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Abstract  
 

Compute-intensive tasks in high-end high 

performance computing (HPC) systems often 

generate large amounts of data, especially floating-

point data that need to be transmitted over the 

network. Although computation speeds are very 

high, the overall performance of these applications 

is affected by the data transfer overhead. Moreover, 

as data sets are growing in size rapidly, bandwidth 

limitations pose a serious bottleneck in several 

scientific applications. Fast floating point 

compression can ameliorate the bandwidth 

limitations. If data is compressed well, then the 

amount of data transfer is reduced. This reduction 

in data transfer time comes at the expense of the 

increased computation required by compression and  

decompression. It is important for compression and 

decompression rates to be greater than the network 

bandwidth; otherwise, it will be faster to transmit 

uncompressed data directly [1]. Accelerators such 

as Graphics Processing Units (GPU) provide much 

computational power. In this paper, we show that 

the computational power of GPUs and CellBE 

processor can be harnessed to provide sufficiently 

fast compression and decompression for this 

approach to be effective for data produced by many 

practical applications. In particularly, we use Holt`s 

Exponential smoothing algorithm from time series 

analysis, and encode the difference between its 

predictions and the actual data. This yields a 

lossless compression scheme. We show that it can be 

implemented efficiently on GPUs and CellBE to 

provide an effective compression scheme for the 

purpose of saving on data transfer overheads.  
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1. Introduction 
 

There has been tremendous improvement in 

computing power of high end computing system in 

recent years. But I/O has not been keeping pace with 

computing power. The gap between computing 

power and I/O has been growing over the years and it 

is further increasing due to availability of various 

accelerators which enhance computations. For 

example, world's second fastest GPU enabled Titan 

Supercomputer has a peak performance of 20 

petaflops/s (Pflop/s) and a maximum possible I/O 

bandwidth of 240 GB/s[3]. The ratio of I/O 

performance to compute performance is even worse 

in the top supercomputers. The current trend of 

increase in core-counts are causing applications that 

were previously not I/O bound to become I/O bound, 

and the situations is expected to become worse in the 

near future.  If we can use computational power for 

reducing the data size, then this will reduce the data 

transfer overhead, leading to increased overall 

application performance.  

 

In addressing this issue, we keep in mind the 

following typical computing paradigm. Typical 

scientific simulations involve a large number of 

iterations. In each iteration, the state of a physical 

system, which consists of a large set of floating point 

numbers, is updated. Every few iterations, the state of 

the system is output to disk. This data is later 

analyzed or visualized. For example, until recently 

NCCS at ORNL housed Jaguar, which was one of the 

fastest supercomputer in the world, and the Lens 

GPU cluster is available for data analysis and 

visualization. Data may also be output for check 
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pointing purposes, which is increasingly becoming 

important, in order to provide fault tolerance. 

When I/O time becomes a bottleneck, applications 

either have to run more slowly or to perform I/O less 

frequently. We propose a technique to compress the 

data produced by applications to address this I/O 

bottleneck issue. We use the abundant computing 

power available to reduce I/O usage, which is a 

scarce resource. For example, if we obtain a 50% 

compression ratio, then we are effectively doubling 

the bandwidth available to applications. However, it 

is important for the overhead associated with 

compression and decompression to be small. If we 

wish to store the data produced for analysis later, 

then it should be faster to compress the data and 

transfer it, rather than to transfer the uncompressed 

data directly. Similarly, it should be faster for the 

data analysis or visualization application to read the 

compressed data and uncompressed it, rather than for 

it to read the uncompressed data directly. 

 

Compression has been proposed in the past as a 

solution to bandwidth bottlenecks. However, the 

overhead associated with it has prevented it from 

being used for floating point data in practical 

situations. We propose a high throughput 

compression algorithm and apply it on a set of 

applications. The compression it achieves is less than 

that of popular compression algorithms. However, its 

low computational overhead makes it effective in 

dealing with various types of I/O bottlenecks for 

large classes of applications. 

 

Our compression algorithm predicts future data in a 

data stream based on prior data, using techniques 

from time series analysis. It then computes some 

measure of the difference between the predicted 

value and the actual data. If the prediction is accurate, 

then we obtain several zeros in the most significant 

bits. These results can then be encoded efficiently. 

We give further details below.   

