
Small Discrete Fourier Transforms on GPUs

S. Mitra and A. Srinivasan

Dept. of Computer Science, Florida State University, Tallahassee, FL 32306, USA
{mitra,asriniva}@cs.fsu.edu

Abstract – Efficient implementations of the Discrete

Fourier Transform (DFT) for GPUs provide good

performance with large data sizes, but are not

competitive with CPU code for small data sizes. On

the other hand, several applications perform

multiple DFTs on small data sizes. In fact, even

algorithms for large data sizes use a divide-and-

conquer approach, where eventually small DFTs

need to be performed. We discuss our DFT

implementation, which is efficient for multiple

small DFTs. One feature of our implementation is

the use of the asymptotically slow matrix

multiplication approach for small data sizes, which

improves performance on the GPU due to its

regular memory access and computational

patterns. We combine this algorithm with the

mixed radix algorithm for 1-D, 2-D, and 3-D

complex DFTs. We also demonstrate the effect of

different optimization techniques. When GPUs are

used to accelerate a component of an application

running on the host, it is important that decisions

taken to optimize the GPU performance not affect

the performance of the rest of the application on

the host. One feature of our implementation is that

we use a data layout that is not optimal for the

GPU so that the overall effect on the application is

better. Our implementation performs up to two

orders of magnitude faster than cuFFT on an

NVIDIA GeForce 9800 GTX GPU and up to one to

two orders of magnitude faster than FFTW on a

CPU for multiple small DFTs. Furthermore, we

show that our implementation can accelerate the

performance of a Quantum Monte Carlo

application for which cuFFT is not effective. The

primary contributions of this work lie in

demonstrating the utility of the matrix

multiplication approach and also in providing an

implementation that is efficient for small DFTs

when a GPU is used to accelerate an application

running on the host.

I. INTRODUCTION

The Discrete Fourier Transform (DFT) is an important

numerical kernel, used in a wide variety of scientific

and engineering applications. A 1-dimensional DFT is
defined as follows. The input to the transform is a

vector x of N complex numbers. The output is a vector

y of N complex numbers which is defined by:

y = W x, (1)

where W is an NN complex matrix with (j,k)th

element e-i2kj/N, j, k {0, 1, , N-1}, where i is the

imaginary unit and ei2/N is a primitive N th root of 1.
We consider out-of-place algorithms (x and y are

distinct). DFTs are defined in higher dimensions too.

If x is a 2-D array, then y is also a 2-D array. It can be

obtained by first applying 1-D DFTs on each column

and then 1-D DFTs on each row of the result of the

previous step. Each step of the 2-D DFT can be

expressed as the product of two matrices as shown

later in equation (2). A 3-D DFT extends the 2-D DFT

by applying a set of 1-D DFTs along each of three

directions. Note that the amount of data movement for

a transform in a higher dimension is significantly more
than that in a lower dimension. Therefore, one needs

to optimize for data movement too, rather than directly

applying the lower dimensional algorithm multiple

times.

The definition of the inverse transform is similar to

that above, except that it involves division by N.

Direct computation of the DFT from the definition in

equation (1) takes O(N2) time. Fast Fourier Transform

(FFT) algorithms reduce this to O(N log N) by

exploiting certain redundancies in the computation.

This efficiency improvement for the 1-D transform

carries over to higher dimensional transforms too.

Furthermore, the FFT algorithms may also be more

accurate than the direct computation.

FFT algorithms are usually expressed recursively,

using a divide and conquer approach, where the

problem size is successively reduced. The actual

implementations, on the other hand, may be iterative.

Due to its better asymptotic time complexity, the DFT
is computed, in practice, using FFT algorithms. In

view of its importance, optimized FFT

implementations are available on all platforms used

for High Performance Computing. GPUs are

becoming increasingly popular in High Performance

Computing, and NVIDIA provides cuFFT [7] for its

platform. Other works too report implementations

optimized to take advantage of the architectural

features of GPUs. We summarize such related work on

FFTs in section II, and describe relevant GPU features

in section III.

The above implementations provide tremendous

speedup over CPU for large data. However, for small

data, they are not competitive with CPUs. On the other

hand, many important applications require the use of

small DFTs, such as in certain applications in quantum

mechanics [12], finance [8], etc. In fact, the first

application served as the motivation for this work.

Even the FFT algorithms break up the problem, at a

certain stage, into small enough pieces that an efficient
algorithm for small DFTs will lead to better

performance.

