
Application of Reduce Order Modeling to Time

Parallelization

Ashok Srinivasan1, Yanan Yu2 and Namas Chandra3

1 Computer Science, Florida State University,
Tallahassee FL 32306, USA

asriniva@cs.fsu.edu
2 Computer Science, Florida State University,

Tallahassee FL 32306, USA
yu@cs.fsu.edu

3 Mechanical Engineering, Florida State University,
Tallahassee FL 32310, USA

chandra@eng.fsu.edu

Abstract. We recently proposed a new approach to parallelization, by
decomposing the time domain, instead of the conventional space domain.
This improves latency tolerance, and we demonstrated its effectiveness
in a practical application, where it scaled to much larger numbers of pro-
cessors than conventional parallelization. This approach is fundamentally
based on dynamically predicting the state of a system from data of re-
lated simulations. In earlier work, we used knowledge of the science of
the problem to perform the prediction. In complicated simulations, this
is not feasible. In this work, we show how reduced order modeling can be
used for prediction, without requiring much knowledge of the science. We
demonstrate its effectiveness in an important nano-materials application.
The significance of this work lies in proposing a novel approach, based
on established mathematical theory, that permits effective paralleliza-
tion of time. This has important applications in multi-scale simulations,
especially in dealing with long time-scales.

1 Introduction

Many problems in science are formulated as initial value problems. The initial
state of a physical system at some time is given, along with, possibly, some
boundary conditions. A differential equation describes how the state changes
with time, and possibly space. The problem is solved by iteratively computing
the states at successive points in time, using a differential equation solver. We
shall refer to each iteration as a time step. A large computational effort can be
involved when the state of the system is large, or when the number of time steps
is large. In order to reduce the computation time, parallelization is often used,
especially with large physical systems.

Even when the state space is not large, the computational effort can be large
if we need to compute for a large number of time steps. This has been identified



as one of the important challenges in nanoscale simulations and computational
materials science [3]. Conventional parallelization is not effective in such prob-
lems, because the granularity becomes fine, limiting scalability.

We recently proposed [5, 6] a time parallelization approach, to improve scal-
ability. Here, results from related simulations are used to parallelize along the
time domain. The basic idea is to have each processor simulate a different in-
terval of time. The difficulty here is that each processor needs the state of the
system at the beginning of the time interval it simulates, since it solves an initial
value problem. We use the fact that typically the results of prior, related, simu-
lations are available, to predict, in parallel, the states of the current simulation
at desired points in time. The prediction mechanism also ‘learns”, thereby at-
tempting to predict better as the simulation proceeds. The predicted states are
verified in parallel to ensure accuracy of the results.

An important limitation of the earlier approach was that the prediction mech-
anism required some detailed knowledge of the the science of the problem. This
is not easy to obtain in complicated simulation conditions. The main focus of this
work is to show how reduced order modeling can be used to perform predictions
for time parallelization.

The significance of this work lies in presenting an approach to time paral-
lelization that is based on stronger mathematical foundations. This makes time
parallelization of more complex problems too feasible. Time parallelization, espe-
cially for Molecular Dynamics (MD) simulations, has important applications to
long time simulation simulations in computational Chemistry, Physics, Biology,
Materials, and Engineering, making this work important.

The outline of the rest of the paper is as follows. In § 2, we describe a nano-
materials application that will be used to demonstrate the effectiveness of our
technique. We then summarize the time-parallelization approach in § 3. In § 4, we
describe prior and related work. We outline a particular reduced order modeling
method, called Proper Orthogonal Decomposition (POD), and describe its use
in time parallelization, in § 5. In § 6, we show the details of the steps involved
in using POD to time-parallelize our application. We present conclusions and
future work in § 7.

2 Carbon Nanotube Application

Tensile Test on a Carbon Nanotube. The physical system we consider is
a Carbon Nanotube (CNT) [4]. One important application of CNTs is in nano-
composites, where CNTs are embedded in a polymer matrix. In such applica-
tions, it is important to determine the mechanical properties of the CNT. Some
important data for this is obtained from the “tensile test”, in which one end
of the CNT is held fixed, while the other end is pulled at a constant velocity.
The response of the material is characterized by the stress (force required to
pull the tube, divided by it cross-sectional area) experienced at a given strain
(the elongation of the nanotube, relative to its original length). A stress-strain
curve, as shown in Fig. 3 later, describes the response of the material when it is



pulled at the specified velocity (more formally, strain-rate). Another important
property is the strain at which the CNT starts to break.