 

Table 1: Data Sets used for evaluation of 

algorithms 

 

No  Name  Applications 

1 Bloweybq  Sparse Matrix 

2 Msg_sppm 3-D Hydro Dynamics 

3 Andrews Eigen Value Problem 

4 Lp_ken_18 Linear Programming 

5 rail4284 Linear Programming 

6 para-4 Semiconductor Device 

7 2D_27628_bjtcai Semiconductor Device 

8 Ohne2 Semiconductor Device 

9 c-58 Non Linear Optimizations 

10 Memplus Memory Circuit 

11 apache2 Finite Difference  

12 Num_comet Astro physics simulations 

13 a0nsdsil Lin.Complimentary Problem 

14 Msg_bt CFD 

15 Ted_AB_unscaled FEM: Thermoelasticity 

16 msg sweep 3D Neutron Transport 

17 num control Min. in data assimilation 

18 Num_brain  Simulation of Brain impact 

19 Msg_sp CFD 

20 Climate Climate Modelling 

 

Let the data set to be stored at some stage in the 

computation be given by S = (x1, x2, ..., xn). For 

example, this may represent the weather conditions at 

all grid points, at a certain point in time, in a climate 

modeling application. We use time series analysis 

techniques to predict xi after seeing the first i-1 

components of the vector. Even though the 

dimensions are usually spatially, rather than 

temporally, related, time series analysis can be used. 

Our ability to predict depends on short range 

correlations that are often present in scientific 

applications. For example, the weather conditions at a 

certain grid point in a weather forecasting 

applications may be somewhat close to that  at nearby 

points. We hope to be able to predict the sign, 

exponent and the most significant bits of the 

mantissa, while the least significant bits are hard to 

predict. If  pi  is the predicted value, then we compute 

an exclusive-OR of the bit-patterns of the floating 

point numbers representing xi and  pi  and  encode the 

result  losslessly.   

 

We target the implementation details of our technique 

to GPUs, which are used as accelerators on the Forge 

system, for instance. With the abundance of 

computing power provided by accelerators, such as 

GPUs and Cell Processors, we hope that our work 

will further stimulate research in high throughput 

floating point compression techniques to ameliorate 

bandwidth bottlenecks. The outline of the rest of the 

paper is as follows. We next describe our 

compression algorithm in next section. We then 

describe our data sets and experimental setup 

different sections respectively. We present our 

optimizations and empirical evaluation results in next 

section. We summarize related work in next section 

and present our conclusions. 
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2. Time Series Based Floating point 

Compression Algorithm 
 

We use the Holt exponential smoothing algorithm for 

time-series prediction. This is an extension of 

exponential smoothing that includes a term for linear 

trends. It is also known as double exponential 

smoothing. Assume that at time t we have observed yt 

and estimated the level (a smoothed average) Lt and 

the slope bt in the series. Then a k-step ahead forecast 

is Ft+k = Lt+ bt+k. Holt`s method allows the estimates 

of level and slope to be adjusted with each new 

observation. The updating equations for Lt and bt 

from Lt-1, bt-1and yt are: 

  (1) 

  (2) 

for given  α and  β in [0,1].  

To start the process, both L1 and b1 must be specified. 

Possible starting values are L1 = y1 and b1= y2 – y1.  

Thus, no forecasts can be made until y1 and y2 have 

been observed. By convention, we let F1 = y1. 

We next describe the application of Holt`s linear 

exponential smoothening to the compression of the 

floating point numbers.  Algorithm 1 describes the 

steps for fast floating point compression using Holt`s 

exponential smoothening. Decompression can be 

performed in a similar manner.This algorithm 

compresses linear sequences of single precision 

floating point numbers. It predicts the next floating 

point number, which is taken to be zero initially. As 

part of prediction, it uses series of previous values to 

predict the current value as given in equation 1 and 2. 

Once the prediction is done, the original number is 

XOR-ed with the predicted value. The XOR operation 

turns identical bits into zeros. Hence, if the prediction 

is accurate, the XOR would result in many leading 

zero bits. The compression algorithm then determines 

the number of leading zero bytes and encodes the 

count in a two-bit value. The resulting two-bit code 

and the non-zero remainder bytes are written to the 

compressed stream. The latter are emitted without any 

form of encoding. In figure 1 we have shown the 

format for storing compressed data. 

