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Abstract – Efficient implementations of the Discrete 

Fourier Transform (DFT) for GPUs provide good 

performance with large data sizes, but are not 

competitive with CPU code for small data sizes. On 

the other hand, several applications perform 

multiple DFTs on small data sizes. In fact, even 

algorithms for large data sizes use a divide-and-

conquer approach, where eventually small DFTs 

need to be performed. We discuss our DFT 

implementation, which is efficient for multiple 

small DFTs. One feature of our implementation is 

the use of the asymptotically slow matrix 

multiplication approach for small data sizes, which 

improves performance on the GPU due to its 

regular memory access and computational 

patterns. We combine this algorithm with the 

mixed radix algorithm for 1-D, 2-D, and 3-D 

complex DFTs. We also demonstrate the effect of 

different optimization techniques. When GPUs are 

used to accelerate a component of an application 

running on the host, it is important that decisions 

taken to optimize the GPU performance not affect 

the performance of the rest of the application on 

the host. One feature of our implementation is that 

we use a data layout that is not optimal for the 

GPU so that the overall effect on the application is 

better. Our implementation performs up to two 

orders of magnitude faster than cuFFT on an 

NVIDIA GeForce 9800 GTX GPU and up to one to 

two orders of magnitude faster than FFTW on a 

CPU for multiple small DFTs. Furthermore, we 

show that our implementation can accelerate the 

performance of a Quantum Monte Carlo 

application for which cuFFT is not effective. The 

primary contributions of this work lie in 

demonstrating the utility of the matrix 

multiplication approach and also in providing an 

implementation that is efficient for small DFTs 

when a GPU is used to accelerate an application 

running on the host. 

I. INTRODUCTION 

The Discrete Fourier Transform (DFT) is an important 

numerical kernel, used in a wide variety of scientific 

and engineering applications. A 1-dimensional DFT is 
defined as follows. The input to the transform is a 

vector x of N complex numbers. The output is a vector 

y of N complex numbers which is defined by: 

y = W x,                (1)   

where W is an NN complex matrix with (j,k)th 

element e-i2kj/N, j, k  {0, 1, , N-1}, where i is the 

imaginary unit and ei2/N is a primitive N th root of 1. 
We consider out-of-place algorithms (x and y are 

distinct). DFTs are defined in higher dimensions too. 

If x is a 2-D array, then y is also a 2-D array. It can be 

obtained by first applying 1-D DFTs on each column 

and then 1-D DFTs on each row of the result of the 

previous step. Each step of the 2-D DFT can be 

expressed as the product of two matrices as shown 

later in equation (2). A 3-D DFT extends the 2-D DFT 

by applying a set of 1-D DFTs along each of three 

directions. Note that the amount of data movement for 

a transform in a higher dimension is significantly more 
than that in a lower dimension. Therefore, one needs 

to optimize for data movement too, rather than directly 

applying the lower dimensional algorithm multiple 

times.  

The definition of the inverse transform is similar to 

that above, except that it involves division by N.  

Direct computation of the DFT from the definition in 

equation (1) takes O(N2) time. Fast Fourier Transform 

(FFT) algorithms reduce this to O(N log N) by 

exploiting certain redundancies in the computation. 

This efficiency improvement for the 1-D transform 

carries over to higher dimensional transforms too. 

Furthermore, the FFT algorithms may also be more 

accurate than the direct computation. 

FFT algorithms are usually expressed recursively, 

using a divide and conquer approach, where the 

problem size is successively reduced. The actual 

implementations, on the other hand, may be iterative.  

Due to its better asymptotic time complexity, the DFT 
is computed, in practice, using FFT algorithms. In 

view of its importance, optimized FFT 

implementations are available on all platforms used 

for High Performance Computing. GPUs are 

becoming increasingly popular in High Performance 

Computing, and NVIDIA provides cuFFT [7] for its 



platform. Other works too report implementations 

optimized to take advantage of the architectural 

features of GPUs. We summarize such related work on 

FFTs in section II, and describe relevant GPU features 

in section III. 

The above implementations provide tremendous 

speedup over CPU for large data. However, for small 

data, they are not competitive with CPUs. On the other 

hand, many important applications require the use of 

small DFTs, such as in certain applications in quantum 

mechanics [12], finance [8], etc. In fact, the first 

application served as the motivation for this work. 

Even the FFT algorithms break up the problem, at a 

certain stage, into small enough pieces that an efficient 
algorithm for small DFTs will lead to better 

performance. 

