Optimizing Massively Parallel Simulations of
Infection Spread Through Air-Travel for Policy
Analysis

Ashok Srinivasan
Dept. of Computer Science
Florida State University
Tallahassee, USA
Email: asriniva@cs.fsu.edu

Abstract—Project VIPRA [1] uses a new approach to modeling
the potential spread of infections in airplanes, which involves
tracking detailed movements of individual passengers. Inherent
uncertainties are parameterized, and a parameter sweep carried
out in this space to identify potential vulnerabilities. Simulation
time is a major bottleneck for exploration of ‘what-if’ scenarios
in a policy-making context under real-world time constraints.
This paper identifies important bottlenecks to efficient computa-
tion: inefficiency in workflow, parallel 10, and load imbalance.
Our solutions to the above problems include modifying the
workflow, optimizing parallel 10, and a new scheme to predict
computational time, which leads to efficient load balancing on
fewer nodes than currently required. Our techniques reduce the
computational time from several hours on 69,000 cores to around
20 minutes on around 39,000 cores on the Blue Waters machine
for the same computation. The significance of this paper lies in
identifying performance bottlenecks in this class of applications,
which is crucial to public health, and presenting a solution that
is effective in practice.

1. INTRODUCTION

Air travel has been identified as a leading factor in the
spread of several infections [2], [3], [4], [5], [6], [7] and
this has motivated calls for limitations on air travel during
the current Ebola outbreak. However, such limitations carry
considerable economic and human costs. Consequently, it is
necessary to evaluate the extent of impact of air travel on
spread of Ebola and to also identify policy options that can
mitigate its spread without major disruption to air travel.

Computer simulations play a crucial role in evaluating
viable policy options and exploring potential consequences
of decisions taken by policy makers. For simulations to be
effective, they need to be able to provide insight into the
consequences of different policy choices that decision makers
may make, and produce results under the time constraints
required for quick action. Unfortunately, conventional models
for infection spread through air-travel are too coarse-scaled to
suggest fine-tuned policies, because they are typically based
on analysis of aggregate passenger data. These models cannot
account for changes in passenger interaction patterns due to
changes in policies or procedures, which in turn influence
infection spread. In addition, this approach typically requires

C.D. Sudheer
IBM Research
New Delhi, India
Email: sudheer.chunduri@in.ibm.com

Sirish Namilae
Aerospace Engineering Department
Embry-Riddle
Aeronautical University, USA
Email: namilaes @erau.edu

good data, and data are often scant during the initial stages of
an infection.

Fig. 1. Visualization of the initial state of a simulation

Project VIPRA takes a different approach, which involves
tracking the trajectory of each individual passenger through
the SPED model, which is a fine-scale causal model. (Figure 1
shows the initial state of a simulation of passengers deplaning.)
The initial focus of this project is on Ebola, which is spread by
contact with fluids of infected persons, either through direct
contact or indirectly through contact with a common surface.
We have shown that seating arrangement and boarding and
disembarkation procedures play a major role in such contact.

Inherent uncertainties in human behavior make precise pre-
diction of human movement or infection transmission difficult.
This is magnified by the practical reality that models for all
factors influencing an epidemic are not available, especially
in the initial stages. Such sources of uncertainty are param-
eterized and our goal is to identify potential vulnerabilities
in different policy or procedural choices across the parameter
space. The goal is not to generate a single likely prediction
but, rather, a set of possible scenarios, and to identify vulner-
abilities due to any of these possible scenarios.

The large parameter space! due to the various sources of

'We use the term ’parameter category’ for a type of parameter, such as
passenger velocity in the absence of other passengers in the vicinity. For
each parameter category, we may choose a range of values in order to deal
with uncertainty in its exact value. The total number of parameters, which is
referred to as ’parameter combinations’ in certain contexts, is the product of
the number of parameters for each parameter category. The large parameter
space arises from a large number of parameter combinations.

uncertainty leads to high computational cost. This is a serious
impediment to decision making, because such decisions are
often taken during a course of a meeting, and it is necessary
to produce results within the span of minutes to permit
policy makers to explore different options. One approach to
dealing with this bottleneck is to pre-compute results for
possible policy options ahead of the meeting. The constraint
on results within a few minutes can be relaxed with this
approach. But one still needs results fast; models seldom yield
reasonable results on a first attempt, and iterative refinement
in required, especially as new data becomes available. Con-
sequently, efficient computation, both in terms of time and
computational resources used, is important even when results
are pre-computed.

