly, using the
Lenrard-Jonepotential,on over 65,000processorsf thelBM
Blue GenéLight at Lawrerce Livermae National Lab. The
efficiency is estimatedasarourd 93%. The grandarity of this
computation is 60,000 atomsper processor. The aggregate
flop rate is 4.57'Flops. Note that the good efficiency is
obtainel dueto the extremdy large physical system,andhigh
flop rate due to the large numker of processorsand the high
efficiency. The numbe of time stepssimulatedwas 100. So
this is an example of a large physical systemsimulatedto a
shorttime period,in contrastto our work.

Time parallelizaion usingthe Pararealapproach[1] (which
does not use prior data) is a promising alternatve to con
vertional parallelization However, the speedip and efficiency
obtainel have been limited. We describedthe limitations in
detail in [10]. In particula, the Parare& appro&h involves
a sequetial phase for prediction which limits scalability
Consegently, the speedp and efficiency have been rather
modest. Speelups on simulatedexperiments(ignoring com-
municdion costs,sincetheir experimentswere not on actua
parallel machires) rangeal between 8 to 130, with efficiencies
betwea 25% and1.3% repectvely on the model problems.

In the 1980s and 90s, time parallelizaion using waveform
relaxation[3], andvariousvariantsof this, werewell studied.
However, thesetechnigues, which were basedon ODE theory
and can be consideed genealizations of Picard iterations,
had limited impactdueto their slow corvergerce. (The slow
convergerce is a featureof the sequetial algorithm.)

V. EXPERIMENTAL RESULTS

The tensile testsin this pager are performedby keepng
oneendof the tubefixed by forcing arourd 100 atomsat that
endto remainstationary The tubeis pulled at a fixed ratein
the z direction by forcing arourd 100 atomsat the otherend
to increasetheir z coadinate values at a rate of » m/s. We
usedu = 10 m/s for the basesimulation,and 1 m/s for the
currentsimulation. The time stepin the MD simulationswas
0.5 femto secands. The Tersof-Brennerpotentialwas usedin

the MD simulations,and a fourth order Nordsiekschemefor
time integration.

We usedresultsfrom an MD simulationof a CNT contain-
ing 1000 atoms,condictedat a temperatte of 300K, whose
output had beenrecordedevery 100 time steps,up to a total
of 330,000 time steps,as the basecase.The predictorused
£ = 0.5. The resultsare not very sensitive to the value of 3,
aslong asg is not closeto 0 or 1. The new simulationswere
performeduntil the CNT startedto break Resultsafter the
CNT startsto bre& are not of usein our apgication, thouch
it is still interestingto obsene them.

A. SpeedupResults

Thetiming resultsarebasednwall clocktime. In thereport
of the speedp results we ignoretheinitialization time for our
code which is small (~ 1% of the time of onetime interval).
We also ignore the time requiredby the systemto start the
processesn the machiresandto call MPI_Init. Thelattertwo
operatios consumea significart portion of the time, but are
independent of the algorithm,and are also onetime costs.

Speelup result$ for a 1000-atom CNT®, using a time
interval of 1000 time-steps,on the Tungsten Xeon cluster
at NCSA are shown in Fig. 4. This cluster consistsof Dell
PaverEdge1750seners,with eachnodecortaining two Intel
Xeon3.2 GHz processors3 GB ECCDDR SDRAM memory
512 KB L2 cade,1 MB L3 cade, running Red Hat Linux.
The file systemusedis Lustre. Myrinet 2000 and Gigaht
Ethernetintercomects are availade. We used the Myrinet
interconrect. The ChaMPlon/Pro MPI implementéion was
usedwith gcc/g7 conpilers for our mixed C/Fortran coce,
compiled with '-O3’ optimization flags set. The MPI calls
were purely in the C code. The computing nodes ran in
dedicaed mode for thistiming results We canseethatspeedp
is almostthe ideal linear curve up to 990 processorson the
Xeon cluster The processorsnever erred in the couse of
the simulation (up to the point where the CNT startedto
break),and so loss in speedwas only due to the overheads
of prediction communication andreadingthe basesimulation
resultsfrom disk, asdiscussedn § 1lI-D.

The flop rate on the 990 processor run on the Xeon
clusterwas computed to be around420 GFlops, as follows.
First, the numker of floating point operations per time step
was determinedusing tpmcount on the ORNL SP3macthine,
over 10,0 time stepsof the sequetial code (consegently,
courting only the “useful” floating point operatiors, and not
thosefor prediction).Then,from thetime pertime stepon the
990 processorun, the flop ratewasdetermine. The flop rate
per atom gives an indication of how long we cansimulatein
time for a given physical systemand potential function The
flop rate peratomfor our simulationon 990 processorsf the

4The speedupresultscomparethe paralleltime with that for aninherently
sequentialcode, which doesnot have ary of the overheadsof the parallel
code.Comparingwith the parallelcoderun on a single processowould yield
mamginally higherspeedups.

