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Abstract—In scientific computing applications, with a cluster
of nodes working in tandem to perform simulations. These
compute intensive tasks, often generate large amounts of data,
especially floating-point data that need to be transmitted over
the network. Although computation speeds may be high, the
overall performance of these applications is affected by the
transfer of data. Many CPU cycles are wasted waiting for
data to arrive. Moreover, as data sets are constantly growing
in size at an exponential rate, bandwidth limitations pose a
serious bottleneck in several scientific applications. Limitations
in network bandwidth, disk I/O bandwidth and WAN bandwidth
are of prime concern.

However, these limitations can be addressed by fast com-
pression. With a good compression ratio, transferring of com-
pressed data greatly reduces limitations induced by bandwidth.
It is imperative however, that the speeds of compression and
decompression be greater than the bandwidth, else it will be
faster to transmit the data directly without compression. A
Graphics Processing Unit (GPU) is a massively parallel co-
processor capable of extremely fast data parallel computation.
holt‘s Linear Exponential algorithm is a simple prediction based
algorithm, which can be used for lossless prediction of floating-
point data. To deal with the bandwidth problems, in this work, the
effectiveness of holt‘s Linear Exponential Smoothing Algorithm
for floating point compression with an implementation on an
NVIDIA GPU is investigated.

I. INTRODUCTION

There has been tremendous improvement in computing
power in high end computing system for over last few years.
But I/O has not been keeping pace with computing power.
The gap between the computing power and I/O is growing
over the years and it is further increasing due to availability
of various accelerators which are used for computations. If
we can use computation power for reducing the data size it
will result in effective increase of overall performance of the
systems which is bottlenecked by I/O. For example, in FORGE
GPU enabled supercomputing system has peak performance
of 153 teraflops/s (Tflop/s) and the maximum possible I/O
bandwidth is 16 GB/s [11]. The ratio of computation to I/O
is increasing in rapid rate. The total bandwidth on the ROAD
RUNNER which was until recently ranked #1 on the top500
supercomputer list, is about a 40 times more, at 432 GB/s.
But, the total compute performance is about 100 times faster
at 1456.7 Tflop/s.

The increasing core counts and the introduction of acceler-
ators like Cell Processors, GPUs, FPGAs made many appli-
cations I/O bound which were not so before. The situations
is expected to become worse in the near future. The balance
between computation and I/O further reduced because of these
introduction of multi-core processors, accelerators.

The obvious alternatives to overcome the I/O bottleneck
is either to run application slowly or to perform I/O less
frequently. We propose a technique to compress the data
produced by applications to address this I/O bottleneck issue
by using abundant existing computing power. For example, if
we obtain 50% of compression ratio, then effectively we are
doubling the bandwidth available to the applications. But we
have to assure that overhead associated with this compression
is small, so that it is faster to compress data and store it, rather
than to store the uncompressed data directly.

We propose a high throughput compression algorithm and
apply it on a set of applications. The compression it achieves
is less than that of popular compression algorithms. However,
its low computational overhead makes it effective in various
kind of I/O bottleneck for large set of applications.

Our approach is based on prediction. It predicts the next
value, based on previous observed values. If the prediction
is accurate, then an exclusive-OR of predicted value with
the original value is stored. It yields several zeros in most
significant bits. We have applied time series based prediction
algorithm called holt‘s linear exponential smoothing [3] for
our floating point compression.

The outline of the rest of the paper is as follows. In § II we
summarize important architectural features of the GPU which
are relevant to this work. We then describe our compression
algorithm in § III. We then have a section on data sets and
experimental design in § IV and § V respectively.§ VI ex-
plain about our optimizations and evaluations. We summarize
related work in § VII and present our conclusions in § VIII

II. GPU ARCHITECTURE

Driven by the market demand for real-time, high-definition
3D graphics, the programmable Graphic Processor Unit or
GPU has evolved into a highly parallel, multi threaded,
many core processor with tremendous computational horse



power and very high memory bandwidth. NVIDIA is the
first company to produce GPU. The GPU takes a large load
of processing away from CPU freeing up cycles.Graphical
processing units are built with integrated transform, lighting,
triangle, set-up/clipping, and rendering engines. Rendering
engines are capable of handling millions of math-intensive
processes per second which are represented in floating point
numbers. The reason behind the discrepancy in floating-point
capability between the CPU and the GPU is that the GPU
is specialized for compute intensive and therefore designed
such that more transistors are devoted to data processing rather
than data caching and flow control. Not all applications can
be ported onto the GPU. Only such applications where data
parallelism can be achieved are going to give good result.