Molecular Dynamics Simulation of a CNT. The state St of the CNT at
any time t is defined by the position and velocity, at time t, of the atoms in
the CNT. For a CNT with N atoms, there are 6N quantities (three position
coordinates and the three velocity coordinates per atom) that define the state.
The mechanical properties of the CNT at time t can be determined from St.
Given St, we compute the state St+∆t at the next time step t + ∆t, by first
computing forces on each atom due to other atoms [4], and then using Newton’s
laws of motion. A numerical time integration scheme (fourth-order Nordsiek in
our implementation) is used in the latter. In MD computations, the time step
size ∆t is typically required to be less than a femto second (10−15s), to ensure
stability and accuracy.

This small ∆t is an impediment to effective MD computation, because it
makes a large number of time steps necessary. Furthermore, this computation will
not parallelize efficiently using conventional parallelization, for physical systems
of realistic sizes. As an alternative, researchers simulate by pulling the CNT at
a faster rate than is realistic. The faster-rate simulation requires less time than
that for a realistic rate, because the same strain is reached in less time with the
former. It is assumed that the stress-strain relationship determined at the higher
strain rate is the same as that at a lower strain rate. However, it is known that
such an assumption is not accurate when the strain rates vary by several orders
of magnitude [7]. On the other hand, if we could parallelize the computation
efficiently on a large number of processors, then we could reach the desired time
scale with more realistic strain-rates too.

3 Time Parallelization through Guided Simulations

We recently [5, 6] introduced the idea of guided simulations to parallelize along
the time domain. We outline the approach below in Algorithm 1. Some details
are deferred to § 6.

Let us call a few, say 1000, time steps as a time interval. Divide the total
number of time steps needed into a number of time intervals. Ideally, the number
of intervals should be much greater than the number of processors. Let ti denote
the beginning of the i th interval. Each processor i ∈ {1..P}, somehow predicts
the states at times ti−1 and ti, with the state at time t0 being a known ini-
tial state S0. Then it performs accurate computations (MD in our application),
starting from the predicted state at time ti−1 up to time ti. It then verifies if the
prediction for ti is close to the computed result. Both prediction and verification
are done in parallel. If the predicted result is close to the computed one, then
the initial state for processor i+1 was accurate, and so the computed result for
processor i + 1 too is accurate, provided the predicted state for time ti−1 was
accurate. If the results differ significantly, then the predicted state for ti was in-
accurate, and we say that processor i erred. Computations for subsequent points



TimeParallelize(Initial State S0, Number of processors P, Number of time intervals m)

– i=0; Ŝ0=S0

– WHILE i < m

• FOR each processor j ∈ {1..min(P, m − i − 1)}
∗ Ti+j−1 = PredictStateAt (time = i+j-1)
∗ Ti+j = PredictStateAt (time = i+j)
∗ Ŝi+j = AccurateComputation(StartState=Ti+j−1, StartTime=i+j-1,

EndTime=i+j)
∗ UpdatePredictionParameters(CurrentParameters, Ŝi+j , Ti+j)
∗ IF IsDifferenceTooLarge(Ŝi+j , Ti+j)

· THEN Nextj = j

· ELSE Nextj = P
• k = AllReduce(Next, min)
• IF j=k

∗ THEN Broadcast(Prediction Parameters)
• SendReceive(Ŝi+k, From Processor k,To Processor 0 )
• FOR each processor j ∈ {1..P}

∗ i = i + k

Fig. 1. The time parallelization algorithm.

in time too have to be discarded, since they might have started from an incorrect
start state. The next phase starts from computed state for the latest time that is
known to be accurate. The errors observed in the previous verification step are
used to improve the predictor by better determining the relationship between
the current simulation and old ones.