The basic idea behind our approach, explained further

in section IV, is the use of matrix multiplication for

small DFTs. Even though the asymptotic

computational cost is higher than that of FFTs, it has

the advantages of regular memory access and
computational patterns. When the data size is not

small enough to make it effective, it can be combined

with an FFT algorithm in order to improve

performance. In particular, we combine it with the

mixed-radix algorithm. We explain details of the

optimizations performed with our implementation in

section V, and compare it against cuFFT on a GPU

and FFTW [6] on a CPU, in section VI. We show that

we can get up to two orders of magnitude

improvement in performance over cuFFT and up to

one to two orders of magnitude improvement over

FFTW for multiple small DFTs in higher dimensions.
We also show that our implementation can improve

the performance of a Quantum Monte Carlo

application, which cuFFT could not improve.

The results of our work will enable applications

needing several small DFTs to make effective use of

GPUs. Developers of FFT implementations can also

use our implementation in the sub-problems of their

computations, in order to improve their performance
further. It will also be worth studying if this approach

can be used on other architectures too.

II. RELATED WORK

A large body of research exists on FFT algorithms and

their implementations on various architectures. The

modern use of FFTs dates to the Cooley-Tukey

algorithm [13]. It is based on the observation that the

matrix W of equation (1) contains only N distinct

entries for an FFT of size N. They used a divide and

conquer approach to reduce the time complexity to

O(N log N). Several variants of this approach were

then introduced by others. Pease [14] introduced a

tensor-product based algorithm. This approach is more

effective for vectorization. Sorensen and Burrus have

compiled a database of efficient FFT algorithms [3].

Van Loan [4] provides a matrix-based interpretation of

different FFT variants.

For the GPU, Nakuda et al. have reported that through

effective usage of on-chip shared memory, optimized

usage of threads and registers and avoidance of low

speed stride memory access, their 3D FFT kernel

could achieve speeds up to 84 GFlops/card for power

of 2 FFTs and up to sizes 2563 [5].

Govindaraju et al. [1] have implemented 1-D and 2-D

complex power-of-two and non-power-of-two FFTs.

They obtain improvement by factors of 2-4 over

cuFFT for large data sizes. They have also considered

small data sizes. For a single DFT, the GPU

implementation is much slower than a CPU

implementation. However, with a large number of

independent DFTs (they have considered 223/N

independent DFTs of size N each in 1-D), they obtain
substantial performance improvement.

Apart from the use of matrix-multiplication, one

important difference between our approach and that of

[1] is that many of our algorithmic choices are dictated

by the constraints imposed by applications of interest

to us. For example, [1] assumes that data resides on

the GPU DRAM. We, on the other hand, have

considered both cases, data residing on the host and
data residing on the GPU DRAM. We need to

consider the former, because it will enable an FFT-

intensive application to accelerate the computation by

just replacing their FFT calls with that from our

implementation. On the other hand, if the application

developer has ported much of their computation to the

GPU, then one can assume that the data is present on

the GPU DRAM, and then use the corresponding GPU

implementation, which saves on the data transfer

overhead.

We have also considered 3-D DFTs, because

applications of interest to us require these. We have

also optimized our implementations so that they

outperform CPU implementations with even a small

number of DFTs, because applications that we have

analyzed generate approximately 1-100 independent

DFTs typically. In contrast, the results of [1] assume

100,000 – 1,000,000 independent DFTs for small data

sizes.

We have also used constraints imposed by the

application to avoid certain optimizations. For

example, CPU applications often use an array of

complexes, which makes better use of cache. This can

cause inefficient use of shared memory banks on the

GPU. GPU implementations, such as [1], use two

distinct arrays to avoid this problem. However, this

will require the application to change its data structure

on the CPU, requiring substantial programming effort

by the application developer, and also accepting the
loss in performance of the CPU portion of the code.

Alternatively, the DFT routine can convert the data

layouts, compute, and reconvert it, which incurs

additional overhead. Tests on small DFTs in the range

4-24, 42-242, and 43-243 in the 1-D, 2-D, and 3-D cases

respectively show that the conversion time is typically

larger than the DFT time when several simultaneous

DFTs are computed, as we show in tables 1 and 2

below for the 1-D and 2-D cases. We have, therefore,

used an array of complexes, even though we could

have obtained better performance on the GPU by

changing the data structure. If an entire application has
been ported to the GPU, then it will be preferable to

use two arrays of real to store the complex numbers on

the GPU. For example, [11] has performed a rewrite of

essentially an entire Quantum Monte Carlo

application, involving over a hundred kernels, to the

GPU. But FFT does not account for a large fraction of

time there, unlike with the type of Quantum Monte

Carlo application that we consider here.

N

DFT computation time on

device
Time: µs/DFT

Conversion time on host
Time: µs/DFT

4 0.021 0.069

8 0.029 0.126

12 0.036 0.185

16 0.042 0.238

20 0.07 0.285

24 0.076 0.335

Table 1: DFT computation time per DFT vs data layout
conversion time for 8192 1-D DFTs of size N.