A. Programming Difficulty

GPU is a challenging environment for software devel-
opment, due to its radical departure from general-purpose
processor design. It also entails a huge learning curve for
writing new applications, using CUDA(Compute Unified De-
vice Architecture). There are hierarchy of memories that are
given by the CUDA architecture and utilizing the memory
closer to the processors is the challenging task in CUDA
programming. Keeping the data that is frequently accessed in
the shared memory is the difficult part in programming . Since
the memory bandwidth is limited, the computational power of
GPU should be used optimally to obtain the good performance.

B. CUDA Programming Model

In November 2006, NVIDIA introduced CUDA(Compute
unified device architecture) , a general purpose parallel Com-
puting architecture with a new parallel programming model
and instruction set architecture that leverages the parallel
compute engine in NVIDIA GPUs to solve many complex
computational problems in a more efficient way than on a
CPU. CUDA comes with a software environment that allows
developers to use C as a high-level programming language.
Other languages or application programming interfaces will be
supported in the future, such as FORTRAN, C++, OpenCL,
and DirectX Compute. CUDAs parallel programming model is
designed to maintaining a low learning curve for programmers
familiar with standard programming languages such as C. At
its core are three key abstractions a hierarchy of thread groups,
shared memories, and barrier synchronization that are simply
exposed to the programmer as a minimal set of language
extensions.

III. TIME SERIES BASED FLOATING POINT COMPRESSION
ALGORITHM

This is an extension of exponential smoothing that includes
a term for linear trends. It is also known as double exponential
smoothing. Assume that at time t you have observed yt and
estimated the level Lt and the slope bt in the series. Then a
k-step ahead forecast is Ft+k) = Lt + btk. Holts method allows
the estimates of level and slope to be adjusted with each new

observation. The updating equations for Lt and bt from Lt−1,
bt−1 and yt are:

Lt = αyt + (1− α)(Lt−1 + bt−1) (1)

bt = β ∗ (Lt − Lt−1) + (1− β) ∗ bt−1 (2)

for constants α and β between 0 and 1, which must be
specified

To start the process, both L1 and b1 must be specified.
Possible starting values are L1 = y1 and b1 = y2 y1. Thus,
no forecasts can be made until y1 and y2 have been observed.
By convention, we let F1 = y1.

Now let us see about how Holt‘s linear exponential
smoothening can be used for the compression of the floating
point numbers. Algorithm 1 and 2 describes the steps for
fast floating point compression and decompression using holt‘s
exponential smoothening.

This algorithm compresses linear sequences of single preci-
sion floating point numbers. It predicts the next floating point
number, which is taken to be zero initially. As part of pre-
diction, it uses series of previous values to predict the current
value as given in equation 1 and 2. This prediction method
categorizes the algorithm as Holt‘s exponential smoothening
prediction algorithm. This is nothing but time series prediction.
Once the prediction is done, the original number is XORed
with the predicted value. The XOR operation turns identical
bits into zeros. Hence, if the prediction is accurate, the XOR
would result in many leading zero bits. The compression
algorithm then counts the number of leading zero bytes and
encodes the count in a two-bit value. The resulting two-
bit code and the nonzero remainder bytes are written to the
compressed stream. The latter are emitted without any form of
encoding. In figure 1, we have shown how compressed data
is stored.