The basic idea behind our approach, explained further 

in section IV, is the use of matrix multiplication for 

small DFTs. Even though the asymptotic 

computational cost is higher than that of FFTs, it has 

the advantages of regular memory access and 
computational patterns. When the data size is not 

small enough to make it effective, it can be combined 

with an FFT algorithm in order to improve 

performance. In particular, we combine it with the 

mixed-radix algorithm. We explain details of the 

optimizations performed with our implementation in 

section V, and compare it against cuFFT on a GPU 

and FFTW [6] on a CPU, in section VI. We show that 

we can get up to two orders of magnitude 

improvement in performance over cuFFT and up to 

one to two orders of magnitude improvement over 

FFTW for multiple small DFTs in higher dimensions. 
We also show that our implementation can improve 

the performance of a Quantum Monte Carlo 

application, which cuFFT could not improve. 

The results of our work will enable applications 

needing several small DFTs to make effective use of 

GPUs. Developers of FFT implementations can also 

use our implementation in the sub-problems of their 

computations, in order to improve their performance 
further. It will also be worth studying if this approach 

can be used on other architectures too. 

II. RELATED WORK 

A large body of research exists on FFT algorithms and 

their implementations on various architectures. The 

modern use of FFTs dates to the Cooley-Tukey 

algorithm [13].  It is based on the observation that the 

matrix W of equation (1) contains only N distinct 

entries for an FFT of size N. They used a divide and 

conquer approach to reduce the time complexity to 

O(N log N). Several variants of this approach were 

then introduced by others. Pease [14] introduced a 

tensor-product based algorithm. This approach is more 

effective for vectorization. Sorensen and Burrus have 

compiled a database of efficient FFT algorithms [3]. 

Van Loan [4] provides a matrix-based interpretation of 

different FFT variants.  

For the GPU, Nakuda et al. have reported that through 

effective usage of on-chip shared memory, optimized 

usage of threads and registers and avoidance of low 

speed stride memory access, their 3D FFT kernel 

could achieve speeds up to 84 GFlops/card for power 

of 2 FFTs and up to sizes 2563 [5].  

Govindaraju et al. [1] have implemented 1-D and 2-D 

complex power-of-two and non-power-of-two FFTs. 

They obtain improvement by factors of 2-4 over 

cuFFT for large data sizes.  They have also considered 

small data sizes. For a single DFT, the GPU 

implementation is much slower than a CPU 

implementation. However, with a large number of 

independent DFTs (they have considered 223/N 

independent DFTs of size N each in 1-D), they obtain 
substantial performance improvement. 

Apart from the use of matrix-multiplication, one 

important difference between our approach and that of 

[1] is that many of our algorithmic choices are dictated 

by the constraints imposed by applications of interest 

to us. For example, [1] assumes that data resides on 

the GPU DRAM. We, on the other hand, have 

considered both cases, data residing on the host and 
data residing on the GPU DRAM. We need to 

consider the former, because it will enable an FFT-

intensive application to accelerate the computation by 

just replacing their FFT calls with that from our 

implementation. On the other hand, if the application 

developer has ported much of their computation to the 

GPU, then one can assume that the data is present on 

the GPU DRAM, and then use the corresponding GPU 

implementation, which saves on the data transfer 

overhead.  

We have also considered 3-D DFTs, because 

applications of interest to us require these. We have 

also optimized our implementations so that they 

outperform CPU implementations with even a small 

number of DFTs, because applications that we have 

analyzed generate approximately 1-100 independent 

DFTs typically. In contrast, the results of [1] assume 

100,000 – 1,000,000 independent DFTs for small data 

sizes.  

We have also used constraints imposed by the 

application to avoid certain optimizations. For 

example, CPU applications often use an array of 

complexes, which makes better use of cache. This can 



cause inefficient use of shared memory banks on the 

GPU. GPU implementations, such as [1], use two 

distinct arrays to avoid this problem. However, this 

will require the application to change its data structure 

on the CPU, requiring substantial programming effort 

by the application developer, and also accepting the 
loss in performance of the CPU portion of the code. 

Alternatively, the DFT routine can convert the data 

layouts, compute, and reconvert it, which incurs 

additional overhead. Tests on small DFTs in the range 

4-24, 42-242, and 43-243 in the 1-D, 2-D, and 3-D cases 

respectively show that the conversion time is typically 

larger than the DFT time when several simultaneous 

DFTs are computed, as we show in tables 1 and 2 

below for the 1-D and 2-D cases. We have, therefore, 

used an array of complexes, even though we could 

have obtained better performance on the GPU by 

changing the data structure. If an entire application has 
been ported to the GPU, then it will be preferable to 

use two arrays of real to store the complex numbers on 

the GPU. For example, [11] has performed a rewrite of 

essentially an entire Quantum Monte Carlo 

application, involving over a hundred kernels, to the 

GPU. But FFT does not account for a large fraction of 

time there, unlike with the type of Quantum Monte 

Carlo application that we consider here. 