The focus of this paper is on the SPED model and its
parallelization through parameter sweep on the Blue Waters
machine, though we have used similar approaches also on
BlueGene Q at IBM research and Stampede at TACC. We
explain the computational structure of SPED and its workflow
in Section II, along with a description of the Blue Waters
system. In Section III, we show that optimizing the workflow
of SPED can decrease the worst case time from a few a hours
around 20 minutes for a 1331-core run.

In Section IV, we identify parallel file reads as a bottleneck
in scaling the above computation from 1331 cores to around
69000 cores, which incurs time of around 45 minutes. We
discuss two different optimization strategies, both of which
reduce the time for this run to around 20 minutes. We then
develop an algorithm for predicting the time taken by the
computation and show that, with good load balancing, the
same results can be obtained using 39,681 cores. We explain
this algorithm in Section V.

In Section VI, we propose three load balancing strategies
and evaluate their performance. We show that simple dynamic
load balancing permits reducing the number of cores from
around 69,000 to around 39,681 with around 4.2% increase in
time. We also use a-posteriori bounds to show that this is close
to optimal for a run using 39,681 cores, as the time taken is
13.6% higher than the optimum. Furthermore, we show that
if we had a more accurate estimate of the time taken, then we
can use alternate load balancing algorithms to maintain close
to optimal time (differing by just 6%) while using only 32,405
cores.

We present our conclusions in Section VII and identify two
directions for future work, in order to reduce the time taken
and the amount of computational resources used. While the
focus of this paper is on the SPED model, other applications
of supercomputing for policy decisions can use a similar
approach to dealing with uncertainty, and consequently, our
approach has more generality than the specific application
considered.

II. COMPUTATIONAL STRUCTURE AND COMPUTATIONAL PLATFORM

A. Computational Structure of SPED model

The Self-Propelled Entity Dynamics (SPED) model has its
origins in a code developed by co-author Namilae, while

at Boeing, to simulate evacuation of airplanes. The parallel
algorithm used is described in algorithm 1. Its primary com-
putational structure is similar to Molecular Dynamics, with
each passenger treated as a point particle that exerts a pair-
wise repulsive force on other passengers if they come too
close, based on a certain “potential®, whose parameters can be
varied. Unlike with molecular dynamics, there is no attractive
force; instead passengers come closer toward each other due
to a forcing term. For example, movement toward the exit is
the forcing term when simulating deplaning. A neighbor-list is
maintained so that interaction is computed only for passengers
within a certain cutoff. Apart from the above purely social-
dynamics computation, certain behavioral characteristics are
included to make the model realistic. For example, the manner
in which passengers stop to collect luggage from overhead
bins, move from interior seats to aisles, and move when not
in proximity to other passengers are all modeled. The sources
of uncertainty arise from both the social dynamics parameters
and human behavioral parameters. In addition, SPED includes
some randomness in the movement of passengers. Note that
the VIPRA approach does not assume that the identity of
an infected passenger is known. Rather, this is included as
a source of uncertainty.

{ SPED ’ [Validation] { Analysis] [Infection]

Fig. 2. Workflow

The SPED model does not directly simulate the movement
of an infected person; analysis with such simulations will
require a huge number of simulations to model all possible
locations of the infected passenger. Instead, SPED generates
trajectories for all passengers in a given simulation, with the
simulation parameters being varied. A separate analysis phase
analyzes each simulation. The analysis phase is fast, and can
be used to identify contacts generated by infected passengers,
which is then passed on to the infection model.? The workflow
is shown in figure 2. This workflow includes a validation
step before the analysis, for the following reason. While
SPED desires to generate a wide variety of possible scenarios,
including extreme cases that are rare, certain combinations of
parameters lead to results that are clearly unrealistic. Such
scenarios are removed during the validation phase.

We focus on simulations involving deplaning in this paper.
The time taken by a computation, to a large extent, depends
on the number of iterations required for passengers to deplane,
because the simulation stops when all have deplaned. In
addition, it also depends, to a lesser extent, on the number of

2Currently, Project VIPRA has not integrated the infection model with
SPED; rather, it analyzes the total number of contacts and considers the
maximum number of contacts under any scenario for a given policy or
procedural choice, so that the one with the minimum such number may be
considered ideal.

Algorithm 1 Parallel algorithm for the SPED model

1: procedure
2: Initialization

3: for each process do

4: Read parallel input (coordinates, input parameters)
5: Loop over n time steps

6: for each pedestrian do

7: Compute desired velocity

8: Compute forces

9: Find new positions & velocities
10: Compute averages, neighbors
11: end for

12: End loop

13: end for

14: Data collection

15: end procedure

pairwise interactions computed by the social dynamics force
field.