N

DFT computation time

on device
Time: µs/DFT

Conversion time on host
Time: µs/DFT

4 0.043 0.252

8 0.214 0.710

12 0.55 1.51

16 1.14 2.620

20 1.96 4.05

24 3.19 5.81

Table 2: DFT computation time per DFT vs data layout
conversion time for 8192 2-D DFTs of size NxN.

III. GPU ARCHITECTURE

We have implemented our code using the CUDA
programming framework and run it on two different

NVIDIA GPUs. The results presented are those on a

GeForce 9800 GTX. We summarize its architectural

features below [2]. Other GPUs have similar features.

The above GPU contains 16 Streaming

Multiprocessors (SM) that perform computation and

500 MB of DRAM memory to store global data,

accessible by all the SMs and the host CPU. Each SM
contains 8K 32-bit registers and 16KB shared

memory. Each SM also contains a cache to store

constant data (and also for texture data, which we

don't use). Each SM can run up to 768 threads

simultaneously.

In the CUDA framework, a GPU can be used to

accelerate a process running on the host in the

following manner. The process running on the host
copies relevant data to the GPU and then calls a

CUDA kernel. Once the kernel completes, its output

data may be copied back to the host memory. The

kernel call causes the creation of a number of threads,

which are partitioned into blocks. Threads of the same

block run on one SM and multiple blocks may be

mapped to the same SM if sufficient resources are

available. Threads within a block can synchronize

efficiently and have access to the same shared

memory. Threads on different blocks cannot

synchronize safely, in a general situation. If such
synchronization is needed, then it has to be

accomplished by multiple kernel calls occurring in

sequence, which will incur over ten micro-seconds of

overhead. In contrast, synchronization within a block

is supported by hardware.

The threads within a block are partitioned into groups

of 32, called warps. The scheduler schedules threads

for execution at the granularity of warps [1]. In any
instance, all threads in a warp need to execute the

same instruction, except that some threads may not

execute anything. Consequently, there is a

performance penalty if threads within a warp diverge

on a branch.

Access to DRAM incurs a latency of hundreds of

clock cycles. This latency can be hidden through
simultaneous multi-threading (single instruction

multiple threads, in particular); when one warp is

stalled on data, another warp can be scheduled for

execution. There is no context switch penalty. DRAM

latency can also be reduced by using shared memory

for data that is used multiple times. Access to shared

memory has latency of one clock cycle.

The exact details of the memory access patterns also

influence performance. For example, accesses by

threads with adjacent indices to adjacent DRAM

locations can be coalesced, improving memory access

performance. Cache for constant data has one-cycle

latency, but all threads in a warp need to access the
same data for this to be effective. In shared memory

access, we need to be aware that access by multiple

threads in the same half warp to the same memory

bank is serialized, unless all threads access the same

location.

Yet another limitation to data flow is between the host

and GPU, which are connected through PCIe x16. The

bandwidth here is 4 GB/s in each direction or 8 GB/s
each if PCIe 2 is used. If this bandwidth limits

performance, then more of the computation needs to

be performed on the GPU, so that data is produced and

consumed on the GPU.

There are some additional issues one needs to be

aware of. The memory is not ECC, and so there is

some possibility of memory corruption. The arithmetic
is also not IEEE-754-2008 compliant. These

limitations are eliminated in the latest Fermi

architecture from NVIDIA.

IV. DFT FOR SMALL DATA SIZE

In this section we provide further details on the DFT

algorithm using matrix multiplication and the

algorithm that combines it with the Mixed Radix

algorithm.

A. DFT using Matrix Multiplication

1-D DFTs use matrix-vector multiplication as shown

in equation (1). This can be computed in O(N2) time.

2-D DFT of input array X can be computed as follows.

Y = W X W
T, (2)

where WT is the transpose of W.

The 3-D DFT is computed by first computing 2-D

DFTs for N 2-D planes in the x-y direction of the input

array, and then applying N2 1-D DFTs in the direction

orthogonal to these planes. Before this step, we

transpose the x-y and y-z planes of the result of the

first step, so that the 1-D DFTs can be performed on

adjacent data using matrix-vector multiplication.

Finally, the above transpose operation is repeated to
get results to the right locations. We perform DFTs for

a plane at a time in the 3-D DFT code; that is, the

same set of threads of a single block computes

corresponding elements of each plane, one plane at a

time.

B. DFT based on Mixed Radix Algorithm

The mixed radix method is a well known method for
computing DFTs when the size is a composite number.

We will summarize the computation structure for a 1-

D transform without going into the mathematical

aspects. Let N = NxNy. The 1-D data is considered as

a 2-D array of size NxNy. 1-D DFT is applied to each
column. Then, each element is multiplied by a certain

twiddle factor, and then 1-D DFT is applied to each

row. Basically, it is like a 2-D DFT, except that the

elements are multiplied by certain factors between the

two steps. If we use matrix multiplication to

implement the transforms in each step of this

algorithm, then the total number of complex

multiplications is fewer than that with matrix

multiplication used with 1-D transforms. In our results

presented here, we choose Nx to be either 2 (for
N=4,6), or 3 (for N=18) or 4. When multiple

factorings were possible, we empirically evaluated the

performance of each and chose the best one.