Note the following: (i) Processor 0 always starts from a state known to be ac-
curate. (ii) The algorithm always progresses at least one time interval, since the
accurate computations on processor 0 lead to accurate results on that processor.
(iii) The prediction mechanism has two components – one that uses only prior
simulation data, and another that “learns” the relationship between prior data
and the current simulation based on the difference between the predicted and the
computed states. The learning is represented using some prediction parameters.
These parameters need to be identical on all processors. Otherwise, verification
of prediction at time ti at processor i does not imply that the prediction for
initial state at time ti on processor i + 1 was correct. So these prediction pa-
rameters are broadcast in Algorithm 1. (iv) The answers are always accurate, if
we correctly define “sufficient closeness” of the predicted and computed states;
a good predictor enables greater speedup, while a poor one leads to it becoming
a sequential computation. (v) If the time interval consists of a large number of
time steps, then the communication cost can be made negligible, leading to a
very latency tolerant algorithm.



4 Related Work

Prior Work. In Algorithm 1, we need implementations of the following func-
tions: (i) PredictStateAt, (ii) UpdatePredictionParameters, and (iii) IsDiffer-
enceTooLarge. We used knowledge of the science to implement those functions
in [6]. A large amount of data, totaling around 500 MBytes, were required for ac-
curate prediction. Determining the permissible difference between predicted and
computed states is application dependent. We defined two states to be equiva-
lent, in our application, if the differences in positions, potential energy (also a
function of positions), and kinetic energy (a function of velocities) were less than
inherent fluctuations, as described in [5, 6]. Using data from several time points
of a single simulation that pulled a 1000-atom CNT at 10m/s, we predicted the
behavior of a CNT pulled at 1m/s. The resulting time parallel code ran on 990
processors of the Xeon cluster at NCSA with efficiency greater than 97% [6].

Other Approaches. Due to its importance, there have been several works on
the spatial parallelization of MD, including CNT computations specifically [4].
Time parallelization using the Parareal approach [1] is another promising al-
ternative to conventional parallelization. We described its limitations in detail
in [5]. The speedup and efficiency obtained have been limited. Speedups on sim-
ulated experiments (ignoring communication costs – the experiments were not
on actual parallel machines) ranged between 8 to 130, with efficiency between
25% and 1.3% respectively on some model problems.

5 Application of Reduced Order Modeling to Time

Parallelization

The basic idea behind reduced order modeling is that, while the state space
involved in a simulation might be high dimensional, the states lie close to a
lower dimensional subspace of the larger space. For example, the state of the
CNT with N atoms is defined by 6N quantities, which can be represented by
a vector x ∈ <6N . If the CNT is pulled in the z direction, then most of the
interesting changes take place in the z coordinates of the atoms. So we expect
to find a smaller dimensional subspace of <6N , close to which the states lie.

We use Proper Orthogonal Decomposition (POD) for reduced order mod-
eling. The same idea is known by other names, such as Principal Component
Analysis or Karhunen-Loève analysis. We next outline this method, and the
intuition behind it. Further details can be found in [2].

Let x̂(t; v) ∈ <m denote the state of a system at time t, simulated with
parameters v. For example, in our application, v is a single parameter – the
velocity at which the CNT is pulled. We assume that the states of the simulations
lie close to a smaller dimensional affine subspace (a shifted linear subspace) of
<m. The shift is given by some vector µ, and the linear subspace S is given by
the span of some vectors, which we represent as the columns of a matrix U . POD
attempts to find a µ and a U that define this affine subspace µ+ span{U}.



We assume that a database of simulation results exists, with the states of
simulations conducted under different parameters stored, for various values of
time t. We choose n of these states to find a suitable basis U . Proper choice
of these states is an important issue, which we shall not discuss here. Let us
call the chosen states x̂i, 1 ≤ i ≤ n. We consider the case where n < m. We
define µ = 1/n