B. Computational Platform

The above computations were performed on the Blue Waters
machine at NCSA. We summarize the computational environ-
ment below.

The Blue Waters system is a Cray XE6/XK7 hybrid machine
consisting of around 22,500 XE6 compute nodes all connected
by the Cray Gemini torus interconnect. The XE6 dual-socket
nodes are populated with 2 AMD Interlagos processors with a
nominal clock speed of at least 2.3 GHz and 64 GB of physical
memory. The file systems on Blue Waters are built with the
Lustre file system technology. We used the IO profiling tool
Darshan for analyzing the 10 performance of the code. The
default programming environment, Cray (PrgEnv-cray 5.2.40)
compiler suite, was used for compiling the codes. The MPI
library used is cray-mpich/7.2.0. The major code base is
written in FORTRAN and it is provided with a C++ interface
where MPI routines are used. MPI timer routines are used for
timing the code. The timer is started right after MPI Init and
stopped just before MPI Finalize. Thus, the times account
for the total time of the simulation including 10. The compute
nodes use a 64-bit Linux OS. The TORQUE job scheduler was
used to submit the batch jobs. The Cray Application launcher
(aprun) utility was used to launch applications on compute
nodes.

III. OpTmMIZING THE WORKFLOW

As in the development process of most models, after any
refinements to SPED, simulations are first checked with a
few parameters. Then, we increase it to 1331 parameters,
and if results there appear reasonable, then perform a large
simulations with around 69,000 parameters. The original code
runs one process per parameter, and thus uses one core per
process.

We first evaluated the ideal number of processes per node
using the same parameter on each process for 10,000 iterations

80

TO [EESSSEEEES —

60 [y mEEEERESE R AR S

4

Time(s)

30 -

1 2 4 8 16 32

Processes per node

Fig. 3. Time for 10K iterations

(this number is not large enough for all passengers to have
deplaned). Figure 3 shows the time taken as the number of
processes per node are varied from 1 to 32. While one process
per node clearly yields the best time, it is not realistic for a
run needing 69,000 nodes; it would exceed the number of
nodes available. A major drop in time taken is seen only at
4 processes per node. This is not realistic either; the queue
wait time would be long and it would make inefficient use of
the time allocation on the machine. Consequently, we choose
the maximum of 32 processes per node. Note that the queue
wait time typically increases as the number of nodes requested
increases, and so it is not fruitful to decrease the number of
processes per node for a small decrease in time. In addition,
the charging algorithm for Blue Waters is based on the number
of nodes used, and so it is preferable to use fewer nodes, as
long as the computation time does not increase much.

0.35
[e I R
0.25 - -l R
. o
2 [R e B N R
3
g
B OIS R
O1|--------eeee----- - B
0.05 1 ' ’ """"" R
0 ‘
10 30 50 70 90 110 130 150 170

Time(minutes)

Fig. 4. Histogram of time taken for 1331 parameter combinations using the
original code

Results from runs with a few parameters showed times of
less than an hour. However, as seen in figure 4, the time
taken for 1331 parameters is around 3 hours. We analyzed
the cause for the poor performance. One of the causes was an
inefficiency in a portion of code that was relevant for certain
parameter values. This was easily corrected. The other cause

0.45 T T T T T T T T T

04 [remr

03 o

0.25 [nm

Frequency

02 - e

015 -

{020 B

-

Fig. 5. Histogram of time taken for 1331 parameter combinations with first
set of optimizations

Time(minutes)

Average I/O cost per process

100

o [s:]
o o
T T

Percentage of run time
e
o
T

Read mmm

Write =

Metadata

Other (including application compute)

0.2 T T T T T T T T T
018 [[RS v RS) EEEREREREEEEEER
006 - SR A A N | S Fig. 7. 10 profiling (before the 10 optimization)
O R RAAREEREEE) REE NN S B EEE) EEE I EEEEEEEEEEREREEE
SOREOVISIERETERITEREEE B ST B EE EEREEETETIRISRRRS Average [/0 per process
g Cumulative time spent in Amount of I/O (MB)
g L A Y A) B 1/0 functions (seconds)
008 [Independent reads 0.000000 0.000000
0.06 |- e] Independent writes 0.010458 1.904802
’ Independent metadata 0.936319 N/A
(IS e T R A A A Ay Ay Y A Shared reads 0.000000 0.000000
00> P e SR) G G Shared writes 0.000008 0.000013
0 L L Shared metadata 767.437892 N/A
5 10 15 20 25 30 35 40 45

Time(minutes)

Fig. 6. Histogram of time taken for 68921 parameter combinations

was that long times were taken in certain simulations that the
subsequent validation check showed as invalid. We changed
the workflow (and SPED code) so that some validity checks
are included in the course of the simulation and a simulation
terminated when it is clear that it is not valid. Figure 5 shows
time reduced to around 20 minutes, which is an order of
magnitude improvement in performance.