 

Algorithm 1 holt‘s Linear exponential for floating 

pointcompression 

1.Input: float* Array, int N 

2. int *A = (int *) Array 

3. int Level = Input[0], Slope= Input[1] - Input[0] 

4. float Alpha = Beta = 0 

5. Define A[-1] = 0 

6. for i = 0 to N-1 do 

7. Pred = Level[i] + Slope[i] 

8. X = A[i] XOR Pred 

9. Data[i] = trailing non-zero bytes of X 

10. Code[i]= code for number of trailing non zero 

bytes of X 

11. Level[i] =α*Input[i] + (1-α)(Level[i-1] + Slope[i-

1]) 

12. Slope[i] = β*(Level[i] - Level[i-1]) + (1- 

β)Slope[i-1] 

13. end for 

 

Algorithm 2 holt‘s Linear exponential for floating 

point decompression 

1. Input: Compression representation of Data Code 

2. int Pred = 0 

3. int Level = Input[0], Slope= Inp ut[1] - Input[0] 

4. float Alpha = Beta = 0 

5. Define A[-1] = 0 

6. for i = 0 to N-1 do 

7. Recover X from Compact representation of Data 

and Code 

8. X = A[i] XOR Pred 

9. Level[i] =α*Input[i] + (1-α)(Level[i-1] + 

Slope[i-1]) 

10. Slope[i] = β*(Level[i] - Level [i-1]) + (1- 

β)Slope[i-1] 

11. Pred = Level[i] + Slope[i] 

12. end for 

13. Store Code and Data compactly. 

 

Decompression works as follows. It starts by reading 

the two-bit header. Then the number of non-zero bytes 

specified by the two-bit header is read and zero 

extended to a full 32-bit number. Then the series of 

previous values and the predictor are updated using 

the operations in reverse to that used in compression 

phase. This lossless reconstruction is possible because 

XOR is a reversible operation. The algorithm 

interprets all the 32-bit floats as integers and uses 

integer arithmetic in order to perform the XOR 

operations. 

 

3. Data Used For Compression 

Algorithm 
 

The data sets used are summarized in table 1 They are 

from the University of Florida sparse matrix 

collection [5] Many of these sparse matrices are from 

real parallel applications. The original data were all in 

double precision. We converted them to single 

precision numbers. Sparse matrices are not a natural 

fit for our hardware [6], and so they provide a good 

test for the effectiveness of our implementation. 
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Figure 1: Schematic of Data Encoding  

 

4. GPU Implementation 
 

Compression Phase: 
In this phase, the floating-point data is read from a 

file, sent to the GPU device for compression, and the 

compressed data is written back to another file. After 

the uncompressed data is read from a file into an 

array, the total floating point number count is 

calculated and this value is divided by 

FloatsPerBlock. 
NumBlocks = TotalNumFloats/Floats Per Block 

 

The implementation of compression steps are given 

below: 

 Copy Raw Data to Device 

 Data Partition 

 Perform Compression in Shared Memory 

 Write Code and Compressed Data to 

Global Memory 

 Copy Compressed Data back to Host 
 
Decompression Phase 
In this phase, the compressed data is read from a file, 

sent to the device for decompression and the 

decompressed data is written to another file. The 

steps involved in this decompression phase are given 

below: 

 Find Block Offsets from Metadata 

 Copy Compressed Data to Device 

 Copy Compressed Data to Shared    

Memory 

 Perform Decompression in Shared 

Memory 

 Write Decompressed Data to Global 

Memory 

 Copy Decompressed Data back to Host 

 

5. Evaluation of Holt’s Compression 

Algorithm 
 

First we present the compression ratios (ratio of 

compressed size to original size). It can be seen in 

Table 2 that the scheme yields good compression for 

some data-sets but poor compression for a few others. 

The reason for this is that we achieve good prediction 

only for data sets which are predictable. This happens 

for certain types of applications, such as 

hydrodynamics on a uniform mesh (\#2), certain 

sparse matrices (\#1), Linear Programming (\#5), etc. 

For applications with random data (\#19), the data is 

not predictable with the simple scheme that we are 

using. In any case, there are applications classes for 

which we get significant compression. 
 

Comparison of Optimization Levels 

Implementation is classified into following 

Optimization Levels: 

 Level 0: No Optimization  

 Level 1: Use of Double Buffering 

 Level 2: Increased 115 floats for each 

thread 

 Level 3: Increased computation threads to 

64. 

The above optimization levels are not inclusive of 

each other, although such an inclusion would 

increase performance significantly, due to want of 

shared memory. Padding compressed sizes for 4-byte 

aligned, avoiding bank conflicts and increasing 

number of threads for memory transfers between 

shared and global memory has been implemented in 

levels 1,2 and 3. 