The 2-D transform is performed by considering the

input as a 3-D array of dimension NxNyNz, and then
performing a computation analogous to that above; we

perform two sets of 1-D transforms, where each set of

1-D transforms is as above, involving two matrix

multiplications, multiplication by twiddle factors, and
transpose. The 3-D transform applies 2-D transforms

and 1-D transforms as mentioned earlier, except that

each of these is replaced by their mixed radix

implementations.

V. DFT IMPLEMENTATION

We have implemented our DFT library on the GPU

using the CUDA programming framework for

complex single precision DFTs. The results are

reported for a GeForce 9800 GTX GPU. The host was

a 2.6 GHz AMD Dual Core 885 Opteron Processor

running Linux kernel version 2.6.18. The host code

has been compiled with gcc version 4.1.2 and the

kernel code has been compiled with NVCC version

2.0. The timer used is gettimeofday with a resolution

of 1 micro second.

Our goal is to compute several small DFTs. Each DFT

is computed by a separate block of threads, because

synchronization is required between threads

computing a single DFT. Several blocks are run when

we need to compute several DFTs.

Applications may require computation of DFTs under

two different situations. If the input data is produced

on the host and the GPU is used to accelerate only the

DFT, then the data has to be transferred to the GPU,

the DFT computed there, and the data transferred

back. If the input data is produced on the GPU, then it

is sufficient to compute the DFT on the data present

on the GPU DRAM. We evaluate the performance of

the implementations under both situations.

We now describe few different implementation

choices we had, and present empirical results which

helped us make the optimal choice.

We could place the W matrix in either constant

memory or in shared memory. Placing it in constant
memory would free up more space for other data. On

the other hand, if different threads of a warp access

different data, then the accesses would not make

effective use of constant cache. We could read the

input data into shared memory and operate on it there,

or we could keep the input data in DRAM and read

them into registers. Use of shared memory, of course,

enables efficient reuse of data. On the other hand, it

reduces the number of blocks that can run on the same

SM because the size of the shared memory per SM is

limited, and if the amount of shared memory used per
block is large, then we will not be able to run multiple

blocks on each SM. Running multiple blocks on each

SM can hide the DRAM access latency better.

In table 3 and figure 1, each thread computes one

element of the DFT. The first two columns of table 3

show that reading data in shared memory is much

preferable, and the last two columns show that keeping

W in shared memory is slightly preferable. Based on
this figure, we decided to keep W in shared memory

and read the input data into shared memory.

Number
of DFTs

Input in
DRAM

Input read in shared memory

W in constant memory

Time: s/DFT

W in shared
memory

Time: s/DFT

1 26.1 19.8 16.5

16 3.61 1.31 1.05

256 3.32 0.833 0.743

Table 3: 2-D DFT performance comparison with data in

different memory locations for a 1212 2-D DFT with
matrix multiplication.

Using the CUDA visual profiler, we determined that

the reason for better performance with W in shared

memory is that there are 24% fewer warp

serializations with W in shared memory than with W in

constant memory. Note that only 12 threads out of a

warp of 32 threads access the same constant memory

location when we use constant memory. Use of shared

memory for the input data is preferable because the

limit on the number of threads per SM does not permit

enough blocks to run concurrently so as to hide the

DRAM access latency well when the data is read

directly from DRAM1.

Figure 1: 2-D DFT performance comparison with data in

different memory locations for a 1212 2-D DFT with
matrix multiplication.

Figure 2: Performance comparison when each thread
computes one element vs when each thread computes more
than one element for a 2-D DFT using matrix multiplication.

We next determine whether it is preferable to have a

thread compute multiple elements or only one

element. If a thread computed multiple elements, then

some of the initial overheads may be amortized over

more useful operations. Furthermore, it may permit

more blocks to run concurrently, by reducing the

number of threads per block. Figure 2 in the previous

1
 This issue is handled in [1] by having each thread compute

for a large number of elements. This causes performance to
be improved when a large number of DFTs are being
computed. But then, one needs a very large number of
independent DFTs to get good performance.

page shows that it is preferable to have each thread

compute one element. However, when data size is

larger, this will exceed the number of permissible

threads per block, and so we need to use a thread to

compute multiple elements. Figure 2 shows that with

larger data, it is preferable to have each thread
compute two elements, rather than four. Note that this

result relates to the computation for a single DFT. If

we had a large number of DFTs, then the extra

parallelism from multiple blocks can compensate for

poorer performance from multiple threads computing

for a single element. However, the applications that

we have looked at do not appear to have a need for a

very large number of independent DFTs

simultaneously.

