
Optimizing MPI Collectives on Intel MIC Through
Effective Use of Cache

Pinak Panigrahi1, Sriram Kanchiraju2, Ashok Srinivasan3, Pallav Kumar Baruah4, C D Sudheer5
1,2,4Dept. Of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning,

Prashanthi Nilayam, India
3Dept. Of Computer Science, Florida State University, Tallahassee, USA

5IBM Research India, New Delhi, India
{panigrahi.pinak1, sriramkanchiraju2}@gmail.com,

asriniva@cs.fsu.edu3, pkbaruah@sssihl.edu.in4, sudheer.chunduri@in.ibm.com5

Abstract—The Intel MIC architecture, implemented in the
Xeon Phi coprocessor, is targeted at highly parallel applications.
In order to exploit it, one needs to make full use of simultaneous
multi-threading, which permits four simultaneous threads per
core. Our results also show that distributed tag directories can
be a greater bottleneck than the ring for small messages when
multiple threads access the same cache line. Careful design of
algorithms and implementations based on these results can yield
substantial performance improvement. We demonstrate these
ideas by optimizing MPI collective calls. We obtain a speed-
up of 9x on barrier and a speed-up of 10x on broadcast,
when compared with Intel’s MPI implementation. We also show
the usefulness of our collectives in two realistic codes: particle
transport and the load balancing phase in QMC. Another impor-
tant contribution of our work lies in showing that optimization
techniques - such as double buffering - used with programmer
controlled caches are also useful on MIC. These results can help
optimize other communication intensive codes running on MIC.

Index Terms—Intel Xeon Phi; MIC; MPI; barrier; broadcast;
shared memory; double buffering;

I. INTRODUCTION

Intel Xeon Phi is a co-processor that is based on the
Intel Many Integrated Core (MIC) architecture. It consists
of 61 cores which are capable of 4-way simultaneous multi-
threading. Data movement is often a performance bottleneck
with a large number of threads or processes. Consequently,
applications can often benefit through efficient use of the
memory subsystem. We provide more details on this archi-
tecture and its memory subsystem in Sec II. There has been
much interest in characterizing the performance of the memory
subsystem, as summarized in Sec III. These results have
often been obtained using one thread or process per core.
We have extensively characterized the performance of the
memory subsystem with more than one simultaneous thread
or process per core. We present our significant results in
Sec IV. In particular, we show that use of remote L2 caches is
much more promising than suggested by earlier work that did
not use simultaneous multi-threading in studying the memory
subsystem.

We show how applications can use our results to minimize
data movement overheads. For example, while double buffer-
ing is commonly used with programmer controlled caches,

such as shared memory in GPUs, it is also effective on the
more traditional cache of Xeon Phi. We use MPI collective
calls to demonstrate the optimizations. We have implemented
four collective calls, but describe, in Sec V, algorithms only
for barrier and broadcast due to space constraints. We show
in Sec VI that our best barrier implementation improves on
Intel’s MPI by a factor of up to 9. For small messages, our
broadcast improves on that of Intel’s MPI by a factor of up to
10, and for large messages, by a factor of up to 4. We discuss
the impact of architectural features on the performance of
different algorithms for these collectives and also demonstrate
improvement in performance of actual applications using these
collective calls. We summarize our conclusions in Sec VII.

II. XEON PHI ARCHITECTURE

The Intel Xeon Phi co-processor contains 61 cores running
at 1100 MHz. One of the cores is used to run a simplified
linux kernel. Each core can support four hardware contexts
simultaneously. Every core has a 32 KB L1 data cache, 32 KB
L1 instruction cache and a 512 KB private L2 cache. The L2
caches are kept coherent using a Distributed Tag Directory
(DTD) system. If data is not found in a core’s local L2 cache,
then it is sought from a remote L2 cache. If it is not found
in a remote L2 cache, then it is brought in from memory.
The cores, the tag directories, the memory controllers, and
PCIe are connected by a bidirectional ring. The memory
addresses are mapped in a pseudo-random fashion to the 64 tag
directories [1] and 8 memory controllers using a hash function,
leading to an even distribution on the ring. Fig. 1 depicts the
basic blocks of the MIC architecture.