N 

DFT computation time on 

device 
Time: µs/DFT 

Conversion time on host 
Time: µs/DFT 

4 0.021 0.069 

8 0.029 0.126 

12 0.036 0.185 

16 0.042 0.238 

20 0.07 0.285 

24 0.076 0.335 

Table 1: DFT computation time per DFT vs data layout 
conversion time for 8192 1-D DFTs of size N. 

N 

DFT computation time 

on device 
Time: µs/DFT 

Conversion time on host 
Time: µs/DFT 

4 0.043 0.252 

8 0.214 0.710 

12 0.55 1.51 

16 1.14 2.620 

20 1.96 4.05 

24 3.19 5.81 

Table 2: DFT computation time per DFT vs data layout 
conversion time for 8192 2-D DFTs of size NxN. 

 

III. GPU ARCHITECTURE 

We have implemented our code using the CUDA 
programming framework and run it on two different 

NVIDIA GPUs. The results presented are those on a 

GeForce 9800 GTX. We summarize its architectural 

features below [2]. Other GPUs have similar features. 

The above GPU contains 16 Streaming 

Multiprocessors (SM) that perform computation and 

500 MB of DRAM memory to store global data, 

accessible by all the SMs and the host CPU. Each SM 
contains 8K 32-bit registers and 16KB shared 

memory. Each SM also contains a cache to store 

constant data (and also for texture data, which we 

don't use). Each SM can run up to 768 threads 

simultaneously. 

In the CUDA framework, a GPU can be used to 

accelerate a process running on the host in the 

following manner. The process running on the host 
copies relevant data to the GPU and then calls a 

CUDA kernel. Once the kernel completes, its output 

data may be copied back to the host memory. The 

kernel call causes the creation of a number of threads, 

which are partitioned into blocks. Threads of the same 

block run on one SM and multiple blocks may be 

mapped to the same SM if sufficient resources are 

available. Threads within a block can synchronize 

efficiently and have access to the same shared 

memory. Threads on different blocks cannot 

synchronize safely, in a general situation. If such 
synchronization is needed, then it has to be 

accomplished by multiple kernel calls occurring in 

sequence, which will incur over ten micro-seconds of 

overhead. In contrast, synchronization within a block 

is supported by hardware.  

The threads within a block are partitioned into groups 

of 32, called warps. The scheduler schedules threads 

for execution at the granularity of warps [1]. In any 
instance, all threads in a warp need to execute the 

same instruction, except that some threads may not 

execute anything. Consequently, there is a 

performance penalty if threads within a warp diverge 

on a branch. 

Access to DRAM incurs a latency of hundreds of 

clock cycles. This latency can be hidden through 
simultaneous multi-threading (single instruction 

multiple threads, in particular); when one warp is 

stalled on data, another warp can be scheduled for 

execution. There is no context switch penalty. DRAM 

latency can also be reduced by using shared memory 

for data that is used multiple times. Access to shared 

memory has latency of one clock cycle. 



The exact details of the memory access patterns also 

influence performance. For example, accesses by 

threads with adjacent indices to adjacent DRAM 

locations can be coalesced, improving memory access 

performance. Cache for constant data has one-cycle 

latency, but all threads in a warp need to access the 
same data for this to be effective. In shared memory 

access, we need to be aware that access by multiple 

threads in the same half warp to the same memory 

bank is serialized, unless all threads access the same 

location. 

Yet another limitation to data flow is between the host 

and GPU, which are connected through PCIe x16. The 

bandwidth here is 4 GB/s in each direction or 8 GB/s 
each if PCIe 2 is used. If this bandwidth limits 

performance, then more of the computation needs to 

be performed on the GPU, so that data is produced and 

consumed on the GPU. 

There are some additional issues one needs to be 

aware of. The memory is not ECC, and so there is 

some possibility of memory corruption. The arithmetic 
is also not IEEE-754-2008 compliant. These 

limitations are eliminated in the latest Fermi 

architecture from NVIDIA. 

IV. DFT FOR SMALL DATA SIZE 

In this section we provide further details on the DFT 

algorithm using matrix multiplication and the 

algorithm that combines it with the Mixed Radix 

algorithm.  

A. DFT using Matrix Multiplication 

1-D DFTs use matrix-vector multiplication as shown 

in equation (1). This can be computed in O(N2) time. 

2-D DFT of input array X can be computed as follows. 

Y = W X W
T,                (2)   

where WT is the transpose of W.  

The 3-D DFT is computed by first computing 2-D 

DFTs for N 2-D planes in the x-y direction of the input 

array, and then applying N2 1-D DFTs in the direction 

orthogonal to these planes. Before this step, we 

transpose the x-y and y-z planes of the result of the 

first step, so that the 1-D DFTs can be performed on 

adjacent data using matrix-vector multiplication. 

