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Abstract. The Cell Broadband Engine shows much promise in high 
performance computing applications. The Cell is a heterogeneous multi-core 
processor, with the bulk of the computational work load meant to be borne by 
eight co-processors called SPEs. Each SPE operates on a distinct 256 KB local 
store, and all the SPEs also have access to a shared 512 MB to 2 GB main 
memory through DMA. The unconventional architecture of the SPEs, and in 
particular their small local store, creates some programming challenges. We 
have provided an implementation of core features of MPI for the Cell to help 
deal with this. This implementation views each SPE as a node for an MPI 
process, with the local store used as if it were a cache. In this paper, we describe 
synchronous mode communication in our implementation, using the rendezvous 
protocol, which makes MPI communication for long messages efficient. We 
further present experimental results on the Cell hardware, where it demonstrates 
good performance, such as throughput up to 6.01 GB/s and latency as low as 
0.65 μs on the pingpong test. This demonstrates that it is possible to efficiently 
implement MPI calls even on the simple SPE cores. 

1.   Introduction 

The Cell is a heterogeneous multi-core processor from Sony, Toshiba and IBM. It 
consists of a PowerPC core (PPE), which acts as the controller for eight SIMD cores 
called synergistic processing elements (SPEs). Each SPE has a 256 KB memory 
called its local store, and access to a shared 512 MB to 2 GB main memory. The SPEs 
are meant to handle the bulk of the computational load, but have limited functionality 
and local memory. On the other hand, they are very effective for arithmetic, having a 
combined peak speed of 204.8 Gflop/s in single precision and 14.64 Gflop/s in double 
precision.  



Even though the Cell was aimed at the Sony PlayStation3, there has been much 
interest in using it for High Performance Computing, due to the high flop rates it 
provides. Preliminary studies have demonstrated its effectiveness for important 
computation kernels [15]. However, a major drawback of the Cell is its 
unconventional programming model; applications do need significant changes to fully 
exploit the novel architecture. Since there exists a large code base of MPI 
applications, and much programming expertise in MPI in the High Performance 
Computing community, our solution to the programming problem is to provide an 
intra-Cell MPI 1 implementation that uses each SPE as if it were a node for an MPI 
process [16, 17]. 

In implementing MPI, it is tempting to view the main memory as the shared 
memory of an SMP, and hide the local store from the application. This will alleviate 
the challenges of programming the Cell. However, there are several challenges to 
overcome. Some of these require new features to the compiler and the Linux 
implementation on the Cell, which have recently become available. We have 
addressed the others in [16] and in this paper, related to the MPI implementation. 
While [16] focuses on buffered mode communication, this paper focuses on 
synchronous mode communication. These two modes are explained in greater detail 
below. 

In order for an MPI application to be ported to the Cell processor, we need to deal 
with the small local stores on the SPEs. If the application data is very large, then the 
local store needs to be used as software-controlled cache and data-on-demand, with 
the actual data in main memory. These features are available in the latest release of 
the Cell SDK. These will allow applications to be ported in a generic manner, with 
minimal changes to the code, when used along with our MPI implementation. 
Meanwhile, in order to evaluate the performance of our implementation, we hand-
coded these transformations for two applications with large data, before the SDK 
features were made available. We have also developed a version of our MPI 
implementation for small memory applications, which can be ported directly, 
maintaining application data in local store.  However, we will primarily describe our 
implementation that uses the local store as a software controlled cache, providing 
additional information on the small memory implementation occasionally. 

Empirical results show that our synchronous mode implementation achieves good 
performance, with throughput as high as 6.01 GB/s and latency as low as 0.65 μs on 
the pingpong test. We expect the impact of this work to be broader than just for the 
Cell processor due to the promise of heterogeneous multicore processors in the future, 
which will likely consist of large numbers of simple cores as on the Cell.  

The outline of the rest of the paper is as follows. In Sect. 2, we describe the 
architectural features of Cell that are relevant to the MPI implementation. We then 
describe our implementation in Sect. 3 and evaluate its performance in Sect. 4. We 
finally summarize our conclusions in Sect. 5. 

 



2.   Cell Architecture 

Fig. 1 provides an overview of Cell processor.  It consists of a cache coherent 
PowerPC core and eight SPEs running at 3.2 GHz, all of whom execute instructions 
in-order. It has a 512 MB to 2 GB external main memory, and an XDR memory 
controller provides access to it at a rate of 25.6 GB/s. The PPE, SPE, DRAM 
controller, and I/O controllers are all connected via four data rings, collectively 
known as the EIB. Multiple data transfers can be in process concurrently on each ring, 
including more than 100 outstanding DMA memory requests between main storage 
and the SPEs. Simultaneous transfers on the same ring are also possible. The EIB’s 
maximum intra-chip bandwidth is 204.8 GB/s. 