∑n
i=1

x̂i. Let xi = x̂i−µ. We then construct the snapshot matrix
A = [x1x2 · · ·xn] ∈ <

m×n.
Let A = ŨΣ̃Ṽ T be the singular value decomposition of A. Here, Ũ =

[u1 · · ·um] ∈ <
m×m and Ṽ ∈ <n×n are orthogonal matrices, and the rectan-

gular diagonal matrix Σ̃ ∈ <m×n contains the singular values of A (which are
non-negative) in descending order. The columns of Ũ form a basis for <m. Col-
umn i of Σ̃Ṽ T gives the coefficients of xi in the basis consisting of columns of
Ũ . The coefficients of columns ui, i ≥ n, are zero. If the xi’s lie close to a d
dimensional linear subspace of <m, then only the first d singular values are large.
So we define U ∈ <m×d to consist of the first d columns of Ũ , Σ ∈ <d×d the
corresponding submatrix of Σ̃, and V ∈ <n×d the first d columns of Ṽ . Then
A ≈ UΣV T , and σivji is the component of xj along the direction of ui. That is,
xj ≈ Σdi=1cjiui, where cji = σivji.

The linear subspace S spanned by the columns of U is optimal in the sense
that among all linear subspaces S ′ of dimension d, it has a minimum value of
Σni=1D(S′, xi), where D(S′, xi) is the square of the distance between xi and S′.
Note that if the xi’s lie close to S, then the original data x̂i’s lie close to the
affine subspace S + µ.

If we just wished to represent the database with less storage, then we can
store µ, U , and the coefficients of U for each state in the database. Since the
columns of U are orthogonal, the coefficients for any vector x̂ are easily obtained
as UT (x̂−µ), involving just a vector subtraction and d dot products. If there are
M states in the database, then the total storage isMd+(d+1)m, with d¿M,m,
in contrast toMm storage required for the original data. In simulating dynamical
systems, the state is expressed as x̂ ≈ µ + Σdi=1ciui, and this is substituted in
the equations defining the evolution of the state, to come up with equations that
define the evolution of ci’s.

6 Experimental results

We first show various aspects of the application of POD to prediction, and then
present speedup results. The physical system considered is a 1000-atom CNT
at 300K. The database consisted of tensile test simulation results at velocities
given below, from zero strain to until the CNT starts to break. The time parallel
simulations were performed for velocities of 2m/s and 0.1m/s.

Basis vectors for the CNT. The states at the following points in time were
used to construct the snapshot matrix A: (i) Velocity = 10m/s: after time steps
– 50,000, 100,000, 200,000, 300,000, and 350,000. (ii) Velocity = 5m/s: after time
steps – 100,000, 200,000, 400,000, 600,000, and 700,000. (iii) Velocity = 1m/s:



0 5 10 15

10
0

10
1

10
2

10
3

Index

S
in

gu
la

r v
al

ue

0 20 40 60 80 100

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

z value in initial state

V
al

ue
 in

 le
ft 

si
ng

ul
ar

 v
ec

to
r

Fig. 2. Left: Plot of singular values against its index on a semi-log scale. The diamonds
show the values for z and the triangles for y. Right: Plot of basis vectors against the
z coordinate value of the corresponding atom in the initial state. The diamonds show
the values for z’s u1, the squares for z’s u2, and the triangles for x’s u1.

after time steps – 500,000, 1,000,000, 2,000,000, 3,000,000, and 3,500,000. (iv)
The initial state, which is identical for all velocities. The above times indicate
that we chose a set of five different strain values, and noted the state at these
strains for each of the three parameters. We generate separate bases for the x,
y, and z coordinates, and so we created three different snapshot matrices, one
for each set of coordinates. Each snapshot matrix is of dimension 800× 16, with
each row corresponding to the position coordinate of an atom moved using MD
(the temperature is held constant, and so we did not include the velocities in
the state).

We then determined µ, Ũ , Σ̃, and Ṽ as described in § 5. For each coordinate,
columns of Û that corresponded to large singular values were usually placed in U .
Apart from the singular value, we also checked to see if the vector represented
a pattern, or just corresponded to random “noise”. Fig. 2 shows that the z
coordinate has one very high singular value, followed by a moderately large one,
followed by several smaller ones. We look further into each ui corresponding to
the larger singular values. Fig. 2 shows the values of the components of u1 and
u2 for z are non-random. On the other hand, u1 of x appears random.