 

 
 

Figure 2: Compression Throughput comparisons 

for the four optimization levels 

 

Compression speed depends on the compression ratio 

achieved; greater the compression of data, fewer are 

the data that need to be transferred from global 

memory to shared memory. Compression/ 

Decompression throughput achieved without 
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optimizations was inadequate, yielding a 

performance of less than 2 GBps. But after tuning the 

code for performance, a maximum throughput of 5.2 

GBps could be achieved. 

 

 
 

Figure 3: Decompression Throughput 

comparisons for the four optimization levels 

  

Figure 4 and 5 shows compression and 

decompression throughputs for data sets \#1, \#10, 

\#9 \#3, \#6 and \#2. The data sets have been chosen 

with varying sizes and fairly good compression 

ratios. The data sets have been plotted with 

increasing sizes. The throughput shown in Figure 6  

only reflects the computation time and does not 

include the time taken for data transfers between host 

and device. 

 

 
 

Figure 4: Compression/Decompression 

throughput comparisons optimization Level 3. 

 

As can be seen from Figure 6 the throughput 

increases as the sizes of data sets increase. The 

reason for this is that the number of threads created is 

directly proportional to data size. GPU power is fully 

extracted with thousands of threads running in 

parallel. More the number of threads, greater is the 

utilization of the GPU memory bandwidth and 

greater is the performance obtained. With smaller 

data sizes, only a few threads are created to compress 

them in order to avoid increased data fragmentation 

which results in sub-optimal throughputs.A 

comparison is also made between compression and 

decompression throughput for optimization Level-4. 

Compression fairs slightly better as this phase has 

been optimized more than the decompression phase. 

Apart from the 64 threads which are busy with 

computation, more threads are added to improve 

transfers between shared and global memory. Testing 

for various block size i.e. number of threads per 

block, it has been observed that the compression 

phase works best with 128 threads per block and 

decompression phase with 192 threads per block. 

Register usage by threads (i.e. number of variables 

per thread), warp scheduling and usage of local 

memory and shared memory determine throughputs 

achieved with different block sizes. 

 

Time Distribution 

In the results, throughput is calculated only with 

respect to compression speeds. If the GPU is used 

only to compress or decompress data of an 

application running on the CPU, then the data first 

needs to be transferred to the GPU and results need to 

be copied back to the host. This transfer is limited to 

8 GBps peak by the PCIe bus. Although the transfer 

speed is quoted as 8 GBps, average transfer speed 

obtained is only around 5 GBps. Compared to 

computation time, data transfer time is quite high. 

However, applications running on systems with 

accelerators typically use accelerators to handle the 

bulk of the computation. So, data that needs to be 

computed will typically already be present on the 

GPU, and does not need to be transferred from the 

host. Similarly, in decompression, the uncompressed 

data may not need to be sent back to the host.As can 

be seen from the Figures 5  and 6, time taken for host 

to device transfer is lesser than for the reverse case. 

This is due to two reasons. Since block 

synchronization is not possible in CUDA [5] each 

block writes its compressed data to fixed locations in 

the global memory. The entire global array where 

compressed data is stored are transferred and  written 

back to host. The size of this array is larger than the 

input data as it has been allocated for the worst case 

scenario of zero compression. 

 

 
 

Figure 5: Time distribution in Compression phase 
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Figure 6: Time distribution in Uncompression 

phase 

 

In the decompression phase, the time taken to transfer 

data from host to device is obviously lesser as only 

compressed data is transferred whereas 

uncompressed data is transferred from device to host. 

 

Comparison with Cell BE 

An IBM Cell BE processor comprises of 1 PPU and 8 

SPUs, where the PPU offloads the computation to  

CPUs to be done in parallel. For SPUs to compute on 

data, the PPU needs to DMA this data over a 

bandwidth of 25 GBps. The output is DMAed back to 

the PPU by the SPU. The PPU is a fully functional 

processor and so can host an entire OS on it, making 

the Cell BE an independent device.  

 

 
 

Figure 7: Compression throughput in Cell and 

GPU 

 

The structure of the GPU however is different. The 

cores of the GPUs are little more than functional 

units and contain very little logical units. Therefore, a 

GPU can be used only as a co-processor to the CPU 

and cannot be used to run programs independently 

without CPU collaboration. The CPU in this case can 

be compared to the PPU in Cell which offloads 

computation to the GPU. The data needs to be 

transferred from host to device for computation. The 

GPU however has an extra level of indirection. After 

transferring data from host RAM to device RAM 

(global memory), the data then again needs to be 

transferred to the shared memory of the multi-

processors for computation. This extra transfer can be 

compared to the transfer between PPU and SPU in 

Cell discounting the DMA overheads in Cell. 