5Even though the number of atoms are identical to that in the base
simulation, the simulationparametergliffer, and the predictionschemedoes
not useknowledgeof fact that the lengthsare equal



NCSA Xeon clusteris 420 MFlops/atom.The flop rate per
atomin [7] is 1.4 MFlops/atom,where we use the datafor
therun onthelargestnunberof processorseported (Theflop
rate per atomin [4] is very low due to the large numker of
atoms.)We arenot awareof ary classicalmolecuar dynamics
simulationattaininga greaterflop rate per atomthanoursin
a real application and have reasonto believe that oursis the
largest.

Similar simulationson up to 500 processorsn the Eagle
IBM SP3machne at Oak Ridge National Lab yielded effi-
ciendes over 90%, but still a little lower than that on the
Xeon cluster The probalte causewasthat we performedthe
computationsin nondedicatél mode.The sequatial speedis
alsolower on the IBM machire, aswasthe largestnumber of
processorghat we used,and so the highest flop rate reache
was 101 GFlops.

The simulationsof CNTs of 1200, 1600, and 2000 atoms
were performedon the Seatorg IBM SP at NERSC, using
a time intenval of 500 time-step8. This systemconsistsof
compte nodes with 16 375MHz IBM Power 3+ processors
each Fig. 5 (top) shavs the speedp results.In the 1200 and
2000-atom simulations,the prediction is always suficiently
accuate, but minor errorsduring initialization on 200 proces-
sors causeda slight drop in efficiengy to arourd 95%. With
the 1600-atom simulation, there was one set of prediction
errorstoward the middle of the simulation,which causedthe
efficiency to drop to arond 79% on 200 processorsThe
efficiencies for the other caseswere well over 90%. The
scalabilityis lessthanthatobseved whenthe baseandcurren
simulationsare on CNTSs of identical lengh. However, the
speedp is still substantial.Note that the sequatial compu
tation neals the orde of a week of computing time on the
2000-atom simulation,and so the berefit obtainel from time-
parallelizationis consideable.

B. Validation

We had mentiored the issueof error propagtion in § IlI-
E. We gave reasonswhy the error will not propagte, if
eacherror is sufficiently small in [12]. However, sincetime
parallelizationis still a new idea,it is importantto validae the
resultswith the exad answe. Fig. 5 (bottom) shavs the plot
of stressversusstrain,which is a materialbetavior of practica
interest,for a 200 processorrun on a 2000-atom CNT. The
time-parallelresultsagreevery well with the exact sequetial
results,even in the nontlinear region, up to the point where
the CNT startsto break The time at which the CNT starts
to breakis also determired as with the sequatial run, at a
strainof arourd 0.19 (0.1894 for sequetial versus0.1931 for
parallel.)

After the point of brealage of the CNT, the parallel and
sequetial run don't agreevery closely The reasonfor this is
that our error criterion usedthe behavior of anintact CNT to
decice if two statesare equivalent. This is not a goad enaugh

6A smallertime interval size was requiredfor initialization to be accurate
on large numbersof processors.
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Fig. 4. Speedupcure. The dashedine shavs the ideal speedupand the

solid line shavs the obsered speedupThe flop rateis 420 GFlopson 990
processors.

criterion for a CNT that hasstartedbrealing. Resultsbeyond
thepointwherethe CNT startsto breakarenot of ary practical
usein our apgdication.

VI. CONCLUSIONS

We have denonstratedhe effectivenessof a new apgroach
to time pardlelization, namely using guided simulations,on
a large numkber of processorsin a practica applicaion. Com-
paredto our earlierwork, this stratgyy canbe usedon physical
systemsof differentsizesthanthe prior simulations.Further
more, we scaledit to a larger numker of processorswhich
is two ordersof magritude larger numbe of processorsthan
with corventiond parallelization.The flops per atom rate is
alsohighe thanthatfor any othe MD simulationsthatwe are
aware of. SinceMD is usedin a wide variety of apdications,
theseresultssuggest promisingappro&h to deding with the
difficulty of performingMD simulationsto long time scales.
Large compuationalsystemsanprovide 104 —10° processors.
If this apgroachcan be scaledto suchlarge systemsthenit
will be possibleto performMD simulationsto several orders
of magrntude longer time than currently feasible. We expect
this approachto be usefulin otherapplicatiors involving hard
matter asis typically the casein narp-mechaics. However,
with the soft-matterenmunterel, for exanmple, in biological
systemsmore challengs have to be overcome. The reasons
for this dependson physicsissuesthat are outsidethe scope
of this payer.

Someof the future work is asfollows. We wish to perform
MD simulationsthat reacheven longer time scales,so that
they canprovide resultsunder realisticexperimentalconditions
that are encauntered.We alsowish to scalethe compuations
to an order of magnitua larger numbe of proessorsThese
will require better initialization, and also some method of
validating the results for their correctnss, without using
the sequetial algorithm directly. Yet andher future work
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is to perform predictions for more compgex expeimental
condtions. Basisfunctions should be developal so that they
correspod to differenttypesof physical pheromenathat may
be experiencd by the system.We will also integrate our
time parallel codewith our existing FEM codethat usesMD
results[2], [5]. Timeparallelization canalsobe combnedwith
spatial parallelization — insteadof one processor compuing
for one time interval, a group of processors,that distribute
the atoms acrossthe group, can be usedto simulate eah
time interval. This will yield a codethatimproves on the best
available corventiond code
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