Finally, the above transpose operation is repeated to 
get results to the right locations. We perform DFTs for 

a plane at a time in the 3-D DFT code; that is, the 

same set of threads of a single block computes 

corresponding elements of each plane, one plane at a 

time. 

B. DFT based on Mixed Radix Algorithm 

The mixed radix method is a well known method for 
computing DFTs when the size is a composite number. 

We will summarize the computation structure for a 1-

D transform without going into the mathematical 

aspects. Let N = NxNy. The 1-D data is considered as 

a 2-D array of size NxNy. 1-D DFT is applied to each 
column. Then, each element is multiplied by a certain 

twiddle factor, and then 1-D DFT is applied to each 

row. Basically, it is like a 2-D DFT, except that the 

elements are multiplied by certain factors between the 

two steps. If we use matrix multiplication to 

implement the transforms in each step of this 

algorithm, then the total number of complex 

multiplications is fewer than that with matrix 

multiplication used with 1-D transforms. In our results 

presented here, we choose Nx to be either 2 (for 
N=4,6), or 3 (for N=18) or 4. When multiple 

factorings were possible, we empirically evaluated the 

performance of each and chose the best one. 

The 2-D transform is performed by considering the 

input as a 3-D array of dimension NxNyNz, and then 
performing a computation analogous to that above; we 

perform two sets of 1-D transforms, where each set of 

1-D transforms is as above, involving two matrix 

multiplications, multiplication by twiddle factors, and 
transpose. The 3-D transform applies 2-D transforms 

and 1-D transforms as mentioned earlier, except that 

each of these is replaced by their mixed radix 

implementations. 

V. DFT IMPLEMENTATION 

We have implemented our DFT library on the GPU 

using the CUDA programming framework for 

complex single precision DFTs. The results are 

reported for a GeForce 9800 GTX GPU. The host was 

a 2.6 GHz AMD Dual Core 885 Opteron Processor 

running Linux kernel version 2.6.18. The host code 

has been compiled with gcc version 4.1.2 and the 

kernel code has been compiled with NVCC version 

2.0. The timer used is gettimeofday with a resolution 

of 1 micro second.  

Our goal is to compute several small DFTs. Each DFT 

is computed by a separate block of threads, because 

synchronization is required between threads 

computing a single DFT. Several blocks are run when 

we need to compute several DFTs. 

Applications may require computation of DFTs under 

two different situations. If the input data is produced 

on the host and the GPU is used to accelerate only the 

DFT, then the data has to be transferred to the GPU, 



the DFT computed there, and the data transferred 

back. If the input data is produced on the GPU, then it 

is sufficient to compute the DFT on the data present 

on the GPU DRAM. We evaluate the performance of 

the implementations under both situations. 

We now describe few different implementation 

choices we had, and present empirical results which 

helped us make the optimal choice.  

We could place the W matrix in either constant 

memory or in shared memory. Placing it in constant 
memory would free up more space for other data. On 

the other hand, if different threads of a warp access 

different data, then the accesses would not make 

effective use of constant cache. We could read the 

input data into shared memory and operate on it there, 

or we could keep the input data in DRAM and read 

them into registers. Use of shared memory, of course, 

enables efficient reuse of data. On the other hand, it 

reduces the number of blocks that can run on the same 

SM because the size of the shared memory per SM is 

limited, and if the amount of shared memory used per 
block is large, then we will not be able to run multiple 

blocks on each SM. Running multiple blocks on each 

SM can hide the DRAM access latency better.  

In table 3 and figure 1, each thread computes one 

element of the DFT. The first two columns of table 3 

show that reading data in shared memory is much 

preferable, and the last two columns show that keeping 

W in shared memory is slightly preferable. Based on 
this figure, we decided to keep W in shared memory 

and read the input data into shared memory. 

Number 
of DFTs 

Input in 
DRAM 

Input read in shared memory 

W in constant memory 

Time: s/DFT 

W in shared 
memory 

Time: s/DFT 

1 26.1 19.8 16.5 

16 3.61 1.31 1.05 

256 3.32 0.833 0.743 

Table 3: 2-D DFT performance comparison with data in 

different memory locations for a 1212 2-D DFT with 
matrix multiplication. 

Using the CUDA visual profiler, we determined that 

the reason for better performance with W in shared 

memory is that there are 24% fewer warp 

serializations with W in shared memory than with W in 

constant memory. Note that only 12 threads out of a 

warp of 32 threads access the same constant memory 

location when we use constant memory. Use of shared 

memory for the input data is preferable because the 

limit on the number of threads per SM does not permit 

enough blocks to run concurrently so as to hide the 

DRAM access latency well when the data is read 

directly from DRAM1. 