IV. ParALLEL IO OPTIMIZATION

We next performed a run with 69,000 parameters, which
is our primary production run. Figure 6 shows that the time
taken is around 45 minutes. We analyzed the cause of this
performance drop.

As shown in algorithm 1, each process reads two input files
(coordinates and parameters), which are of size a few KB each.
We observed with the help of the Darshan [9] IO profiler that
the reading of these files by all ranks is a bottleneck. The
IO time involves the time for IO transfer and the time for
metadata (open/seek, etc.). The file system on Blue Waters
is a Lustre file system [11], and with large process counts
(large number of files), metadata operations may hinder overall
performance [10]. Figure 7 shows that the time for IO metadata
is comparable to the time for the computation. The times for

Fig. 8. IO timings (before the 10 optimization)

the metadata processing and other IO operations (reads/writes)
is provided in figure 8.

Average |/O cost per process

40

Percentage of run time

20

Read mmmm

Write ==

Metadata

Other (including application compute)

Fig. 9. 10 profiling (after the IO optimization)

While the input files are shared across all the processes,

Average 1/0 per process

Cumulative time spent in Amount of I[/O (MB)

I/0 functions (seconds)
Independent reads 0.000000 0.000000
Independent writes 0.011489 1.916544
Independent metadata 2.741964 N/A
Shared reads 0.000000 0.000000
Shared writes 0.000000 0.000000
Shared metadata 6.817164 N/A

Fig. 10. IO timings (after the IO optimization)

each process periodically writes its output to an independent
file. Lustre needs to maintain IO metadata information to
enable shared file processing, while metadata overhead is
not an issue with independent files. MPI IO and Lustre,
therefore, effectively handle writing to the independent files.
Consequently, IO write operations are not a bottleneck for this
application.

0.45 T T T T T T T T

O

0.35 [

03 o

0.25 [

Frequency

02"

015 """ -

0.1 -

‘il

0
4 6 8 10 12 14 16 18 20

Time(minutes)

Fig. 11. Histogram of time taken for 68921 parameter combinations (after
the IO optimization)

0.45 T T T T T T T T T

04 [rmemmm

0.35 [r e

0.3 [rrrrm

Frequency

02 e

015 [

O o

-

2 4 6 8 10 12 14 16 18

Time(minutes)

Fig. 12. Histogram of time taken for 1331 parameter combinations (after the
10 optimization)

We consider two approaches to reducing the IO cost asso-
ciated with reading common files. In the first approach, one
process reads the two files and broadcasts their contents to all

other processes. This results in a significantly reduced time
spent with the IO metadata as can be seen from figures 9 and
10, thus improving the overall performance of the code by a
factor of two.

In the second approach, we copy the files to the lo-
cal memory of each compute node. Cray MPI Application
launcher (aprun) has optimizations built in to enable efficient
and scalable execution of certain commands, such as cp, in
parallel®. The input files are just a few 100 KB, and so we
place the files in /dev/shm file system.

We noticed that both the above approaches effectively
handle the IO bottleneck. The first approach is more portable
across different systems, whereas the second approach requires
a memory based file system, such as /dev/shm or /tmp.

Average I/O cost per process

100 -

e [£2] [e=]
o o o
T T T

Percentage of run time

[
o
T

Read mmmmm

Write o

Metadata

Other (including application compute)

Fig. 13. 10O profiling for 1331 parameters (after the IO optimization)

Average 1/0 per process

Cumulative time spent in Amount of I/O (IMB)

1/0 functions (seconds)
Independent reads 0.000061 0.000472
Independent writes 0.010548 1.889852
Independent metadata 0.097447 N/A
Shared reads 0.000000 0.000000
Shared writes 0.000000 0.000000
Shared metadata 0.000000 N/A

Fig. 14. IO timings for 1331 parameters (after IO optimization)

Figure 11 shows that the time taken for 69,000 parameters
improves to around 20 minutes with this IO optimization.
On the other hand, IO does not appear to be a bottleneck
with the 1331 parameter problem as shown in figure 12. The
histograms in both figures 5 and 12 are similar. This shows
that IO metadata processing is not a bottleneck on 1331 cores.