For 3-D DFTs of size NNN, N 2-D DFTs are
computed followed by N2 1-D DFTs. Table 4 shows

that for a 3-D DFT using matrix multiplication, and

for large data sizes (N=24), it is preferable to use more

shared memory and compute 2 planes of 2-D DFTs

per iteration rather than less shared memory and

compute 1 plane per iteration.

N

Each iteration
computing 2 planes of

2-D DFTs thereby
requiring N/2 iterations

Time: ms

Each iteration
computing 1 plane of 2-

D DFTs thereby
requiring N iterations

Time: ms

12 0.387 0.310

16 0.789 0.618

20 1.66 1.43

24 2.58 3.02

Table 4: Performance comparison of a 3-D DFT of size

NNN using matrix multiplication with different numbers
of 2-D DFTs being computed simultaneously per iteration.

Yet another parameter that we needed to fix was the

maximum register count. In 3-D DFTs, by default, the

number of registers used did not permit all the threads

needed per block to run for the larger end of the data

sizes that we use. We, therefore, set nvcc compiler

option flag -maxrregcount to 24, in order to limit the

register usage.

VI. EXPERIMENTAL RESULTS

In this section, we show performance results on 2-D

and 3-D complex DFTs, comparing our matrix

multiplication and mixed radix implementations

against cuFFT on the GPU and FFTW on the CPU.

We were not able to get the source code for [1], and so
could not compare against it. In any case, the code for

[1] requires data in a different layout, and the data

conversion overhead would make the use of the GPU

ineffective when the rest of the application on the host

uses an array of complexes. We also show the

performance improvement on a Quantum Monte Carlo

application for electronic structure calculations.

Except where we mention otherwise, the results are for
the case where the input data is already on the GPU.

A. Results for 2-D DFT

We first compare the performance of the four

algorithms for a single DFT in table 5 and figure 3.
Our algorithms use a single block. cuFFT also appears

to use one block, because synchronization overheads

are unlikely to yield good performance with multiple

blocks for this data size. We also implemented an

optimized iterative power of two Cooley-Tukey

algorithm in order to compare it against cuFFT.

Figure 3: Performance comparison of a single 2-D FFT. The
marks for Cooley Tukey are almost hidden by cuFFT.

N

Mixed
Radix

Time:µs

Matrix
Multiplication

Time:µs

Cooley
Tukey

Time:µs
CUFFT
Time:µs

FFTW
Time:µs

2 8.68 5.92 11.3 18.7 2.14

4 9.86 7.81 16.1 18.3 2.87

6 10.5 8.57 21.2 3.14

8 12.3 9.82 20.8 22.7 3.41

12 15.4 16.4 47.1 4.78

16 23.8 35.4 37.3 37.9 6.81

18 35.8 52.9 48.3 11.2

24 54.7 110 46.1 17.1

Table 5: Performance comparison of a single 2-D FFT of

size NN.

It is not surprising that FFTW is faster in this case;

with one block, only 1/16th of the GPU is used. We

also see that matrix multiplication is better than mixed

radix only for data sizes at most 88 (of course, the
latter uses smaller matrix multiplications as its

component), and is better than cuFFT for size up to

1616. We also see that mixed radix is faster than
cuFFT, except for size 24, where they are roughly the

same. We can also see that cuFFT and Cooley-Tukey

have roughly the same performance for these data

sizes (in fact, the marks for the latter are almost hidden

by the former) suggesting that cuFFT uses one block.

 N

Mixed
Radix
Time:
µs/DFT

Matrix

Multipl
ication
Time:
µs/DFT

Cooley
Tukey
Time:
µs/DFT

CUFFT
Time:
µs/DFT

FFTW
Time:
µs/DFT

4 0.043 0.038 0.115 18.3 2.87

8 0.214 0.206 0.353 23.5 3.41

12 0.550 0.716 45.8 4.78

16 1.14 1.95 1.96 35.4 6.81

20 1.96 3.09 47.6 11.2

24 3.19 6.71 46.4 17.1

Table 6: Performance comparison of 512 2-D FFTs of size

NN.

Figure 4: Performance comparison of 512 2-D FFTs of size

NN. The marks for Cooley-Tukey are almost hidden by
those for DFT using matrix multiplication for N=4, 8 and 16.

When we use several blocks, table 6 and figure 4

shows that mixed radix is much faster than either

cuFFT or FFTW. Matrix multiplication too is faster

than either, but by a smaller factor for larger sizes and
by a bigger factor for smaller sizes. Mixed radix is

also substantially faster than Cooley-Tukey, but by a

smaller factor. This suggests that if cuFFT were

modified so that it could work on multiple DFTs

simultaneously, its performance would improve

substantially, and be better than FFTW for N<=16.