III. RELATED WORK

Various aspects of a Xeon Phi-based system were stud-
ied using microbenchmarks in [2], and the performance of
OpenMP directives and MPI functions were also evaluated in
it. The performance of sparse matrix multiplication kernels –
which are memory bound – was evaluated on the Xeon Phi
in [3]. The memory subsystem performance of the Xeon Phi
has been benchmarked in [4], where the authors identified
some factors that need to be considered while designing
kernels for a pre-production model of Xeon Phi. Their analysis

TD TD

TD

TD

TD TD

TD

TD

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CO
RE

L2

CO
RE

L2

GDDR MC

GDDR M
C

GDDR MC

GD
DR

 M
C

Fig. 1. Architecture of Intel MIC.

deals with a small number of total threads – 4, and on the
L1 cache, which is private. In contrast, we deal with a large
total number of threads, up to 244, and at higher levels of the
memory subsystem.

Inter-node collective communication in MIC clusters is
optimized in [5]. In contrast, we have optimized intra-MIC
collective communication. Communication between the cores
in a cache coherent system is modeled in [6] using Xeon Phi
as a case study. Using their model, they designed algorithms
for collective communication. However, these are thread based
implementations while ours are based on MPI processes.
Point-to-point communication primitives are optimized for the
Xeon Phi in [7]. They designed optimal algorithms for Gather,
Alltoall, and Allgather using these point-to-point primitives.
The above two works have not considered cases with large
number of processes or threads – they consider 61 or fewer
while Xeon Phi permits up to 244 simultaneous ones.

In contrast, we have analyzed the performance of the
memory subsystem with up to 244 processes, and use our
conclusions to develop efficient collective communication im-
plementations that scale well. Our collectives are not built on
top of point-to-point primitives. Rather, all processes directly
use a common region of shared memory. Such use of shared
memory has been shown to be more efficient than implement-
ing collectives on top of point-to-point primitives [8] on the
Opteron. In earlier work, we had used double buffering on
the programmer controlled caches (local stores) of the Cell
processor to optimize MPI [9]. Our current work shows that
double buffering can be effective on the Xeon Phi too. Since
the caches on this machine are not programmer controlled, we
induce the same benefits by careful design of the algorithms.

IV. PERFORMANCE OF THE MEMORY SUBSYSTEM

Understanding the memory bandwidth, memory access la-
tency or the cache-to-cache bandwidth on the Xeon Phi is
difficult because the latency potentially depends on not only
contention and the distance from the core to the specific
distributed tag directory for a given cache line, but also
on the distances from the distributed tag directory to the
memory controller and from the memory controller back to
the requesting core. There are conflicting results in existing
literature about the effect of distance between the cores. Ramos
et. al. [6] have concluded that communication with the DTD

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 3 7 15 31 60 121 182 243

L
at

en
cy

 (u
s)

Number Of Processes

Fig. 2. Processes accessing a single cache line simultaneously.

dominates the access time and hence the distance between the
cores is not a matter of concern. However, Fang et. al. [4]
conclude that the distance between the cores does play a role
in cache line transfer times. Our results (not presented here)
are consistent with the former.

We use the STREAM benchmark [10] in our experiments
to study the memory bandwidth. There are several other
studies that have analyzed the performance of the STREAM
benchmark on MIC. They report results when each thread
accesses around 10 MB of data. When using such a message
size, we obtain a memory bandwidth of 163 GB/s that is
comparable to the results reported in [4] and [2]. However,
we wish to consider situations involving MPI messages of
smaller sizes, which are common in many applications. For
example, an analysis of workloads of scientific applications
used at Argonne National Lab shows that the average message
sizes for collective communication calls range from around
10 B to the order of 100 KB [11]. We, therefore, focus more
on smaller sizes, where the performance tends to be lower than
for large message sizes, and compare the results with cache-
to-cache transfers. Note that cache-to-cache transfers on the
Xeon Phi take the shortest path on the ring.