3NCSA Blue Waters user support has given this input about Lustre setup
on Blue Waters system.

Average 1/0 per process

Cumulative time spent in Amount of I/O (MB)

I/0 functions (seconds)
Independent reads 0.000000 0.000000
Independent writes 0.010964 1.889852
Independent metadata 0.089385 N/A
Shared reads 0.000000 0.000000
Shared writes 0.000000 0.000000
Shared metadata 0.121298 N/A

Fig. 15. 10 timings for 1331 parameters (before IO optimization)

The Darshan profile outputs for both the cases look similar
to figure 13. The specific IO timings for the IO optimized
case is given in figure 14. IO timings for the code before 10
optimization, shown in figure 15, indicates some overhead in
the metadata part. But, it is insignificant compared to the total
time.

V. DEeTERMINING OPTIMUM NUMBER OF CORES TO USE

The histogram for the above runs suggests that there is scope
for reducing the number of cores used without increasing the
time taken. Given a core count, this reduces to the problem of
minimizing the makespan, provided we can estimate the time
taken for each parameter choice.

Minimum Makespan is NP-hard, but several approximation
algorithms exist [12]. The list-scheduling algorithm is equiv-
alent to dynamic load balancing with tasks assigned in order
to the next available core, and has an approximation factor
of 2. If the processes are sorted by time before the above
algorithm is applied, then the approximation factor is 4/3. This
approximation bound can be improved to around 1.22 with the
multifit algorithm [13] that repeatedly calls an approximation
algorithm for bin-packing.

Algorithms with slightly lower bounds exist. However, they
are more complex and reduce the approximation factor only
marginally in practice [14]. In addition, post priori bounds on
the factor 1.22 approximation for our problem show that it is
close to optimum when the exact time is known.

Optimal | 1015s
Multifit | 1096s

1331 PARAMETERS ON 721 CORES.

Table I shows the time in seconds for the 1331 parameter
problem using 721 cores. Time with multifit algorithm is close
to the optimum, differing only by 7.9%. (We chose 721 cores
based on theoretical bin-packing results that indicated this as
the smallest count for which one could get the same time as
using 1331 cores.)

The performances of the different algorithms for load
balancing are compared in figure 16 for a run with 1331
parameters using 721 cores. Block mapping refers to assigning
the first N/P parameters to the first core and so on (where N
is the number of parameters and P is the number of cores).
Striped mapping assigns the parameters to the cores one-by-
one in turns; for example if there are 10 cores, than each

core gets every tenth parameter. List Schedule (also referred
to here as Plain Dynamic) is dynamic load balancing with a
core getting the next available task once it is free.

The reordered mapping orders the tasks by their times in
descending order before applying the list scheduling algorithm.
The idea behind this strategy is that with the reordering the
theoretical approximation factor is lowered from 2 to 4/3. Even
though we don’t have the exact time, we hope that our time
prediction will lead to a better approximation.

35

30

25 -

20 -

Time(m)

Fig. 16. Time taken with different mappings (block decomposition, striped
decomposition, list schedule based) and make span scheduling for 1331
parameter combinations using 721 cores

The latter two approximation algorithms, which result in
close to optimal performance, require estimates of the time
taken to be used for load balancing. In contrast, simple dy-
namic load balancing, which assigns task to the next available
core, automatically implements list scheduling. In all cases,
though, one first needs to determine the number of cores to
use.

This is the problem of bin-packing, which is NP-hard, and
the dual of the makespan problem. We use the asymptotic fac-
tor 11/9 approximation algorithm for it [15]. Asymptotically
better algorithms exist for bin-packing [16], [17]. However,
they do not lead to a makespan algorithm that is significantly
better in practice. Bin packing, of course, requires estimates of
the time for each process and also the bin size. The smallest
feasible bin size is the computation time of the parameter
combination that takes maximum time. However, we also
consider the tradeoff of slight increase in time, if it would
lead to a substantial reduction in the number of cores needed.

We now consider the matter of predicting the time. We
use the observation that the normal procedure is to perform
a smaller run before the production run, in order to verify
that the model and implementation work reasonably before
expending computational resources. We developed an efficient
algorithm for predicting the time.