When we analyze 3-D DFTs, we explain the reason

for mixed-radix performing better than cuFFT. The

reason is similar for 2-D DFTs.

B. Results for 3-D DFT

We first compare the performance of the four

algorithms for 512 DFTs in figure 5. Mixed radix and

matrix multiplication are much better than cuFFT and

FFTW. As with 2-D FFT, Cooley-Tukey performed

much better than cuFFT but worse than mixed-radix

(results are presented in table 7). When a single DFT

is computed, FFTW is better, as in 2-D DFTs, but

when a large number of DFTs are computed, our GPU

implementations are better. Figure 6 shows that the

cross over point is at 5 DFTs (which still uses less than
a third of the 16SMs available on the GPU) when 3-D

DFT using matrix multiplication starts performing

better than cuFFT. With mixed radix, it has been

determined that the cross-over point is 5 DFTs when it

starts performing better than FFTW and 4 DFTs when

it starts performing better than cuFFT. With a large

number of DFTs, mixed radix performs the best

amongst all the algorithms considered, when data is

greater than 888. Matrix multiplication performs

best up to 888 data size.

Figure 5: Performance comparison of 512 3-D FFTs of size

NNN. The marks for mixed radix DFT implementation

are almost hidden by those for DFT using matrix
multiplication for N=4, 8 and 12.

 N

Mixed
Radix
Time:
µs/DFT

Matrix
Multipl
ication
Time:
µs/DFT

Cooley
Tukey
Time:
µs/DFT

CUFFT
Time:
µs/DFT

FFTW
Time:
µs/DFT

4 0.621 0.578 1.06 50.1 3.57

8 4.04 3.43 6.01 84.7 12.2

12 12.4 12.7 327 38.3

16 34.8 42.9 58.2 836 92.6

20 71.9 77.5 566 230

24 138 172 678 513

Table 7: Performance comparison of 512 3-D FFTs of size

NNN.

We next explain the reason for mixed radix

performing better than cuFFT. Based on the

performance of Cooley-Tukey, one reason is likely

due to the number of blocks used, which is primarily

an implementation issue, rather an algorithmic issue.

However, this does not account for the entire

difference. As mentioned earlier, matrix multiplication

has better memory access and computation patterns

which permits coalesced memory accesses and avoids

divergent branches. Our mixed radix implementation

uses matrix multiplication as its underlying

implementation. However, the sizes of those matrices
are small. Consequently, it does have un-coalesced

memory accesses. However, CUDA visual profiler

data suggests2 that these are about 30% fewer than

with cuFFT. Mixed radix also has many branches but

few divergent branches. In contrast, cuFFT has 200

times as many divergent branches. The number of

warp serializations is roughly the same, with mixed

radix having about 10% fewer.

Figure 6: Performance 3-D DFTs of size 242424 as a
function of the number of DFTs computed.

The results above assume that the input data already

resides in GPU DRAM. We now consider the situation

where the data is on the host, and the GPU is used to

accelerate the DFT computation alone. We need to

take the data transfer cost into account. There are two

alternatives that we can consider here. In the

synchronous case, the entire data is transferred to the

GPU, the DFTs are computed, and then the results are

transferred back to the host. In the asynchronous case,

streams are used as a data transfer latency hiding

strategy. In each stream, the sequence of operations

i.e. copying data from the host, kernel execution on
this data and copying the data back to the host takes

place successively. But different streams are

interleaved. In this way, the data transfer and

computation are pipelined, with asynchronous

2
 CUDA visual profiler uses data from only one SM. We

tried to set up a computation where the results for both
algorithms could be directly compared, but it is possible to
have some errors due to the lack of control we have over
profiling.

memory copy permitting the overlap of computation

and communication.

Table 8 shows the results with synchronous data

transfer for the GPU implementations. We have not

used the matrix multiplication algorithm because we

have already established that the mixed radix

algorithm performs better than it for the data size

shown below. The mixed radix algorithm still

performs better than the cuFFT and FFTW, though the

data transfer overhead decreases the extent of

advantage it has over FFTW. On the other hand,

cuFFT is not competitive with FFTW.

of
DFTs Mixed Radix CUFFT FFTW

Kernel
Time:
ms/DFT

Data
transfer
Time:
ms/DFT

Kernel
+ Data
transfer
Time:
ms/DFT

Kernel
Time:
ms/DFT

Data
transfer
Time:
ms/DFT

Kernel
+ Data
transfer
Time:
ms/DFT

Time:
ms/DFT

16 0.147 0.273 0.420 0.691 0.260 0.951 0.514

32 0.145 0.258 0.403 0.674 0.268 0.942 0.512

64 0.143 0.249 0.392 0.684 0.245 0.929 0.515

128 0.141 0.245 0.386 0.682 0.257 0.939 0.513

256 0.139 0.244 0.384 0.685 0.242 0.927 0.510

512 0.138 0.245 0.383 0.678 0.259 0.937 0.513

Table 8: 3-D DFT performance with synchronous data

transfer for the GPU algorithms on 242424 input.