 

Figure 1: 2-D DFT performance comparison with data in 

different memory locations for a 1212 2-D DFT with 
matrix multiplication. 

 

Figure 2: Performance comparison when each thread 
computes one element vs when each thread computes more 
than one element for a 2-D DFT using matrix multiplication. 

We next determine whether it is preferable to have a 

thread compute multiple elements or only one 

element. If a thread computed multiple elements, then 

some of the initial overheads may be amortized over 

more useful operations. Furthermore, it may permit 

more blocks to run concurrently, by reducing the 

number of threads per block. Figure 2 in the previous 

                                                             
1
 This issue is handled in [1] by having each thread compute 

for a large number of elements. This causes performance to 
be improved when a large number of DFTs are being 
computed. But then, one needs a very large number of 
independent DFTs to get good performance. 



page shows that it is preferable to have each thread 

compute one element. However, when data size is 

larger, this will exceed the number of permissible 

threads per block, and so we need to use a thread to 

compute multiple elements. Figure 2 shows that with 

larger data, it is preferable to have each thread 
compute two elements, rather than four. Note that this 

result relates to the computation for a single DFT. If 

we had a large number of DFTs, then the extra 

parallelism from multiple blocks can compensate for 

poorer performance from multiple threads computing 

for a single element. However, the applications that 

we have looked at do not appear to have a need for a 

very large number of independent DFTs 

simultaneously. 

For 3-D DFTs of size NNN, N 2-D DFTs are 
computed followed by N2 1-D DFTs. Table 4 shows 

that for a 3-D DFT using matrix multiplication, and 

for large data sizes (N=24), it is preferable to use more 

shared memory and compute 2 planes of 2-D DFTs 

per iteration rather than less shared memory and 

compute 1 plane per iteration. 

N 

Each iteration 
computing 2 planes of 

2-D DFTs thereby 
requiring N/2 iterations 

Time: ms 

Each iteration 
computing 1 plane of 2-

D DFTs thereby 
requiring N iterations 

Time: ms 

12 0.387 0.310 

16 0.789 0.618 

20 1.66 1.43 

24 2.58 3.02 
 

Table 4: Performance comparison of a 3-D DFT of size 

NNN using matrix multiplication with different numbers 
of 2-D DFTs being computed simultaneously per iteration. 

Yet another parameter that we needed to fix was the 

maximum register count. In 3-D DFTs, by default, the 

number of registers used did not permit all the threads 

needed per block to run for the larger end of the data 

sizes that we use. We, therefore, set nvcc compiler 

option flag -maxrregcount to 24, in order to limit the 

register usage. 

VI. EXPERIMENTAL RESULTS 

In this section, we show performance results on 2-D 

and 3-D complex DFTs, comparing our matrix 

multiplication and mixed radix implementations 

against cuFFT on the GPU and FFTW on the CPU.  

We were not able to get the source code for [1], and so 
could not compare against it. In any case, the code for 

[1] requires data in a different layout, and the data 

conversion overhead would make the use of the GPU 

ineffective when the rest of the application on the host 

uses an array of complexes. We also show the 

performance improvement on a Quantum Monte Carlo 

application for electronic structure calculations. 

Except where we mention otherwise, the results are for 
the case where the input data is already on the GPU. 

A. Results for 2-D DFT 

We first compare the performance of the four 

algorithms for a single DFT in table 5 and figure 3. 
Our algorithms use a single block. cuFFT also appears 

to use one block, because synchronization overheads 

are unlikely to yield good performance with multiple 

blocks for this data size. We also implemented an 

optimized iterative power of two Cooley-Tukey 

algorithm in order to compare it against cuFFT. 

 

 

Figure 3: Performance comparison of a single 2-D FFT. The 
marks for Cooley Tukey are almost hidden by cuFFT. 

N 

Mixed 
Radix 

Time:µs 

Matrix 
Multiplication 

Time:µs 

Cooley  
Tukey 

Time:µs 
CUFFT 
Time:µs 

FFTW 
Time:µs 

2 8.68 5.92 11.3 18.7 2.14 

4 9.86 7.81 16.1 18.3 2.87 

6 10.5 8.57  21.2 3.14 

8 12.3 9.82 20.8 22.7 3.41 

12 15.4 16.4  47.1 4.78 

16 23.8 35.4 37.3 37.9 6.81 

18 35.8 52.9  48.3 11.2 

24 54.7 110  46.1 17.1 

Table 5: Performance comparison of a single 2-D FFT of 

size NN. 