Algorithm 1 holt‘s Linear exponential for floating point
compression

1. Input: float* Array, int N
2. int *A = (int *) Array
3. int Level = Input[0], Slope= Input[1] - Input[0]
4. float Alpha = Beta = 0
5. Define A[-1] = 0
6. for i = 0 to N-1 do
7. Pred = Level[i] + Slope[i]
8. X = A[i] XOR Pred
9. Data[i] = trailing non-zero bytes of X

10. Code[i]= code for number of trailing non zero bytes of
X

11. Level[i] = Alpha*Input[i] + (1-Alpha)(Level[i-1] +
Slope[i-1])

12. Slope[i] = Beta*(Level[i] - Level[i-1]) + (1-
Beta)Slope[i-1]

13. end for

Decompression works as follows. It starts by reading the
two-bit header. Then the number of nonzero bytes specified



Algorithm 2 holt‘s Linear exponential for floating point
uncompression

1. Input: Compression representation of Data Code
2. int Pred = 0
3. int Level = Input[0], Slope= Input[1] - Input[0]
4. float Alpha = Beta = 0
5. Define A[-1] = 0
6. for i = 0 to N-1 do
7. Recover X from Compact representation of Data and

Code
8. X = A[i] XOR Pred
9. Level[i] = Alpha*Input[i] + (1-Alpha)(Level[i-1] +

Slope[i-1])
10. Slope[i] = Beta*(Level[i] - Level[i-1]) + (1-

Beta)Slope[i-1]
11. Pred = Level[i] + Slope[i]
12. end for
13. Store Code and Data compactly.

Fig. 1. Constituents of Compressed Data

by the two-bit header is read and zero extended to a full 32-bit
number. Then the series of previous values and the predictor
are updated using the operations in reverse to that used in
compression phase. This lossless reconstruction is possible
because XOR is a reversible operation. For performing XOR
operation reasons, the algorithm interprets all the 32-bit floats
as integers and uses integer arithmetic.

IV. DATA USED FOR COMPRESSION ALGORITHM

The data sets used are summarized in table I. The original
data were all in double precision. We converted them to single
precision numbers.

In order to test the algorithms we considered the sparse
matrices, which are available at sparse matrix collection from
University of Florida [5]. The main reason behind considering
this data set is that, many of the parallel algorithms that
work on the sparse matrices consider the matrices from this
collection. Also parallel sparse matrix linear algebra packages
are not capable of utilizing the potential of a processor for
the type of operations that were performed and the type of
communication that they are involved in [7].

TABLE I
THE DATA SETS USED FOR EVALUATION OF ALGORITHMS

No Name Applications
1 Bloweybq Sparse Matrix
2 msg sppm 3-D Hydro Dynamics
3 Andrews Eigen Value Problem
4 lp ken 18 Linear Programming
5 rail4284 Linear Programming
6 lp truss
7 para-4 Semiconductor Device
8 2D 27628 bjtcai Semiconductor Device
9 3D 28984 Tetra
10 Ohne2 Semiconductor Device
11 c-58 Non Linear Optimizations
12 memplus Memory Circuit
13 Hamrle3
14 G3 Circuit
15 ibm matrix
16 apache2 Finite Difference:
17 add20
18 num comet Astro physics simulations
19 a0nsdsil Lin. Complimentary Problem
20 msg bt CFD
21 ted AB unscaled FEM: Thermoelasticity
22 msg sweep 3D Neutron Transport
23 num control Min. in data assimilation
24 num brain Simulation of Brain impact
25 msg sp CFD

V. IMPLEMENTATION IN GPU

A. Compression Phase

In this phase, the floating-point data is read from a file,
sent to the device for compression and the compressed data
is written back to another file. After the uncompressed data is
read from a file into an array, the total float count is calculated
and this value is divided by FloatsPerBlock.

NumBlocks = TotalNumFloats/F loatsPerBlock

The implementation of compression steps are given below:

• Copy Raw Data to Device
• Data Partition
• Perform Compression in Shared Memory
• Write Code and Compressed Data to Global Memory
• Copy Compressed Data back to Host

B. Decompression Phase

In this phase, the compressed data is read from a file,
sent to the device for decompression and the decompressed
data is written to another file. The steps involved in this
decompression phase are given below:

• Find Block Offsets from MetaData
• Copy Compressed Data to Device
• Copy Compressed Data to Shared Memory
• Perform Decompression in Shared Memory
• Write Decompressed Data to Global Memory
• Copy Decompressed Data back to Host