Whenever there is a cache miss on a core, the DTD is
queried. Hence, when many processes access the same cache
line, all of them will generate requests to the same tag
directory. This will result in contention at the tag directory
and the performance will depend on the speed at which the
DTD services these requests. This is benchmarked by having
all receiving processes copy a cache line from a root process
into their private buffer. The results are averaged over 1000
accesses. There is a barrier call before every access to ensure
that all processes access the cache line simultaneously.

When many processes access a single cache line simul-
taneously, the latency increases linearly with the number of
processes as shown in fig. 2, with a slightly higher than linear
increase with a large number of processes. This is caused by
contention at the tag directories.

We also study the effect of this contention when receiving
processes copy larger message sizes from the root process
simultaneously. We observed that when processes copy a
message that consists of more than a single cache line simul-
taneously, the latency does not increase as much as expected
from the results of the case where processes copy a single

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

I II III

L
at

en
cy

 (
us

)

2 processes
4 processes
8 processes
16 processes
32 processes
60 processes
120 processes
180 processes
240 processes

Fig. 3. Processes accessing cache lines across different caches with three
different data access patterns.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 3 7 15

L
at

en
cy

 (u
s)

Number Of Processes

1KB
4KB

16KB
64KB

128KB

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

31 60 121 182 243

L
at

en
cy

 (u
s)

Number Of Processes

1KB
4KB

16KB
64KB

128KB

Fig. 4. Processes copying the same data from a single process simultaneously.

cache line simultaneously. This observation is shown in fig. 4.
As a direct consequence of the hashed mapping that exists
between the memory addresses and the tag directories, requests
for consecutive memory addresses do not go to the same tag
directory. Hence, when accessing data with spatial locality,
the memory requests are sent to different tag directories.
Therefore, contention at a particular DTD is reduced. Another
factor that can be influencing the performance in this scenario
is prefetching. When data is accessed with spatial locality,
prefetching helps in hiding the latency. There is, perhaps, a
tradeoff between contention and prefetching that is responsible
for this behavior.

We have also studied how accessing cache lines across
different caches impacts the performance. We designed several
benchmarks to study this, and report three typical results. Let P
be the number of processes. In the first one (I), process i copies
data from process (i + 1) mod P. In the second one (II), process
i copies data from process (i+2) mod P. In the third one (III)
4 processes are grouped together, and they communicate in
an interleaved fashion. The results are shown in fig. 3. When
there are 61 or fewer processes involved, there is not much of

a difference in latency, as observed by others too. However,
we find that there is a significant increase beyond that point.
On the other hand, the increase is still small compared with
that for accessing a single cache line as shown in fig. 2. This
shows that contention at the DTDs has a greater effect on the
performance than contention on the ring.

We summarize the following conclusions regarding the
performance of the memory subsystem.

• The aggregate bandwidth for cache-to-cache transfers is
more than the memory bandwidth and increases when the
number of processes is increased. This makes techniques
like double buffering potentially effective.

• It is advantageous to have processes access different
cache lines as compared to all of them accessing the same
cache line.

• When many processes simultaneously read data that
consists of more than a single cache line, the performance
does not degrade as significantly as we would expect from
the single cache-line results.

• The effect of contention on the ring caused by many
processes communicating is much smaller than the effect
of DTD contention.

V. ALGORITHMS FOR INTRA-MIC COLLECTIVE
COMMUNICATION

We now present the algorithms for barrier and broadcast.
We used POSIX shared memory as a communication channel
between the processes using POSIX functions shm open and
mmap. In our approaches, every collective call requires a
shared memory segment to be associated with it. The size of
the segment varies from one collective to the other. We assign
shared memory of a fixed size to each MPI communicator.
This region is contiguous and is memory mapped at the time
of the creation of the communicator and destroyed with it.
We design our algorithms and implementations based on our
observations on the performance of the memory subsystem.
We explain our rationale further in Sec VI.