It is not surprising that FFTW is faster in this case; 

with one block, only 1/16th of the GPU is used. We 

also see that matrix multiplication is better than mixed 

radix only for data sizes at most 88 (of course, the 
latter uses smaller matrix multiplications as its 

component), and is better than cuFFT for size up to 

1616. We also see that mixed radix is faster than 
cuFFT, except for size 24, where they are roughly the 



same. We can also see that cuFFT and Cooley-Tukey 

have roughly the same performance for these data 

sizes (in fact, the marks for the latter are almost hidden 

by the former) suggesting that cuFFT uses one block. 

 N 

Mixed 
Radix 
Time: 
µs/DFT 

Matrix 

Multipl
ication 
Time: 
µs/DFT 

Cooley 
Tukey 
Time: 
µs/DFT 

CUFFT 
Time: 
µs/DFT 

FFTW 
Time: 
µs/DFT 

4 0.043 0.038 0.115 18.3 2.87 

8 0.214 0.206 0.353 23.5 3.41 

12 0.550 0.716  45.8 4.78 

16 1.14 1.95 1.96 35.4 6.81 

20 1.96 3.09  47.6 11.2 

24 3.19 6.71  46.4 17.1 

Table 6: Performance comparison of 512 2-D FFTs of size 

NN. 

 

Figure 4: Performance comparison of 512 2-D FFTs of size 

NN. The marks for Cooley-Tukey are almost hidden by 
those for DFT using matrix multiplication for N=4, 8 and 16. 

When we use several blocks, table 6 and figure 4 

shows that mixed radix is much faster than either 

cuFFT or FFTW. Matrix multiplication too is faster 

than either, but by a smaller factor for larger sizes and 
by a bigger factor for smaller sizes. Mixed radix is 

also substantially faster than Cooley-Tukey, but by a 

smaller factor. This suggests that if cuFFT were 

modified so that it could work on multiple DFTs 

simultaneously, its performance would improve 

substantially, and be better than FFTW for N<=16. 

When we analyze 3-D DFTs, we explain the reason 

for mixed-radix performing better than cuFFT. The 

reason is similar for 2-D DFTs. 

B. Results for 3-D DFT 

We first compare the performance of the four 

algorithms for 512 DFTs in figure 5. Mixed radix and 

matrix multiplication are much better than cuFFT and 

FFTW. As with 2-D FFT, Cooley-Tukey performed 

much better than cuFFT but worse than mixed-radix 

(results are presented in table 7). When a single DFT 

is computed, FFTW is better, as in 2-D DFTs, but 

when a large number of DFTs are computed, our GPU 

implementations are better. Figure 6 shows that the 

cross over point is at 5 DFTs (which still uses less than 
a third of the 16SMs available on the GPU) when 3-D 

DFT using matrix multiplication starts performing 

better than cuFFT. With mixed radix, it has been 

determined that the cross-over point is 5 DFTs when it 

starts performing better than FFTW and 4 DFTs when 

it starts performing better than cuFFT. With a large 

number of DFTs, mixed radix performs the best 

amongst all the algorithms considered, when data is 

greater than 888. Matrix multiplication performs 

best up to 888 data size. 

 

Figure 5: Performance comparison of 512 3-D FFTs of size 

NNN. The marks for mixed radix DFT implementation 

are almost hidden by those for DFT using matrix 
multiplication for N=4, 8 and 12. 

 N 

Mixed 
Radix 
Time: 
µs/DFT 

Matrix 
Multipl
ication 
Time: 
µs/DFT 

Cooley 
Tukey 
Time: 
µs/DFT 

CUFFT 
Time: 
µs/DFT 

FFTW 
Time: 
µs/DFT 

4 0.621 0.578 1.06 50.1 3.57 

8 4.04 3.43 6.01 84.7 12.2 

12 12.4 12.7  327 38.3 

16 34.8 42.9 58.2 836 92.6 

20 71.9 77.5  566 230 

24 138 172  678 513 

Table 7: Performance comparison of 512 3-D FFTs of size 

NNN. 

We next explain the reason for mixed radix 

performing better than cuFFT. Based on the 

performance of Cooley-Tukey, one reason is likely 

due to the number of blocks used, which is primarily 

an implementation issue, rather an algorithmic issue. 

However, this does not account for the entire 



difference. As mentioned earlier, matrix multiplication 

has better memory access and computation patterns 

which permits coalesced memory accesses and avoids 

divergent branches. Our mixed radix implementation 

uses matrix multiplication as its underlying 

implementation. However, the sizes of those matrices 
are small. Consequently, it does have un-coalesced 

memory accesses. However, CUDA visual profiler 

data suggests2 that these are about 30% fewer than 

with cuFFT. Mixed radix also has many branches but 

few divergent branches. In contrast, cuFFT has 200 

times as many divergent branches. The number of 

warp serializations is roughly the same, with mixed 

radix having about 10% fewer. 