TABLE II
COMPRESSION RATIO FOR EACH DATA SETS

No Orig.Size(Bytes) Compressed Ratio
1 159744 0.44
2 139497932 0.47
3 1638400 0.56
4 1431552 0.56
5 45136128 0.56
6 110592 0.72
7 21304912 0.81
8 1771520 0.83
9 2396160 0.85
10 44254180 0.86
11 1179648 0.91
12 513808 0.90
13 22056968 0.90
14 18491392 0.89
15 4225024 0.92
16 11065344 0.94
17 67584 0.96
18 53673984 0.98
19 798720 1.002
20 133194716 1.009
21 2088960 1.01
22 62865612 1.04
23 79752372 1.05
24 70920000 1.06
25 145052928 1.06

VI. EVALUATION OF HOLT‘S COMPRESSION ALGORITHM

First we present the Compression Ratio results. It can be
seen in Table II, the scheme yields good compression for
some data-sets while poor compression ratios for a few others.
The reason for this is that we achieve good prediction only
for data sets which are predictable. This happens for certain
types of applications, such as hydrodynamics on a uniform
mesh (#2), Sparse Matrices (#1), Linear Programming (#5),
etc. For applications with random data (#25), the data is not
predictable with the simple scheme that we are using. In any
case, there are application classes for which we get significant
compression.

A. Comparison of Optimization Levels

Implementation is classified into following Optimization
Levels:

• Level 0: No Optimization
• Level 1: Use of Double Buffering
• Level 2: Increased 115 floats for each thread
• Level 3: Increased computation threads to 64
The above optimization levels are not inclusive of each

other, although such an inclusion would increase performance
significantly, due to want of shared memory. Padding com-
pressed sizes for 4-byte aligned, avoiding bank conflicts and
increasing number of threads for memory transfers between
shared and global memory has been implemented in Levels
1,2 and 3.
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Fig. 2. Compression Throughput comparisons for the four optimization levels
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Fig. 3. Decompression Throughput comparisons for the four optimization
levels

Compression speed depends on the compression ratio
achieved, Greater the compression of data, lesser is the data
that needs to be transferred from global memory to shared
memory. Compression/Decompression throughput achieved
without optimizations was suboptimal yielding a performance
of less than 2 GBps. But after tuning the code for performance
a maximum throughput of 5.2 GBps could be achieved.

Figure 2 and 3shows compression and decompression
throughputs for data sets #1, #12, #11 #3, #7 and #2. The
data sets have been chosen with varying sizes and fairly
good compression ratios. The data sets have been plotted
with increasing sizes. The throughput shown in Figure 4 only
reflects the computation time and does not include the time
taken for data transfers between host and device.

As can be seen from Figure 4, the throughput goes on
increasing as the size of data sets increase. The reason for this
is that the number of threads created is directly proportional
to data size. GPU power is fully extracted with thousands
of threads running in parallel. More the number of threads,
greater is the utilization of the GPU and more is the perfor-
mance obtained. With smaller data size, only a few threads
are created to compress them in order to avoid increased data
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Level 3
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Fig. 5. Time distribution in Compression phase
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Fig. 6. Time distribution in Decompression phase

fragmentation which results in sub-optimal throughputs.
A comparison is also made between compression and de-

compression throughput for optimization Level-4. Compres-
sion fairs slightly better as this phase has been optimized
more than the decompression phase. Apart from the 64 threads
which are busy with computation, more threads are added to
improve transfers between shared and global memory. Testing
for various block size i.e. number of threads per block, it has
been observed that compression phase works best with 128
threads per block and decompression phase with 192 threads
per block. Register usage by threads (i.e. number of variables
per thread), warp scheduling and usage of local memory and
shared memory determine throughputs achieved with different
block sizes.

B. Time Distribution

In the results, throughput is calculated only with respect
to compression speeds. For any compression to be done by
the GPU, data first needs to be transferred and results need
to be copied back. This transfer is limited to 8 GBps peak
by the PCIe bus. Although the transfer speed is quoted as 8
GBps, average transfer speed obtained is only around 5 GBps.
Therefore, for greater data size the transfer time between host
and device increases. Compared to computation time, transfer
time is quite high.

As can be seen from the Figures 5 and 6, time taken for host
to device transfer is lesser than for the reverse case. This is
due to two reasons. Since block synchronization is not possible
in CUDA [6], each block writes its compressed data to fixed
locations in the global memory. The entire global array where
compressed data is stored are transferred and written back to
host. The size of this array is larger than the input data as it has
been allocated for the worst case scenario of zero compression.