Each SPE has its own 256 KB local memory from which it fetches code and reads 
and writes data. Access latency to and from local store is 6 cycles [6] (page 75, table 
3.3). All loads and stores issued from the SPE can only access the SPE’s local 
memory. Any data needed by the SPE that is present in the main memory must be 
moved into the local store explicitly, in software, through a DMA operation. DMA 
commands may be executed out-of-order.  

Fig. 1. Overview of cell architecture 

In order to use the SPEs, a process running on the PPE can spawn threads that run 
on the SPEs. A SPE’s local store and registers are mapped onto the effective address 
of the process that spawned a SPE thread. Data can be transferred from the local store 
or register of one SPE to that of another SPE by obtaining the memory mapped 
address of the destination SPE, and performing a DMA.  

We present some performance results in Fig. 2 for DMA times. We can see that the 
SPE-SPE DMAs are much faster than SPE-main memory DMAs.  The latter attain a 
maximum bandwidth of around 7 GB/s, in contrast to over 20 GB/s for the former. 
The latencies are a little higher when multiple SPEs simultaneously access memory. 
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Fig. 2. Latency and bandwidth of DMA operations 

3.   MPI Design  

In this section, we describe our basic design for synchronous mode point-to-point 
communication. We also describe the application start-up process. We have not 
described the handling of errors, in order to present a clearer high-level view of our 
implementation. 

3.1   MPI Communication Modes 

MPI provides different options for the communication mode chosen for the basic 
blocking point to point operations, MPI_Send and MPI_Recv. Implementations can 
use either the buffered mode or the synchronous mode. A safe application should not 
make any assumption on the choice made by the implementation1 [13].  

In the buffered mode, the message to be sent is copied into a buffer, and then the 
call can return. Thus, the send operation is local, and can complete before the 
matching receive operation has been posted. Implementations often use this for small 
messages [3]. For large messages, they avoid the extra buffer copy overhead by using 
synchronous mode. Here, the send can complete only after the matching receive has 
been posted. The rendezvous protocol is typically used, where the receive copies from 
the send buffer to the receive buffer without an intermediate buffer, and then both 
operations complete. In this paper, we describe only our synchronous mode 
implementation, and present experimental results where this mode is used for all 
message sizes2.  

                                                
1 Other specific send calls are available for applications that desire a particular semantic. 
2
 We described the buffered mode in [16]. It has smaller short-message latency but has poorer 

performance for long messages. The experimental results in [16] show the performance of a 



3.2   MPI Initialization 

We first summarize the MPI initialization process presented in [16]. A user can run an 
MPI application, provided it uses only features that we have currently implemented, 
by compiling the application for the SPE and executing the following command on 
the PPE: 

mpirun –n <N> executable arguments 

where <N> is the number of SPEs on which the code is to be run. The mpirun 
process spawns the desired number of threads on the SPE. Note that only one thread 
can be spawned on an SPE, and so <N> cannot exceed eight on a single processor or 
sixteen for a blade.  We have not considered latencies related to the NUMA aspects of 
the architecture in the latter case. 

Note that the data for each SPE thread is distinct, and not shared, unlike in 
conventional threads. The MPI operations need some common shared space through 
which they can communicate, as explained later. This space is allocated by mpirun. 
This information, along with other information, such as the rank in 
MPI_COMM_WORLD, the effective address of the signal registers on each SPE, and 
the command line arguments, are passed to the SPE threads by storing them in a 
structure and sending a mailbox message3 with the address of this structure. The SPE 
threads receive this information during their call to MPI_Init. The PPE process is not 
further involved in the application until the threads terminate, when it cleans up 
allocated memory and then terminates. It is important to keep the PPE as free as 
possible for good performance, because it can otherwise become a bottleneck. In fact, 
an earlier implementation, which used some helper threads on the PPE to assist with 
communication, showed poor performance. 

3.3   Synchronous mode point-to-point communication 

Communication architecture. Associated with each message is meta-data that 
contains the following information about the message: Address of the memory 
location that contains the data4, sender’s rank, tag, message size, datatype ID, MPI 
communicator ID, and an error field. For each pair of SPE threads, we allocate space 
for two meta-data entries, one in each of the SPE local stores, for a total of N(N-1) 
entries, with (N-1) entries in each SPE local store; entry Bij is used to store meta-data 
for a message from process i to process j, i j. Such schemes are used by other 
implementations too, and it is observed that it is not scalable for large N. However, 
here N is limited to eight for one processor, and sixteen for a blade (consisting of two 

                                                                                                                
hybrid implementation, which switches to synchronous mode for large messages. However, 

the synchronous mode implementation is not described in [16].  
3
 A mailbox message is a communication mechanism for small messages of 32 bits. 