 

Figure 6: Performance 3-D DFTs of size 242424 as a 
function of the number of DFTs computed.  

The results above assume that the input data already 

resides in GPU DRAM. We now consider the situation 

where the data is on the host, and the GPU is used to 

accelerate the DFT computation alone. We need to 

take the data transfer cost into account. There are two 

alternatives that we can consider here. In the 

synchronous case, the entire data is transferred to the 

GPU, the DFTs are computed, and then the results are 

transferred back to the host. In the asynchronous case, 

streams are used as a data transfer latency hiding 

strategy. In each stream, the sequence of operations 

i.e. copying data from the host, kernel execution on 
this data and copying the data back to the host takes 

place successively. But different streams are 

interleaved. In this way, the data transfer and 

computation are pipelined, with asynchronous 

                                                             
2
 CUDA visual profiler uses data from only one SM. We 

tried to set up a computation where the results for both 
algorithms could be directly compared, but it is possible to 
have some errors due to the lack of control we have over 
profiling.  

memory copy permitting the overlap of computation 

and communication. 

Table 8 shows the results with synchronous data 

transfer for the GPU implementations. We have not 

used the matrix multiplication algorithm because we 

have already established that the mixed radix 

algorithm performs better than it for the data size 

shown below. The mixed radix algorithm still 

performs better than the cuFFT and FFTW, though the 

data transfer overhead decreases the extent of 

advantage it has over FFTW. On the other hand, 

cuFFT is not competitive with FFTW. 

# of 
DFTs Mixed Radix CUFFT FFTW 

  

Kernel 
Time: 
ms/DFT 

Data 
transfer 
Time: 
ms/DFT 

Kernel 
+ Data 
transfer 
Time: 
ms/DFT 

Kernel 
Time: 
ms/DFT 

Data 
transfer 
Time: 
ms/DFT 

Kernel 
+ Data 
transfer 
Time: 
ms/DFT 

Time: 
ms/DFT 

16 0.147 0.273 0.420 0.691 0.260 0.951 0.514 

32 0.145 0.258 0.403 0.674 0.268 0.942 0.512 

64 0.143 0.249 0.392 0.684 0.245 0.929 0.515 

128 0.141 0.245 0.386 0.682 0.257 0.939 0.513 

256 0.139 0.244 0.384 0.685 0.242 0.927 0.510 

512 0.138 0.245 0.383 0.678 0.259 0.937 0.513 

Table 8: 3-D DFT performance with synchronous data 

transfer for the GPU algorithms on 242424 input.  

# of 
DFTs Mixed Radix FFTW 

  

Kernel 
Time: 
ms/DFT 

Data transfer 
Time: 
ms/DFT 

Kernel + Data 
transfer Time: 
ms/DFT 

Time: 
ms/DFT 

16 0.147 0.188 0.336 0.514 

32 0.145 0.072 0.217 0.512 

64 0.143 0.043 0.186 0.515 

128 0.141 0.037 0.178 0.513 

256 0.140 0.031 0.171 0.510 

512 0.138 0.023 0.161 0.513 

Table 9: 3-D DFT performance with asynchronous data 

transfer for mixed radix on 242424 input. 

Table 9 and figure 7 show similar results with 

asynchronous data transfer for mixed radix. Since we 

do not have access to the cuFFT source code, we could 

not implement asynchronous data transfer there. We 

can see that there is a substantial improvement in the 

performance of mixed radix.  Also it is to be noted that 
the data transfer cost is not totally hidden by the 

computation. If we compare the results with table 8, 

we would expect the data transfer time to be fully 

hidden, because the data transfer time in each 

direction, which is half the transfer time shown in 



table 9, is less than the compute time. However there 

is an additional overhead which is not hidden. Note 

that there is also a difference in the memory allocated 

on the host for asynchronous transfer, which is pinned 

in memory, so that it will not get swapped. 

 

Figure 7: 3-D DFT performance comparison with 

asynchronous data transfer for input of size 242424. 

C. Performance improvement analysis for Quantum 
Monte Carlo Code 

We now consider an Auxiliary Field Quantum Monte 

Carlo (AFMC) application for electronic structure 

calculations [12]. In contrast to other Quantum Monte 

Carlo codes that have been ported to GPUs [9,10,11], 

this class of calculations has DFT computations as a 

bottleneck. Profiling results on sample data showed 
that DFT calculations (including inverse DFT, which 

too we have implemented) account for about 60% of 

the time taken. The number of DFTs required and their 

sizes depend on the physical system simulated and the 

accuracy desired. In the application we used, the DFTs 

are 242424. A few different functions call DFTs. 
The number of independent DFTs in each varies from 

1 to 54. The functions that make most calls to DFTs 

also have the maximum number of independent calls, 

which is favorable to using our implementation. We 

accelerate only the DFT calls, letting the rest of the 

application run on the host. 