Barrier. Let the number of processes be P. All the al-
gorithms except dissemination, follow the gather/broadcast
style. In this approach, a designated process, called the root,
waits for all the processes to enter the barrier. After that,
the root broadcasts this information to all processes. When
a process receives the broadcast, it exits the barrier. All the
algorithms use a shared memory segment of size 64 P bytes
unless otherwise mentioned. We use the term flag to refer to
the cache line associated with the process. For example, when
we say that a process i sets a flag on process j, we mean that
process i sets a value in the cache line belonging to process j.

Centralized: In Centralized-I, the shared memory segment
consists of P bytes (1 byte per process is used as a flag). In the
gather phase, a process sets its flag and polls on it until it is
unset. The root process unsets the flags after all the processes
have entered the barrier. A process exits the barrier only when
its flag has been unset. The Centralized-II algorithm works on
the same principle except that it uses a cache line per flag.

Dissemination [12]: In the kth step, process i sets a flag on
process i + 2k (mod P) and polls on its flag until it is set
by process P + i - 2k (mod P). This algorithm takes dlog2P e
steps.

Tree [13]: The processes are logically mapped to the nodes
of a tree of degree k. Every process calculates its children
using the following formula: (k × rank) + i, where i = {i ∈
N ∧ (1 ≤ i ≤ k) ∧ (1 ≤ i ≤ P)}. We have modified the
algorithm slightly from [13] to avoid false sharing; in the
gather phase, each node polls on the flags of its children till
they are set before setting its own flag. In the broadcast phase,
every node unsets the flags of its children before exiting the
barrier. The algorithm takes 2dlogk(P)e steps.

Tournament [12]: In each round of the gather phase of the
algorithm, processes are paired and the winner goes to the
next round. A process with lower rank is considered to be the
winner and waits for its flag to be set by its losing partner.
The overall winner initiates the broadcast phase. The broadcast
phase is similar to the one used in the tree algorithm. The
gather phase takes dlog2(P)e steps and the broadcast phase
takes dlogk(P)e steps.

Binomial Spanning Tree (BST) [14]: The processes are
logically mapped to a binomial spanning tree. The working
principle differs from the tree algorithm only in the fashion in
which it constructs the tree. Each process calculates its chil-
dren by adding 2i to its rank, where i = {i ∈ N∧ (log2(rank)
< i < dlog(P)e) ∧ (rank + 2i < P)}.

Broadcast. We now describe our algorithms for broadcast1.
The shared memory segment allocated for broadcast is divided
into two logical regions, namely, a data region, which is used
by the root to store data and a notification region, which is used
for notification purposes. There is a designated flag per process
in the notification region which is used for synchronization.

Centralized: In this implementation, the root copies the mes-
sage into the data region and notifies the receiving processes
via the notification region by setting their flags. The receiving
processes copy out the message from the data region after their
flags have been set. When the size of the message exceeds the
size of the data region, the message is divided into chunks
that can individually occupy the whole data region. The root
copies a chunk into the data region and notifies the receiving
processes. After the receiving processes copy out the message
from the data region, they unset their flags in the notification
region. When all the flags of all the processes are unset, the
root copies the next part of the message into the data region
and notifies the receiving processes. This procedure is repeated
until the entire message is broadcast.

Double Buffering: This algorithm varies from the previous
one only in the case where the message size exceeds the size
of the data region. We use the idea of double buffering in these
cases. The data region is divided into two parts, each of them
is used as a buffer by the root. We introduce an extra flag per
process in the notification region so that each of the buffers

1We described a preliminary implementation in [15], which did not take
into account the memory subsystem’s performance characterization.

has a corresponding notification flag. The root fills the first
buffer and notifies the receiving processes by setting the flags
corresponding to the first buffer. While the receiving processes
are copying out the data from this buffer, the root copies the
next part of the message into the other buffer and notifies
the receiving processes by setting the flags corresponding to
the second buffer. Before copying the next part of data into
the first buffer the root waits for the receiving processes to
unset the flags that correspond to first buffer and similarly
with the second buffer. These steps are repeated until the whole
message is broadcast.