This algorithm is based on the observation that the param-
eter sweep is performed on a lattice in both the trial run
and the production run, with the dimension of the lattice
being the number of parameter categories. We develop a few
simple models for the time taken. We divide the parameter

space into cells defined by the lattice of parameters of the
trial run. Given a parameter combination, we identify its
corresponding cell and evaluate its predicted time using one of
the following models. The models are linear fit, quadratic fit,
and maximum fit. In 3-dimensions, given parameter (x,Yy,z)
linear fit predicts time as: a + bc + ¢y + dz, quadratic fit as
a+bx+cy+dz+exy+ fez+gxz, and maximum as the maximum
of the time taken of the corner points. The maximum time is
pre-computed for each cell.

Efficiency

T T
Actual ——
Quad 4
Max —e—
Linear 4

h N

0.95
0.9

0.85 AN

0.8

0.75

07 N
0.65
0.6

0.55
0.5]

0.45
300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Number of cores

Fig. 17. Cores used vs. parallel efficiency with observed and predicted times
for 1331 parameter combinations

The coefficients for each cell in the other two models are
also pre-computed using a least squares fit on the parameters
for the trial run. An efficient implement of least squares is
developed for this problem as follows. We normalize a given
cell to be in [0, 1]¢ in d-dimensions (d = 3) in the case studied
in this paper. For any cell, the least squares algorithm requires
the basis functions to be evaluated at the known points, which
are the cell corners, to create the least squares matrix A. The
above normalization leads to identical A matrices for all cells.
If A = QR is the QR factorization of A, and b the compute-time
at the cell corners (which will vary with each cell), then the
least squares solution for the coefficients is given by R~'Q7b.
R7'QT is identical for all cells (and a small matrix, given
that each cell has only 8 corners in 3-D) and is precomputed.
The coefficients for each cell are, thus, computed as a small
matrix-vector product. This solution is scalable as the number
of parameters increases, though the matrix size does increase
with the number of parameter categories.

We next evaluated the three models on the original problem
(because, in a practical situation, times for the production
run will not be available). We first predict the times for
1331 parameter problem based on the observed times for this
same problem. We then predict the optimum number of cores
based on these times. Figure 17 shows the comparison of the
prediction with actual observed times and the three prediction
methods. Quadratic and linear prediction were roughly equally
good, though quadratic was slightly better. So, we use this

in subsequent load balancing algorithms, except when we
mention otherwise.

We next use results from 1331 parameter problem to predict
times on 68921 parameter problem. Figure 18 shows parallel
efficiency with different number of total cores used for both
the exact times and predicted (quadratic fit) times for the
68921 parameter problem. Note that even though we show
exact results with 68921 cores for the purpose of comparing,
in reality this result is not available before the production run.
The predicted times indicate that 39,000 cores can yield the
same time as using 68921 cores if the load is balanced well.
However, the actual times indicate the optimum number of
cores to be around 32000 to yield the same time as using
68921 cores. However, even a reduction to around 39000 cores
leads to a substantial improvement in efficiency.

Figure 19 shows the time taken with different number of
cores used for both the exact times and the predicted times.
The inference that can be made from figures 18 and 19 is that
with a slight sacrifice on the total simulation time, a higher
parallel efficiency can be obtained.

Cores vs Efficiency

PRIEL I ‘ Actlial ——
b o \’N\ Predicted(quad.)
0.9
0.8
0.7
0.6
05 <
0.4
10000 20000 30000 40000 50000 60000 70000

Number of cores

Fig. 18. Number of cores vs efficiency for 68921 parameter combinations
using actual and predicted times

VI. Loap BALANCING

We next evaluate the different load balancing strategies
on the 68921 parameter problem run on the estimated ideal
number of cores.

Figure 20 shows timings on 39681 cores with plain dynamic
load balancing, dynamic load balancing with the task list
sorted based on times, and multi-fit based static mapping.
The mappings for the later two cases is developed based on
the predicted times. The timings of these three mappings are
compared with the time taken when all the 68921 cores are
used, which results in a poor parallel efficiency of 51%. The
plain dynamic load balancing using 39681 cores takes time
close to that with 68921 cores. Figure 21 shows the histogram
of the time taken for the 39681 cores. Based on these times,
it is clear that the compute load is much better balanced in

Cores vs Time

2400 T T
Actual ——
\ Predicted(quad.)
2200
2000
1800

!\
\

1400 \

3\‘

1200 \
N
1000
10000 20000 30000 40000 50000 60000 70000

Number of cores

Fig. 19. Number of cores vs time for 68921 parameter combinations using
actual and predicted times

this case, resulting in a better parallel efficiency of 89%. The
other two mappings results in a higher times.