We would expect the DFT time to decrease by a factor 

of 2.36 (approximately), based on the results of table 

9, and so the performance of DFT computation time to 

be improved by about 57.6%. However, the speedup is 

less for the following reason. The code is in double 

precision. It will take considerable time for us to 

change the entire code to single precision and verify 

its accuracy. So, we converted the data needed for the 

FFT alone to single precision, and converted the 

output of the DFT back to double precision3. The 

conversion process has a significant overhead, which 

reduces the speedup. 

Sl.# 

Number of 
simultaneous 
FFT calls 

# of 
FFTW 
calls 

FFTW 
Time: 
s 

Mixed 

Radix 
FFT 
Time: s 

Performance 
improvement 
x times 

1 27 298836 295 187 1.58 

2 1, 27 15130 18 16.4 1.1 

3 1, 27 10368 9.46 8.56 1.1 

4 54 3456 3.40 2.14 1.59 

5 54 1782 1.72 1.02 1.69 

6 53 1462 1.61 0.821 1.97 

7 1 64 0.029 0.03 0.993 

8 1 2 0.004 0.036 0.111 

Table 10: Performance comparison of single precision 
FFTW vs mixed radix for a QMC application. Column 2 
shows the number of FFT calls made in bulk by each 
subroutine. Column 3 shows the total number of FFTW calls 
for each subroutine during 32 iterations of the QMC code. 

For 32 iterations of the QMC code (total run-time of 

548 seconds), it was observed that there were eight 

subroutines that were making calls to FFTW. Each 

subroutine calls FFTW different numbers of times, 

and the number of independent calls in each 

subroutine too differs. These factors cause different 

speedups in different subroutines, as shown in table 

10. With the mixed radix implementation, and for the 

same number of iterations, the run time of the code 

was reduced to 426 seconds thereby making the code 
run about 1.3 times faster4. Use of a GPU with good 

double precision support will improve performance of 

the DFT further, by eliminating the single to double 

precision conversion cost. For further performance 

improvements, more application kernels need to be 

                                                             
3
 With better double precision support that is now available 

on the Fermi GPU, it does not appear fruitful to change the 
entire code to single precision in any case. We also verified 
that the answers agreed with the double precision answers to 
six significant digits. Single precision has been used for 
portions of codes in other QMC applications too, without 
significant loss in accuracy [10].  

4 One might wonder if using the multiple cores with FFTW 

would make FFTW better. But then, one can also use 
multiple GPUs on the same processor. In fact, we have a 

quad core processor with four devices. The performance of 
our algorithms on it was even more favorable there, because 
it has PCIe 2, rather than version 1 on the system for which 
we have reported the results. However, the machine crashed 
before we could obtain all results, and so we do not present 
results here. 



moved to the GPU. However, the latter is not relevant 

to the issue addressed by this paper. 

VII. CONCLUSION AND FUTURE WORK 

We have shown that the asymptotically slower matrix 

multiplication algorithm can be beneficial with small 

data sizes. When combined with the mixed-radix 

algorithm, we obtain an implementation that is very 

effective for multiple small DFTs. For example, tables 

6 and 7 show that our implementation is two orders of 

magnitude faster than cuFFT for 2-D and 3-D DFTs of 
sizes 4x4 and 4x4x4 respectively, when 512 

simultaneous DFTs are performed with data on the 

device. It is faster than FFTW by a factor of around 75 

for 4x4 2-D DFTs and by a factor of around 6 for 

4x4x4 3-D DFTs in similar experiments. The mixed 

radix algorithm, which uses matrix multiplication as 

its underlying implementation, outperforms cuFFT 

and FFTW for the sizes considered here. 

 

In future work, we wish to evaluate its effectiveness 

on more applications. We also wish to use it for small 
sub-problems of popular FFT implementations on the 

GPU and evaluate its effectiveness. (In fact, its use 

with the mixed radix algorithm is one such test.) 

Another direction is to extend the range of matrices for 

which these algorithms can be tried. We can also 

decrease the number of DFTs required to make 

effective use of the GPU by using more blocks for a 

single DFT. This will incur larger overhead due to 

kernel level synchronization. However, the time for a 

single DFT computation on a 242424 input is 
around 2 ms, while the synchronization overhead is of 

the order of 0.01 ms. Thus, the overhead may be 

acceptable for 3-D FFT, and will be even lower, 
relatively, if we compute two or four independent 

DFTs concurrently. 
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