VI. PERFORMANCE EVALUATION

Our experimental platform is the Texas Advanced Com-
puting Center’s (TACC) Stampede supercomputer. The nodes
that we used had an Intel Xeon Phi SE10P with 61 cores
running at 1100MHz. The host machine is a dual 8-core
Intel Xeon E5-2680 Sandybridge running at 2.70 GHz. The
Intel MIC software stack is the MPSS Gold-update 3 with
the Intel compiler v13.1.1.163 and Intel MPI v4.1.1.036.
The performance measurements were taken using a simple
benchmark code that uses a loop to call the routines 1000
times. The average of the obtained timings were used as the
result.

Barrier Performance. The algorithms for barrier take
advantage of the fact that a remote cache access is faster than
access to the memory. Increasing the tree degree beyond 6 in
the tree algorithm does not help. We therefore use a tree of
degree 6 when comparing the various algorithms and also in
the broadcast phase of the BST algorithm. The algorithms that
are based on tree structures perform better than others. This
is because in the tree algorithms processes access different
cache lines across various caches. We have shown that this is a
favorable situation because accessing different cache lines does
not cause DTD contention. In the Centralized-I algorithm,
many processes access the same cache line. This creates
contention at the DTD. In the Centralized-I algorithm, the
flags corresponding to the various processes are consecutive
bytes in memory. Hence, in the broadcast phase, when the root
has to set the flags of each of the processes, the operations
are vectorized by the compiler. This gives it an advantage over
the Centralized-II algorithm. In the Centralized-II algorithm,
every process is polling on its flag to be unset by the root
process. So, while every other process wants to read, the root
wants to perform a write. In the worst case, there will a cache
miss for every process that the root is updating. A similar
situation arises in the dissemination algorithm; the flag of a
process is updated by a different process in each round. Each
time the cache line is updated, it becomes a candidate to be
invalidated in the other caches. Another factor that should be
influencing the performance is the fact that in every round
of the algorithm there are P processes communicating across
the cores, whereas in the tree algorithm there are much fewer
processes communicating across the cores in a typical step.
In the worst case, the number of processes simultaneously
communicating will be less than P in the tree algorithm,

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 50 100 150 200 250

L
at

en
cy

 (u
s)

Number Of Processes

BST
Tournament

Dissemination
Intel MPI

Centralized-I
Centralized-II
Tree-degree 6

(a)

 0

 50

 100

 150

 200

 250

 300

0.064 0.128 0.256 0.512 1 2 4 8

L
at

en
cy

 (u
s)

Message Size (KB)

Intel MPI
Centralized

Double Buffering

(b)

Fig. 5. (a) Comparison of our barrier implementations with that of Intel
MPI. (b) Performance of 244 process broadcast when the message size is less
than the size of the shared buffer.

with typical steps using much fewer. A tree of degree higher
than 2 will also have fewer steps than the dissemination
algorithm. Fig. 5 (a) compares our barrier implementations
with that of Intel MPI. The best of our algorithms improves
the performance by up to a factor of 9.

When the number of processes increases, our implemen-
tation incurs a small additional performance penalty. Intel’s
MPI, on the other hand, shows a large increase in time, with
significant jumps at multiples of 61 processes. Our Dissemi-
nation and Centralized-II implementations do not scale well
for reasons given above. But the other algorithms scale well.

Broadcast Performance. Benchmarking results showed
that when many processes copy the same message, the la-
tency incurred scales well if the message is big enough. Our
algorithms exploit this feature to extract good performance.
We have fixed the shared buffer size to be 32 KB. Fig. 5 (b)
shows the performance of our broadcast when message sizes
are smaller than the shared buffer, with 244 processes. Results
for other process counts are similar. Our algorithms improve
the performance over Intel MPI by a factor of 10 for message
sizes less than 256 B and up to a factor of 4-5 for larger
message sizes.