of
DFTs Mixed Radix FFTW

Kernel
Time:
ms/DFT

Data transfer
Time:
ms/DFT

Kernel + Data
transfer Time:
ms/DFT

Time:
ms/DFT

16 0.147 0.188 0.336 0.514

32 0.145 0.072 0.217 0.512

64 0.143 0.043 0.186 0.515

128 0.141 0.037 0.178 0.513

256 0.140 0.031 0.171 0.510

512 0.138 0.023 0.161 0.513

Table 9: 3-D DFT performance with asynchronous data

transfer for mixed radix on 242424 input.

Table 9 and figure 7 show similar results with

asynchronous data transfer for mixed radix. Since we

do not have access to the cuFFT source code, we could

not implement asynchronous data transfer there. We

can see that there is a substantial improvement in the

performance of mixed radix. Also it is to be noted that
the data transfer cost is not totally hidden by the

computation. If we compare the results with table 8,

we would expect the data transfer time to be fully

hidden, because the data transfer time in each

direction, which is half the transfer time shown in

table 9, is less than the compute time. However there

is an additional overhead which is not hidden. Note

that there is also a difference in the memory allocated

on the host for asynchronous transfer, which is pinned

in memory, so that it will not get swapped.

Figure 7: 3-D DFT performance comparison with

asynchronous data transfer for input of size 242424.

C. Performance improvement analysis for Quantum
Monte Carlo Code

We now consider an Auxiliary Field Quantum Monte

Carlo (AFMC) application for electronic structure

calculations [12]. In contrast to other Quantum Monte

Carlo codes that have been ported to GPUs [9,10,11],

this class of calculations has DFT computations as a

bottleneck. Profiling results on sample data showed
that DFT calculations (including inverse DFT, which

too we have implemented) account for about 60% of

the time taken. The number of DFTs required and their

sizes depend on the physical system simulated and the

accuracy desired. In the application we used, the DFTs

are 242424. A few different functions call DFTs.
The number of independent DFTs in each varies from

1 to 54. The functions that make most calls to DFTs

also have the maximum number of independent calls,

which is favorable to using our implementation. We

accelerate only the DFT calls, letting the rest of the

application run on the host.

We would expect the DFT time to decrease by a factor

of 2.36 (approximately), based on the results of table

9, and so the performance of DFT computation time to

be improved by about 57.6%. However, the speedup is

less for the following reason. The code is in double

precision. It will take considerable time for us to

change the entire code to single precision and verify

its accuracy. So, we converted the data needed for the

FFT alone to single precision, and converted the

output of the DFT back to double precision3. The

conversion process has a significant overhead, which

reduces the speedup.

Sl.#

Number of
simultaneous
FFT calls

of
FFTW
calls

FFTW
Time:
s

Mixed

Radix
FFT
Time: s

Performance
improvement
x times

1 27 298836 295 187 1.58

2 1, 27 15130 18 16.4 1.1

3 1, 27 10368 9.46 8.56 1.1

4 54 3456 3.40 2.14 1.59

5 54 1782 1.72 1.02 1.69

6 53 1462 1.61 0.821 1.97

7 1 64 0.029 0.03 0.993

8 1 2 0.004 0.036 0.111

Table 10: Performance comparison of single precision
FFTW vs mixed radix for a QMC application. Column 2
shows the number of FFT calls made in bulk by each
subroutine. Column 3 shows the total number of FFTW calls
for each subroutine during 32 iterations of the QMC code.

For 32 iterations of the QMC code (total run-time of

548 seconds), it was observed that there were eight

subroutines that were making calls to FFTW. Each

subroutine calls FFTW different numbers of times,

and the number of independent calls in each

subroutine too differs. These factors cause different

speedups in different subroutines, as shown in table

10. With the mixed radix implementation, and for the

same number of iterations, the run time of the code

was reduced to 426 seconds thereby making the code
run about 1.3 times faster4. Use of a GPU with good

double precision support will improve performance of

the DFT further, by eliminating the single to double

precision conversion cost. For further performance

improvements, more application kernels need to be

3
 With better double precision support that is now available

on the Fermi GPU, it does not appear fruitful to change the
entire code to single precision in any case. We also verified
that the answers agreed with the double precision answers to
six significant digits. Single precision has been used for
portions of codes in other QMC applications too, without
significant loss in accuracy [10].