35

30 [

25 [

20 [

Time(m)

68921 cores Plain Dynamic Reordered Multifit

Fig. 20. 68921 problem with 39681 processes using predicted times with
different mappings

0.8

0.7 [

QU6 [7T

(U b

QL4 [

Frequency

0.3 [oo

0.2 [

QUL [

20.1 20.3 20.5 20.7 20.9 21.1 21.3

Time(minutes)

Fig. 21. Histogram of time taken for 68921 parameter combinations using
39681 cores (Dynamic Load balance)

We next evaluate these load balancing strategies when
we know the actual time taken for all the 68921 parameter
combinations using 68921 cores. The purpose of this exercise
is to determine whether better time prediction gives scope for
further improvement in load balancing. Figure 22 shows the
timings with 32405 cores with plain dynamic load balancing,
dynamic load balancing with the task list sorted based on
times, and the multifit based static mapping. The multifit based
static mapping and the reordered load balancing perform close
to the optimum that uses 68921 cores. This results in achieving
a parallel efficiency of 94.6%. Using fewer resources, the
simulation results are obtained with roughly the same time
as with using 68921 cores. This is a significant improvement
compared to the parallel efficiency of 51% when 68921 cores
are used. Figure 23 shows the histogram of the time taken for
the 32405 cores which indicates better load balancing across
the cores.

25

0Tl e T

B L [EEEEEEE IR EEEEEE R EEEEEEE I R
&
Q
E
&

10 Fof

she b]

68921 cores Plain Dynamic Reordered Multifit

Fig. 22. 68921 problem with 32405 processes using actual times with different
mappings

0.8

07 o

QU6 [7T

0U5 [7

(X

Frequency

[N nah

0.2 [7

01l

14 15 16 17 18 19 20

Time(minutes)

Fig. 23. Histogram of time taken for 68921 parameter combinations using
32405 cores (STATIC mapping)

An even higher parallel efficiency of 98.2% can achieved
using just 25810 cores with a 14.5% increase in the time
taken. As shown in figure 24, the multi-fit based static mapping
performs best. (We chose to evaluate this result on 25810 cores

because bin-packing results indicated this as the largest core
count for which one could exceed 98% parallel efficiency.)

30 T T

25 [

20 [

150

Time(m)

68921 cores Plain Dynamic Reordered Multifit

Fig. 24. 68921 problem with 25810 processes using actual times with different
mappings

The above methods assume the availability of timings from
smaller runs, based on which we predict the optimal number
of cores and the mapping to use for a much larger problem
size. We now discuss a rule of the thumb when such data is
not available. We can use the List Scheduling based dynamic
load balancing algorithm with half the number of cores as
the number of parameters. Table II shows timings for three
different problem sizes using this rule of the thumb. It shows
that we can reduce the number of cores by half, at the expense
of 20% to 25% increase in the overall time.

Number of parameters | Number of cores | Plain Dynamic | Optimal

1331 666 20.48s 16.91s

9261 4361 23.58s 18.81s

68921 34460 22.78s 18.93s
TABLE T

LiST SCHEDULE BASED DYNAMIC LOAD BALANCING WITH HALF THE NUMBER OF CORES
AS THE NUMBER OF PARAMETERS.

VII. CONCLUSIONS AND FUTURE WORK

We have identified some major bottlenecks to parallelization
of the SPED model. One of the bottlenecks was related to the
workflow, which had a sequence of components. Including
some aspects of the validation into the basic simulation,
apart from a few simple optimizations in the sequential code,
reduced the time substantially. Parallel read of a common
input file proved to be another bottleneck which was resolved.
Finally we showed that our time prediction scheme can be
used to estimate a much smaller number of cores on which a
simple dynamic load balancing scheme can yield result close
to optimum.