4 The address is an effective address in main memory. In the modification made for small 
memory applications, it is the effective address of a location in local store. 



processors). Each meta-data entry is 128 bytes, and so the memory used is small.  It 
has the advantage that it is fast. 
Send protocol. We describe the protocol for data in contiguous locations, which is 
the more common case; data in non-contiguous locations will incur additional 
overhead. The send operation from Pi to Pj proceeds as follows. The send operation 
first puts the meta-data entry into buffer Bij through a DMA operation.  

 

 

 

(a)                           (b) 

Fig. 3. Execution of (a) send and (b) receive operations from a specific source SPE Pi to Pj 

The send operation then waits for a signal from Pj notifying that Pj has copied the 
message. The signal obtained from Pj contains the error value. It is set to 
MPI_SUCCESS on successful completion of the receive operation and the 
appropriate error value on failure.  In the synchronous mode, an SPE is waiting for 
acknowledgment for exactly one send, at any given point in time, and so all the bits of 
the receive signal register can be used. Fig. 3 shows the flow of the send operation. 

Receive protocol. The receive operation has four flavors. (i) It can receive a message 
with a specific tag from a specific source, (ii) it can receive a message with any tag 
(MPI_ANY_TAG) from a specific source, (iii) it can receive a message with a 
specific tag from any source (MPI_ANY_SOURCE), or (iv) it can receive a message 
with any tag from any source.  

The first case above is the most common, and is illustrated in Fig. 3. First, the 
meta-data entry in Bij is continuously polled, until the flag field is set. The tag value in 
the meta-data entry is checked. If the application truly did not assume any particular 
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communication mode, then this tag should match, and the check is superfluous. 
However, correct but unsafe applications may assume buffered mode, and so we 
perform this check5. If the tag matched, then the address of the message is obtained 
from the meta-data entry.  

The receive call then transfers data from the source SPE's application buffer to its 
own buffer and signals Pi's signal register to indicate that the data has been copied. 
Note that the data transfer is a little complicated, because the SPE cannot perform a 
memcpy, since source and destination buffers are in main memory, and not in its local 
store. It also cannot DMA from main memory to main memory, because it can only 
DMA between local store and some effective address. So we DMA the data to local 
store and then transfer it back to its location in main memory. For large data, this is 
performed in chunks, with double buffering being used to reduce the latency to a 
certain extent6. After the receiving SPE completes the transfer, it unsets the meta-data 
flag field, and then signals the sending SPE's signal register. 

While the data transfer process described above appears wasteful, a similar 
situation occurs in traditional cache-based processors too [10]; memcpy brings the 
source and destination to cache from main memory, copies the data, and writes the 
destination back to cache, incurring three cache misses. Some systems have alternate 
block copy commands to avoid at least one of these misses. But these cache misses 
still have a dominant effect on MPI performance on shared memory systems. 

The second case is handled in a manner similar to the first, except that any tag 
matches. The third and fourth cases are similar to the first two respectively, as far as 
tags are concerned. However, messages from any source can match. So the receive 
operation checks the meta-data entry flags for each sender, repeatedly, in a round 
robin fashion, to avoid starvation, even though the MPI standard does not guarantee 
against starvation. If any of the flags is set, and the tag matches for case (iii), then the 
rest of the receive operation is performed as above. Note that in case (iii), it is not an 
error for a tag not to match, because there may be a message from another sender that 
it should match.  

4.   Performance Evaluation  

The purpose of the performance evaluation is to first show that our MPI 
implementation achieves performance comparable to good MPI implementations, 
even though the SPEs are not full-fledged cores. In particular, we will compare with 
shared memory intra-node MPI implementations, which have low latencies and high 
throughputs.  

We performed our experiments on a 3.2 GHz Rev 2 Cell blade with 1 GB main 
memory running Linux 2.6.16 at IBM Austin. We had dedicated access to the 
machine while running our tests.  

                                                
5 We do not mention other error checks that are fairly obvious. 
6 For small memory applications, both buffers are in local stores. Since a local store address can 

be mapped to an effective address, a single DMA suffices. 