Based on many such observations of the singular values and randomness, we
used u1 and u2 as basis for z’s lower dimensional subspace, and none for x and
y. Consequently, the predicted values for the x and y coordinates are always
µx and µy respectively, while for the z coordinate, we use a two dimensional
subspace µz + span{u1, u2}.

Relationship between velocity and time. The relationship between velocity
and time is important for the following reason. We expect time parallelization
to be effective if we can predict the behavior of a simulation with parameter v,
from those of prior simulations performed under different parameters. We are, in
effect, assuming similarity of behavior under different parameters. However, the



0 2 4 6 8 10 12 14 16
−150

−100

−50

0

50

100

150

Data index

C
oe

ffi
ci

en
t v

al
ue

0 0.05 0.1 0.15 0.2
0

100

200

300

Strain (%)

S
tre

ss
 (G

P
a)

Fig. 3. Left: Plot of z’s u1 coefficient against the the index of the data point (that is, its
column number in the A snapshot matrix). The diamonds show the values for velocity
1m/s, the squares for 5m/s, and the triangles for 10m/s. The dotted lines connect
points at the same values of strain. Right: Plot of stress versus strain at 0.1m/s. The
solid line represents the exact sequential MD results. The squares represents the time
parallel code on 400 processors. The dash-dotted line with triangles represents direct
prediction.

behavior at time t with parameter v may be similar to the behavior at a different
time t1 when simulated with parameter v1. For example, in our prior work, we
expected long time behavior at a low strain rate to be related to short time
behavior at a large strain rate. This was based on knowledge of the science of the
problem, and is not often easy to predict. Instead, we identify similar behavior as
having similar values of coefficients for basis vectors with large singular values.

In our application, only z’s u1 has a very large singular value. Fig. 3 shows the
coefficients for z’s u1 are similar for similar strains. This provides a more formal
justification for the assumption used in the previous work, which we use in this
paper too.

Direct Prediction using Interpolation. We can predict the state x̂(t; v) for
a time-parameter combination not in the database by first predicting the vector
of coefficients, c. This is done by interpolating or extrapolating coefficients of
similar states from the database. The parameter-time relation obtained from
the previous step tells us which states can be expected to be similar. Then the
actual state is easily obtained as x̂(t; v) = Uc + µ. We call this prediction as
a direct prediction. We later explain how the learning mechanism modifies this
prediction.

We now give some details of the implementation. We precomputed coefficients
for 40 states at different times (or, equivalently, strains) for each of the velocities:
10m/s, 5m/s, and 1m/s. We also computed coefficients for the initial state, which
was identical for all velocities. These coefficients are easily obtained as UT (x̂−µ)
for a known state x̂. The amount of data is small, and is stored in an array in our



code. Note that even the number of prior results required (121) is fairly small,
requiring less than 10 MBytes of disk space.

We consider the coefficients to be functions of v and strain ε, in view of the
relationship obtained earlier. When we need the state for velocity v and time
t, we determine ε = vt/L0, where L0 is the original length of the CNT. Then
we determine two velocities v1 and v2 that are closest to v (preferably with
v1 ≤ v ≤ v2) in our database. We identify strains closest to ε in the database,
and then fit a linear surface to these known points and interpolate or extrapolate.

Updating the predictor. The time parallel code used in this paper performs
a simple form of learning. The learning can be of two types. In the first, the
actual state may still be in the subspace spanned by U , but the predicted coef-
ficients may be systematically incorrect. We will refer to terms that correct for
this difference as corrector coefficients. In the second case, we may need a new
basis vector, which corresponds to a new physical process. Singular value de-
composition of the residuals in the verification step, orthogonal to the subspace
spanned by U , can yield such a basis. We have incorporated the former type of
learning in our implementation.

The corrector coefficients are initially 0. Let processor i start from a predicted
state at time ti and perform accurate MD computations up to time ti+1. Let
the state reached be Ŝ and the predicted state at time ti+1 be T . Processor i
then computes coefficients c = UT (Ŝ − T ) and adds it to the current corrector
coefficients. The lowest indexed processor that erred, or processor P if none
erred, broadcasts its corrector coefficients to all processors. In the next phase
of computations, let T be the state predicted from the interpolation. Then the
actual prediction for that time is taken to be T + Uc. If the systematic error in
coefficients varies slowly with time, then this correction accounts for it. It does
not account for errors that arise from the current simulation leaving the low
dimensional subspace.