4 One might wonder if using the multiple cores with FFTW

would make FFTW better. But then, one can also use
multiple GPUs on the same processor. In fact, we have a

quad core processor with four devices. The performance of
our algorithms on it was even more favorable there, because
it has PCIe 2, rather than version 1 on the system for which
we have reported the results. However, the machine crashed
before we could obtain all results, and so we do not present
results here.

moved to the GPU. However, the latter is not relevant

to the issue addressed by this paper.

VII. CONCLUSION AND FUTURE WORK

We have shown that the asymptotically slower matrix

multiplication algorithm can be beneficial with small

data sizes. When combined with the mixed-radix

algorithm, we obtain an implementation that is very

effective for multiple small DFTs. For example, tables

6 and 7 show that our implementation is two orders of

magnitude faster than cuFFT for 2-D and 3-D DFTs of
sizes 4x4 and 4x4x4 respectively, when 512

simultaneous DFTs are performed with data on the

device. It is faster than FFTW by a factor of around 75

for 4x4 2-D DFTs and by a factor of around 6 for

4x4x4 3-D DFTs in similar experiments. The mixed

radix algorithm, which uses matrix multiplication as

its underlying implementation, outperforms cuFFT

and FFTW for the sizes considered here.

In future work, we wish to evaluate its effectiveness

on more applications. We also wish to use it for small
sub-problems of popular FFT implementations on the

GPU and evaluate its effectiveness. (In fact, its use

with the mixed radix algorithm is one such test.)

Another direction is to extend the range of matrices for

which these algorithms can be tried. We can also

decrease the number of DFTs required to make

effective use of the GPU by using more blocks for a

single DFT. This will incur larger overhead due to

kernel level synchronization. However, the time for a

single DFT computation on a 242424 input is
around 2 ms, while the synchronization overhead is of

the order of 0.01 ms. Thus, the overhead may be

acceptable for 3-D FFT, and will be even lower,
relatively, if we compute two or four independent

DFTs concurrently.

Acknowledgment: This work was partially supported

by an ORAU/ORNL grant under the HPC program.

REFERENCES

[1] N.K. Govindaraju, B. Lloyd, Y. Dotsenko, B.

Smith and J. Manferdelli, High Performance

Discrete Fourier Transforms on Graphics

Processors, SC '08: Proceedings of the 2008

ACM/IEEE Conference on Supercomputing,
(2008).

[2] NVIDIA CUDA: Compute Unified Device

Architecture, NVIDIA Corp.,(2007),

http://developer.download.nvidia.com/compute/cu

da/1_1/NVIDIA_CUDA_Programming_Guide_1.

1.pdf

[3] H.V. Sorensen and C.S. Burrus, Fast Fourier

Transform Database, PWS Publishing, (1995).

[4] C.V. Loan, Computational Frameworks for the

Fast Fourier Transform, Society for Industrial

Mathematics, (1992).

[5] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka,

Bandwidth Intensive 3-D FFT Kernel for GPUs

using CUDA, SC '08: Proceedings of the 2008

ACM/IEEE Conference on Supercomputing,

(2008), 1-11.

[6] M. Frigo and S. G. Johnson, The Design and

Implementation of FFTW3, Proceedings of the

IEEE 93(2005) 216-231.

[7] CUDA CUFFT Library, NVIDIA Corp., (2009)
http://developer.nvidia.com/object/cuda_2_3_dow

nloads.html

[8] E. Benhamou, Fast Fourier Transform for

Discrete Asian Options, Society for

Computational Economics, (2001).

[9] A.G. Anderson, W.A. Goddard III, and P.

Schroder, Quantum Monte Carlo on Graphical

Processing Units, Computer Physics

Communications, 177 (2007) 298-306.

[10] J.S. Meredith, G. Alvarez, T.A. Maier, T.C.

Schulthess, and J.S. Vetter, Accuracy and
Performance of Graphics Processors: A Quantum

Monte Carlo Application Case Study, Parallel

Computing, 35 (2009) 151-163.

[11] K.P. Esler, J. Kim, and D.M. Ceperley, Quantum

Monte Carlo Simulation of Materials using

GPUs, Proceedings of SC09, poster, 2009.

[12] K.P. Esler, J. Kim, D.M. Ceperley, W. Purwanto,

E.J. Walter, H. Krakauer, S. Zhang, P.R.C. Kent,

R.G. Hennig, C. Umrigar, M. Bajdich, J.

Kolorenc, L. Mitas, and A. Srinivasan, Quantum

Monte Carlo Algorithms for Electronic Structure

at the Petascale: the Endstation Project,

Proceedings of SciDAC 2008, Journal of Physics:

Conference Series 125 (2008) 012057.

[13] J.W. Cooley and J.W. Tukey, An Algorithm for

the Machine Calculation of Complex Fourier

Series, Mathematic of Computation, 19 (1965)

297-301.

[14] M.C. Pease, An Adaptation of the Fast Fourier
Transform for Parallel Processing, J. ACM, 15

(1968) 252-264.