When the message size exceeds the size of the shared
buffer, the centralized algorithm suffers because of the single
buffering approach. After copying out a part of the message
from the buffer, the receiving processes have to wait for the
root process to refill the buffer before they can start copying
out the next part of the message. Double buffering brings

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

16 32 64 128 256 512

L
at

en
cy

 (u
s)

Message Size (KB)

Intel MPI
Centralized

Double Buffering

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250

L
at

en
cy

 (
u
s)

Number Of Processes

Intel MPI
Centralized

Double Buffering

(b)

Fig. 6. (a) Performance of 244 process broadcast for larger message sizes.
(b) Performance of broadcast with 512 KB messages.

with it the advantage that two steps happen concurrently;
while the receiving processes are copying the data out of
the data region, the root writes the next part of the message
into a different buffer. This will reduce the time receiving
processes spend waiting for the root to copy the next part
of the message. Also, this action by the root will result in
accesses to its private L2 cache and will not generate any
requests to the DTDs except the first time it uses a buffer.
This explains the additional advantage double buffering gives
as the message size is increased. Double buffering improves
performance by a factor of 1.5-2 over Centralized, which uses
a single buffer. Figure 6 (a) shows the performance of our
broadcast for larger message sizes. Our broadcast2 gives a
performance improvement of up to a factor of 4 over Intel
MPI. The scalability of our algorithms can be seen from the
fact that our algorithms hardly incur any extra latency when
the number of processes is increased from 2 to 244, while
Intel MPI incurs an extra latency of a factor of 10, as shown
in fig. 6 (b). The ability of all processes to access the same
shared memory is beneficial for algorithms like broadcast that
deal with data that is common to all processes.

We now show the effectiveness of our implementations of
two other collectives which we lack space to describe. A
reduce operation is used in a Particle Transport application,
which tracks a set of ”Random Walkers” in a Monte Carlo
simulation [16]. We use all-gather in a load balancing com-

2Our experiments did not show performance degradation when the core
that runs the operating system was included in those hosting MPI processes.
Hence, we report results by using all the available cores on the Xeon Phi.

putation described in [17]. Figure 7 shows the percentage
improvement in time (higher is better) over Intel MPI.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

61 244

 P
er

ce
nt

 I
m

pr
ov

em
en

t (
hi

gh
er

 is
 b

et
te

r)

 Number of Processes

 Application
 Communication

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

61 244

 P
er

ce
nt

 I
m

pr
ov

em
en

t (
hi

gh
er

 is
 b

et
te

r)

 Number of Processes

 Application
 Communication

(b)

Fig. 7. Performance gains obtained by our Intra-MIC collective implemen-
tations relative to Intel MPI for the (a) Particle Transport and (b) Load
Balancing codes.

VII. CONCLUSIONS

Through micro-benchmarking, we have identified architec-
tural characteristics of the memory subsystem that impact
application performance. We showed that accessing remote
caches in certain ways produces substantial performance
benefits over accesses to the memory, in contrast to sug-
gestions in existing literature. We showed that optimization
techniques such as double buffering, which have been used
at the cache level with programmer controlled caches, can
also be used effectively on MIC, even though it does not
provide a programmer controlled cache. Using these ideas,
we have developed algorithms and implementations for MPI
collectives. We obtained an improvement in performance by
up to a factor of 9 on barrier, an improvement of up to factor
10 for small broadcasts, and factor 4 for large broadcasts.
Our algorithms and implementations are also more scalable
than the existing Intel MPI implementation. Furthermore, since
our optimization techniques are based on the fundamental
characteristics of the memory subsystem, they can be used
by non-MPI applications to optimize their performance. We
have also demonstrated the effectiveness of our reduce and
all-gather implementations on practical applications.

ACKNOWLEDGMENT

This work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science
Foundation grant number OCI-1053575. We would also like to thank
John McCalpin for his useful comments on the performance of the

STREAM benchmark and issues related with the sustained memory
bandwidth.

REFERENCES

[1] Intel Xeon Phi Coprocessor System Software Developers Guide.
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-
system-software-developers-guide.