Direct prediction can be performed for any point in time. Time parallelization
can be accurate even when direct parallelization is not, for the following reasons.
(i) The corrector coefficients perform a simple form of learning, and make pre-
dictions better. (ii) The verification step can detect errors, and so the results are
accurate, even though the computation slows down. (iii) The computed state
can depart from the low-dimensional subspace, and come closer to the correct
state. The computation may slow down in this case too, since differences between
predicted and computed states are treated as errors in the verification step.

Validation. Fig. 3 shows the stress-strain relationship from the exact sequential
simulation, direct prediction, and the time parallel code. This relationship is the
primary material property of interest. Away from the point when the CNT starts
to break (stress reduces with increase in strain then), direct prediction is quite
accurate. However, close to the point of breakage, it errs. This error can be
traced to its higher errors in potential energy. However, it predicts the time of
start of breakage correctly as at around 17% strain. Note that the stress-strain



relationship obtained from the time parallel code is accurate until the point
of breakage. From a practical point of view, the behavior of the CNT after its
starts breaking is not relevant. We performed similar validation against the exact
results for 2m/s simulations, and with different numbers of processors. We also
compared other quantities, such as positions and potential energy.

The above observations suggest that direct prediction may be acceptable
when interpolating in a parameter-time range between existing data. However,
extrapolation can lead to errors. For example, the points close to the CNT
breaking involve extrapolation in strain and in velocity. The time parallel code
performs accurately until the point of breakage. After this, since the code does
not correct for the new phenomenon of breaking, the predictions fail. Of course,
this is detected during verification, and so the computation progresses slowly.

When extrapolating data over a wide range, such as performing a very low
strain rate calculation, where new phenomena are likely to occur, direct pre-
diction may not be accurate. Time parallelization, on the other hand, can be
effective there, since it does not give erroneous results. The savings in time us-
ing direct prediction are enormous, when it can be applied. Determining the
stress-strain relationship at a velocity of 0.1m/s, for example, requires about a
week of sequential computing time when we simulate until the CNT starts to
break. This can be done in 10−5s per time point using direct prediction. Time
parallelization yields accurate results up to the point of breakage, and we have
simulated it on hundreds of processors with nearly ideal speedup. So the above
simulation can be completed in less than an hour, accurately, in parallel.

Speedup Results. Speedup results are reported on the Tungsten Xeon cluster
at NCSA. This cluster consists of Dell PowerEdge 1750 servers, with each node
containing two Intel Xeon 3.2 GHz processors, 3 GB ECC DDR SDRAM mem-
ory, 512 KB L2 cache, 1 MB L3 cache, running Red Hat Linux. Myrinet 2000 and
Gigabit Ethernet interconnects are available. We used the Myrinet interconnect.
The ChaMPIon/Pro MPI implementation was used with gcc/g77 compilers for
our mixed C/Fortran code, compiled with ’-O3’ optimization flags set. The MPI
calls were purely in the C code. The timing results are based on wall clock time
when run in non-dedicated mode.

Fig. 4 shows the speedup results, for a simulation at 0.1m/s. Similar results
were obtained with 2m/s simulations, which was run on up to 250 processors. We
can see that speedup is good on up to 400 processors on the Xeon cluster. The
efficiency is greater than 95% for all cases except for 400 processors, where the
efficiency is around 90%. The processors never err in the course of the simulation
(up to the point where the CNT starts to break), and so loss in speed is only
due to the overheads of prediction and communication. These overheads are
small, compared with the computation time. For example, the prediction related
computations take less than 10−4s, the AllReduce ≈ 10−4 − 10−3s for 50-1000
processors, Broadcast ≈ 10−4s for 50-1000 processors, and the Send/Recv about
10−4s. Load imbalance is not an issue, since each processor performs, essentially,
the same amount of computation. All the overheads are insignificant, relative to