Fig. 4 shows the latency and bandwidth results using the pingpong test from 
mpptest [9]. It was modified to place its data in main memory, instead of in local 
store. We determined the wall clock time for these operations by using the 
decrementer register in hardware, which is decremented at a frequency of 
14.318 MHz, or, equivalently, around every 70 ns. Between calls to the timer, we 
repeated each pingpong test loop 1000 times. For the shortest latencies we obtained 
(0.65 μs per message), this yields an accuracy of around 0.005% (observing that each 
iteration of the loop involves two messages). The accuracy is greater for the larger 
tests.  

We performed each test multiple times and took the average. Note that it is 
sometimes recommended that one take the smallest of the times from multiple 
experiments to obtain reproducible results [9]. This would give number a little smaller 
than the average that we report. However, our results were quite close to each other, 
and so there is not much of a difference between the average and the minimum.   

Note that on cache-based processors, one needs to ensure that the tests do not 
already have their data in cache. However, the SPEs do not have a cache, and so this 
is not an issue. The implementation transfers data between main memory locations, 
using the SPE local store as a temporary location (analogous to a cache miss). The 
small-application tests move data from local store to local store. 

 

  
 

 (a)                                (b)  

Fig. 4. Latency and throughput results for point-to-point communication 

Fig. 4 (a) shows the latency results for point to point communication on the 
pingpong test, in the presence and absence of congestion. The congested test involved 
dividing the SPEs into pairs, and having each pair exchanging messages. One pair 
was timed. In the non-congested case, only one pair of SPEs communicated. The 
smallest latency for the non-congested case is around 0.65 μs. The 0-byte message 
incurs the following costs: one SPE-SPE DMA, for the meta-data on the sender side, 
and one SPE_SPE signal on the receive side (the other DMAs, for getting data from 
main-memory to local store on the receiving side, and once again for sending that 
data back from local store to main memory, do not occur with a 0-byte message).  

Fig. 4 (b) shows the throughput results for the same tests as above for large 
messages, where the overhead of exchanging meta-data and signals can be expected 



to be relatively insignificant. The maximum throughput observed is around 6 GB/s. 
From Fig. 2, we can observe that the maximum bandwidth for blocking SPE to main 
memory DMAs is around 7 GB/s. Note that though we need to transfer each data 
twice, once from main memory to SPE and then from SPE to main memory, due to 
double buffering and the ability to have multiple DMAs simultaneously in transit, the 
effective time is just half of the round-trip time. This is possible because at 6 GB/s, 
we have not saturated the bandwidth of 25.6 GB/s available for the main memory.  
Thus the observed DMA time agrees with what one would expect from the DMA 
times. 

Table 1. Latency and bandwidth comparison 

MPI/Platform Latency (0 Byte) Maximum throughput 
Cell    0.65 μs    6.01    GB/s 

Cell Congested    NA                     4.48    GB/s 

Cell Small    0.65 μs    23.29  GB/s 

Nemesis/Xeon  1.0   μs  0.65    GB/s 

Shm/Xeon  1.3   μs  0.5      GB/s 

Open MPI/Xeon  2.1   μs  0.5      GB/s 

Nemesis/Opteron  0.34 μs  1.5      GB/s 

Open MPI/Opteron  0.6   μs  1.0      GB/s 

TMPI/Origin 2000  15.0 μs  0.115  GB/s 

 
Table 1 compares the latencies and bandwidths with those of some good intra-node 

implementations on other hardware.  We can see that MPI on the Cell has 
performance comparable to those on processors with full-fledged cores. 

In Table 1, Cell refers to our implementation on the Cell processor.  Cell Small 
refers to our implementation for small applications. Nemesis refers to the MPICH 
using the Nemesis communication subsystem. Open MPI refers to the Open MPI 
implementation. Shm refers MPICH using the shared-memory (shm) channel. TMPI 
refers to the Threaded MPI implementation on an SGI Origin 2000 system reported 
in [14]. Xeon refer to timings on a dual-SMP 2 GHz Xeon, reported in [5]. Opteron 
refers to timings on a 2 GHz dual-core Opteron, reported in [3]. 

5.   Conclusions 

We have described an efficient implementation of synchronous mode MPI 
communication on the Cell processor. It is a part of an MPI implementation that 
demonstrates that an efficient MPI implementation is possible on the Cell processor, 
using just the SPEs, even though they are not full-featured cores. Small-memory 
applications using the core features of MPI can use our implementation directly, 
without any changes to the code being required. Other applications can make 
relatively small hand-coded changes, along with features provided by the SDK. Thus, 
our approach eases the programming burden, which is considered a significant 



obstacle to the use of the Cell processor. Furthermore, our implementation 
demonstrates that simple cores for future generation heterogeneous multicore 
processors can run MPI applications efficiently. 
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