In the decompression phase, the time taken to transfer data
from host to device is obviously lesser as only compressed

data is transferred whereas uncompressed data is transferred
from device to host.

C. Comparison with Cell BE

An IBM Cell BE processor comprises of 1 PPU and 8 SPUs,
where the PPU offloads the computation to SPUs to be done in
parallel. For SPUs to compute on data, the PPU needs to DMA
this data over a bandwidth of 25 GBps. The output is DMAed
back to the PPU by the SPU. The PPU is a fully functional
processor and so can host an entire OS on it making the Cell
BE an independent device.

The structure of the GPU however is different. The cores of
the GPUs are little more than functional units and contain very
little logical units. Therefore, a GPU can be used only as a
co-processor to the CPU and cannot be used to run programs
independently without CPU collaboration. The CPU in this
case can be compared to the PPU in Cell which offloads
computation to the GPU. The data needs to be transferred from
host to device for computation. The GPU however has an extra
level of indirection. After transferring data from host RAM to
device RAM (global memory), the data then again needs to
be transferred to the shared memory of the multi-processors
for computation. This extra transfer can be compared to the
transfer between PPU and SPU in Cell discounting the DMA
overheads in Cell. However, this transfer is not mandatory
but greatly improves performance. The bandwidth within the
GPU is 177 GBps (Tesla M2050) which can be compared to
the bandwidth of 203 GBps (8 SPUs X 25 GBps) between
PPUs and SPUs.

Figures 7 to 9 are comparison of compression ratio and
throughput of compression and decompression over two ex-
treme data sets. One which gives a good compression ratio (#2)
and another with a poor compression ratio (#25). Compression
ratio achieved in Cell is better than the one achieved in GPU.
Data fragmentation is lesser with fewer threads. The extra
overhead of transfer between host and device is not considered
for this comparison. Although this comparison cannot be
termed completely fair, it does provides a rough estimation. We
can also see from these Figures that the throughput achieved in
both compression phase and decompression in GPU are better
than that of CellBE processor.

VII. RELATED WORK

There has been much work performed on floating point
compression. Many of these are based on predicting the next
value based on previous values, and then compressing the
result of the difference in the bit patterns of the predicted
and actual values. Many of the schemes differ in how the
prediction is made and a few other implementation details.

Engelson, et. al. [8] use extrapolation to predict the next
value. The FCM scheme uses certain bits of previous observed
values to predict the next value. The DFCM [10] is similar,
except that it predicts the difference in values, rather than the
values themselves. The FPC algorithm [9] uses a combination
of FCM and DFCM. It considers both and uses the better
choice. It uses one bit of the code to store the choice used.
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Fig. 7. Compression Ratio in Cell And GPUs
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Fig. 8. Compression throughputs in Cell and GPU
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Fig. 9. Decompression throughputs in Cell and GPU

The scheme we have used can be considered a simple special
case of any of the above schemes.

VIII. CONCLUSION AND FUTURE WORK

We have investigated the effectiveness of the high through-
put compression in improving the I/O bandwidth limitations.
Various applications are benefiting from this time series based
method for compressing the data. Our approach would be
effective in addressing the network bandwidth limitations too
since our compression and decompression speeds being in few
giga bytes per second. We would like to evaluate many other
time series method which would best fit for the compression
technique.

In future, we would like to improve our algorithm using
various I/O optimizations. We would like to spawn another
kernel which could be implemented to pack the compressed
data on the global memory before the transfer is made to the
host. Even if there is a marginal increase in computation time,
for a data set with significant compression, the increase in
total throughput would be a lot better. In order to mitigate the
transfer time between host and device, instead of transferring
the entire data before the compression actually begins, a
streamed approach could be taken using cudaStreams which
allows the possibility of overlapping transfer and computation
of two different streams.

This approach would also be useful in cases where an
application produces a data stream and compression could
begin even before the entire data stream is generated. Since
it is possible to use multiple GPUs together, each assigned to
a different host thread, the implementation could be extended
to use multiple GPUs which would enhance the performance
greatly.
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