0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Number of processors

S
pe

ed
up

Fig. 4. Speedup curve. The dashed line shows the ideal speedup, and squares show
the speedup on the NCSA Xeon cluster for a velocity of 0.1m/s, run in non-dedicated
mode, with the new prediction scheme. The circles show speedup on the same machine
with the earlier predictor, for a velocity of 1m/s, run in dedicated mode.

the computation time (≈ 13s) for simulating a single time interval. We expect
the loss in efficiency, especially for the 400 processor run, to be due to running
in a non-dedicated mode. For example, we got over 97% efficiency on up to 1000
processors with our previous predictor, when run in dedicated mode. However,
the actual prediction and communication overheads of the previous predictor
are slightly larger than for the new one. In particular, the earlier prediction
related computations took ≈ 10−3s, and Broadcast ≈ 10−1 − 10−2s for 50-1000
processors. In any case, the efficiency is very good with both predictors and they
scale to much larger numbers of processors than conventional parallelization.

7 Conclusions

We have shown that reduced order modeling can provide a systematic procedure
for choosing a basis for modeling the data, without much apriori information on
the physical processes the system is undergoing. Such modeling enables us to pre-
dict the states, for different time and parameter values. Furthermore, the amount
of prior data needed is less. Parallelization of time, using our approach, scales
to at least two orders of magnitude larger numbers of processors than conven-
tional parallelization. Our results are, therefore, of much significance, since they
suggest a general technique for more complicated problems, were less knowledge
of the physical processes is available.

Future work will consist of simulating multiple parameter systems, such as
strain rate, temperature, and CNT diameter. We will also include, in the im-
plementation, the ability to learn about new phenomena the CNT undergoes,
orthogonal to the selected subspace. We plan to use other reduced order mod-
eling techniques too, such as Centroidal Voronoi Tesselations [2]. We will also



perform time parallel simulations under more experimental conditions, apart
than tensile tests, and at lower strain rates, and include the material responses
in multi-scale FEM simulations.

Acknowledgments

This work was funded by NSF grant # CMS-0403746. We thank ORNL (CNMS
/NTI grant #CNMS2004-028) and NCSA (proposal #ASC050004) for provid-
ing computer time. We also thank Xin Yuan at Florida State University for
permitting use of his Linux cluster, where our codes are first tested, and Max
Gunzburger, for drawing our attention to reduced order modeling literature.
Most of all, A.S. thanks Sri S.S. Baba, whose inspiration and help were crucial
to the success of this work.

References

1. L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zerah. Parallel-in-time
molecular-dynamics simulations. Physical Review E (Statistical, Nonlinear, and
Soft Matter Physics), 66:57701–57704, 2002.

2. J. Burkardt, Q. Du, M. Gunzburger, and H. Lee. Reduced order modeling of
complex systems. In D. F. Griffiths and G. A. Watson, editors, Proceedings of the
20 th biennial conference on Numerical Analysis, pages 29–38, Dundee, Scotland,
U.K., 2003. University of Dundee.

3. Theory and modeling in nanoscience, May 2002. Report of the May 10-11, 2002
Workshop conducted by the basic energy sciences and advanced scientific comput-
ing advisory committees to the Office of Science, Department of Energy.

4. J. Kolhe, U. Chandra, S. Namilae, A. Srinivasan, and N. Chandra. Parallel sim-
ulation of Carbon nanotube based composites. In L. Bougé and V. K. Prasanna,
editors, Proceedings of the 11 th International Conference on High Performance
Computing (HiPC), Lecture Notes in Computer Science – 3296, pages 211–221.
Springer-Verlag, 2004.

5. A. Srinivasan and N. Chandra. Latency tolerance through parallelization of time
in scientific applications. Parallel Computing, 31:777–796, 2005.

6. A. Srinivasan, Y. Yu, and N. Chandra. Scalable parallelization of molecular dynam-
ics simulations in nano mechanics, through time parallelization. Technical Report
TR-050426, Department of Computer Science, Florida State University, 2005.

7. B. I. Yakobson, M. P. Campbell MP, and C. J. Brabec. High strain rate fracture
and C-chain unraveling in Carbon nanotubes. Computational Materials Science,
8:341–348, 1997.