The SPED model has important applications to public
health, and so this work is of much relevance. Our preliminary
results on the application science has suggested that certain
alternate deplaning strategies could reduce the number of
human-human and human-surface contacts substantially. In
addition, our results show that if vacant seats are available,

then assigning them to the middle section of the plane is
preferable, and assigning them to middle seats in a row of
three seats is preferable.*

One aspect of our future work is guided by our observation
that with more accurate time prediction, the number of cores
needed could be reduced further without increasing the total
computational time. Improving time prediction will be an
important component of future work. On the other hand, em-
pirical results also suggest that, in the absence of timing results
from preliminary runs, the simple dynamic load balancing with
half the number of cores as the number of parameters, would
perform reasonably well. Yet another scope for optimization
is reducing the parameter space swept. In order to generate
different scenarios, it may be adequate to sample regions of
parameter space more coarsely if results are not sensitive to
parameters in that region, while sensitive regions ought to be
sample on a finer scale.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation ACI under grants #1525061, #1524972,
and #1525012 (Simulation-Based Policy Analysis to Reduce
Ebola Transmission Risk in Air Travel). Any opinion, findings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation. We thank NCSA
for providing access to the Blue Waters supercomputer. This
research is performed as a part of Project VIPRA (Viral Infec-
tion PRopagation through Air-travel). We acknowledge useful
discussions with VIPRA team members Mathew Scotch and
Robert Pahle. We acknowledge IBM Research for providing
us access to the BlueGene/Q and XSEDE for providing access
to Stampede.

REFERENCES

[1] VIPRA (Viral Infection Propagation Through Air-Travel) - Science Based
Policy Analysis: http://www.cs.fsu.edu/vipra/

[2] Centers for Disease Control and Prevention. Epidemiological notes
and reports. Interstate importation of measles following transmission in
an airport California, Washington. MMWR-Morbidity and Mortality
Weekly report, 32 210-216, 1982.

[3] M. Isacson and J. A. Frean, African malaria vectors in European aircraft.
The Lancet, 17 Vol. 357, No.9251, 2001, pp. 235.

[4] M. R. Moser, T. R. Bender, H. S. Margolis, G. R. Noble, A. P. Kendal
and D. G. Ritter. An outbreak of influenza aboard a commercial airliner.
1979. American Journal of Epidemiology, 110(1), 1-6.

[5] S. J. Olsen, H. L. Chang, T. Y. Y. Cheung, A. F. Y. Tang, T. L. Fisk,
S. P. L. Ooi, and J. Lando, Transmission of the severe acute respiratory
syndrome on aircraft. New England Journal of Medicine, Vol. 349, No.25,
2003, pp. 24162422.

[6] M. Tracy, Transmission of tuberculosis during a long airplane flight. N
Engl. J Med, 335, 675, 1996.

[7] M. A. Widdowson, R. Glass, S. Monroe, R. S. Beard, J. W. Bateman, P.
Lurie, and C. Johnson. Probable transmission of norovirus on an airplane.
Jama, 293(15), 1855-1860, 2005.

[8] S. Namilae, Simulation of passenger evacuation form airplane using
molecular dynamics simulations, Boeing Technical Excellence Confer-
ence, St Louis, 2014.

“These results suggest strategies for the entire set of passengers. They do
not indicate that a particular passenger will benefit from avoiding the middle
section of the plane or the middle seat.

[9] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel
Lang, Robert Latham, and Robert Ross. Understanding and improving
computational science storage access through continuous characteriza-
tion. In ACM Transactions on Storage, 7:8:1-8:26, October 2011.

[10] Konstantinos Chasapis, Manuel F. Dolz, Michael Kuhn and Thomas
Ludwig Evaluating Lustre’s Metadata Server on a Multi-Socket Platform,
9th Parallel Data Storage Workshop, in conjunction with SC14, 2014,
New Orleans, LA.

[11] Torben Kling Petersen, Inside The Lustre File System, SEAGATE
Technology paper.

[12] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Opti-
mization and approximation in deterministic sequencing and scheduling:
a survey, Ann. Discrete Math. 5, 287-326 (1979).

[13] E.G. Coffman Jr., M.R. Garey and D.S. Johnson, An application of bin-
packing to multiprocessor scheduling. SIAM Journal on Computing, Vol.
7, 1978, 117.

[14] Dorit S. Hochbaum and David B. Shmoys, Using Dual Approximation
Algorithms for Scheduling Problems: Theoretical and Practical Results.
Journal of the Association for Computing Machinery. Vol. 34. No. L
January 1987

[15] M. Garey and R. Graham, D. Johnson and A. Yao, Resource constrained
scheduling as generalized bin packing, Journal of Combinatorial Theory
Ser. A, 21 (1976) 257-298

[16] D.S. Johnson, M.R. Garey, A 71/60 theorem for bin-packing. Journal of
Complexity 1, 65-106 (1985)

[17] W. Fernandez de la Vega and G. S. Lueker, Bin packing can be solved
within 1 + € in linear time, Combinatorica, 1 (1981), pp. 349—355.