[2] Subhash Saini, Haoqiang Jin, Dennis Jespersen, Huiyu Feng, Jahed
Djomehri, William Arasin, Robert Hood, Piyush Mehrotra, and Rupak
Biswas. An early performance evaluation of many integrated core
architecture based sgi rackable computing system. In Proceedings
of SC13: International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’13, pages 94:1–94:12, New York,
NY, USA, 2013. ACM.

[3] Erik Saule, Kamer Kaya, and Umit V Catalyurek. Performance Evalu-
ation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi. arXiv
preprint arXiv:1302.1078, 2013.

[4] Jianbin Fang, Ana Lucia Varbanescu, Henk Sips, Lilun Zhang, Yong-
gang Che, and Chuanfu Xu. Benchmarking Intel Xeon Phi to Guide
Kernel Design. Technical Report PDS-2013-005, Delft University Of
Technology, 2013.

[5] K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy,
and D.K. Panda. Designing optimized mpi broadcast and allreduce for
many integrated core (mic) infiniband clusters. In High-Performance
Interconnects (HOTI), 2013 IEEE 21st Annual Symposium on, pages
63–70, Aug 2013.

[6] Sabela Ramos and Torsten Hoefler. Modeling communication in cache-
coherent SMP systems: a case-study with Xeon Phi. In Proceedings
of the 22nd international symposium on High-performance parallel and
distributed computing, pages 97–108. ACM, 2013.

[7] Sreeram Potluri, Akshay Venkatesh, Devendar Bureddy, Krishna Kan-
dalla, and Dhabaleswar K Panda. Efficient Intra-node Communication
on Intel-MIC Clusters. In Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on, pages 128–135.
IEEE, 2013.

[8] Richard L Graham and Galen Shipman. MPI support for multi-core
architectures: Optimized shared memory collectives. In Recent Advances
in Parallel Virtual Machine and Message Passing Interface, pages 130–
140. Springer, 2008.

[9] M.K. Velamati, A. Kumar, N. Jayam, G. Senthilkumar, P.K. Baruah,
S. Kapoor, R. Sharma, and A. Srinivasan. Optimization of collective
communication in intra-Cell MPI. In Proceedings of the 14th IEEE
International Conference on High Performance Computing (HiPC),
pages 488–499, 2007.

[10] John McCalpin. STREAM benchmark. http://www.streambench.org/,
1995.

[11] Pier Giorgio Raponi, Fabrizio Petrini, Robert Walkup, and Fabio Chec-
coni. Characterization of the communication patterns of scientific
applications on blue gene/p. 2013 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum, 0:1017–
1024, 2011.

[12] Debra Hensgen, Raphael Finkel, and Udi Manber. Two algorithms for
barrier synchronization. International Journal of Parallel Programming,
17(1):1–17, 1988.

[13] Michael L Scott and John M Mellor-Crummey. Fast, Contention-
Free Combining Tree Barriers for Shared-Memory Multiprocessors.
International Journal of Parallel Programming, 22(4):449–481, 1994.

[14] Nian-Feng Tzeng and Angkul Kongmunvattana. Distributed shared
memory systems with improved barrier synchronization and data trans-
fer. In Proceedings of the 11th international conference on Supercom-
puting, pages 148–155. ACM, 1997.

[15] Sriram Kanchiraju, Pinak Panigrahi, and Pallav Kumar Baruah. Efficient
Intra-MIC Broadcast. Poster with extended abstract presented at Student
Symposium, HiPC 2013, Bangalore, India.

[16] Giray Okten and Ashok Srinivasan. Parallel quasi-monte carlo methods
on a heterogeneous cluster. In Kai-Tai Fang, Harald Niederreiter, and
FredJ. Hickernell, editors, Monte Carlo and Quasi-Monte Carlo Methods
2000, pages 406–421. Springer Berlin Heidelberg, 2002.

[17] C. D. Sudheer, S. Krishnan, A. Srinivasan, and P. R. C. Kent. Dynamic
load balancing for petascale quantum Monte Carlo applications: The
alias method. Computer Physics Communications, 184(2):284–292,
2013.