However, this transfer is not mandatory but greatly 

improves performance. The bandwidth within the 

GPU is 177 GBps (Tesla M2050) which can be 

compared to the bandwidth of 204.8 GBps (8 SPUs X 

25.6 GBps) between PPUs and SPUs. 

 

Figures 7 and 8 throughput of compression and 

decompression over two extreme data sets. Data 

fragmentation is lesser with fewer threads. 

 

 
 

Figure 8: Uncompression throughput in Cell and 

GPU 

 

The extra overhead of transfer between host and 

device is not considered for this comparison. 

Although this comparison cannot be termed 

completely fair, it does provides a rough estimation. 

We can also see from these figures that the 

throughput achieved in both compression phase and 

decompression in GPU are better than that of CellBE 

processor. 

 
 

Figure 9: Optimization of the computational phase 

of compression and decompression. (1) Basic code, 

(2) with loop unrolling, and (3) vectorized. 

 

6. Implementation of Floating Point  

Compression on a Single SPE 
 

In this section, we discuss implementation and 

optimization of the algorithm on a single SPE. 

However, one important aspect of the implementation 

is motivated by the need to parallelize it later – we 

divide the data into blocks of 3968  floats each, and 
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compress each block independently. This will enable 

the SPEs in a parallel implementation to work on 

different blocks independently. The block size was 

chosen such that the data for a block can be brought 

in through a single DMA, and the compressed data 

can be written back in a single DMA, even in the 

worst case. 

 

 
Figure 10:  Fraction of time spent in different 

phases of the algorithm (bottom: computation, 

middle: put, top: get). (1) Compression, single 

buffering, (2) Compression, multi-buffering, (3) 

Compression with multi-buffering and infrequent 

synchronization, (4) Decompression, single 

buffering, (5) Decompression, multi-buffering. 

 

This decomposition into blocks is illustrated in fig. 1. 

The compressed data contains a sequence of pairs, 

where each pair is the metadata for a block followed 

by compressed data for that block. The metadata first 

contains the sizes of the compressed and 

uncompressed data, followed by a few bytes reserved 

for possible use later. This is followed by the code for 

all the data in the block. A few empty bytes may 

follow, in order to ensure that the compressed data is 

aligned along integer boundaries. Up to 127 extra 

bytes may be allocated at the end of the compressed 

data section of each block, in order to ensure 128-

byte alignment of the next block. The space overhead 

of this is less than one percent of the original data 

size. Such alignment is useful because it enables 

DMAs between main memory and SPEs to be 128 

byte aligned.  

 
Figure 11:  Throughput to disk using 

asynchronous (aioWrite) and synchronous IO. 

We observed a significant improvement in 

performance for DMA puts that are 128 byte aligned 

compared with 16 byte aligned. Therefore, the 

marginal increase in space is acceptable. 

 

Compression is fairly straight forward. First, we wish 

to find suitable parameters _ and _. We use a small 

fraction of the data and compress it with different 

values of the parameters to find suitable values. 

Different SPEs work simultaneously on different 

values of the parameters, in order to complete the 

search fast, when we use multiple SPEs. We search in 

the range [0.95, 1.05], because the optimal is usually 

in this range. The overhead associated with finding 

the parameters is around 10% of the compression 

time. We choose the parameter values that gave best 

compress ratio, and use it in the actual compression 

phase. The selected values of the two parameters are 

written at the beginning of the compressed file. 

 

 
 

Figure 12:  Total throughput of compression and 

decompression on 16 SPEs. The data are arranged 

in decreasing order of compression achieved. 

 

In the main compression computation, the SPE brings 

in data, compresses it, and writes it back to main 

memory. Decompression is a little more involved, 

because the location and size of compressed data for 

each block is unknown. The PPE first quickly 

computes an index for the starting location for each 

block, using the metadata entry specifying 

compressed data size. (The time taken is less than 2% 

of the total time in a parallel computation, and an 

even smaller fraction with one SPE.) The SPE gets 

this index and uses it to determine the starting 

location for each block. We allocate two buffers, 

capable of storing 2048 entries each, for the index on 

the SPE. This is not sufficient for large data sizes. So 

the SPE needs to occasionally bring in a new index 

block. Two buffers are used in order to enable double 

buffering. So, the SPE rarely needs to wait much for 

an index to arrive. The location and size of a block 

can be determined from the index. Once the 

compressed data is received, the SPE uses the 
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uncompressed size field in the metadata to determine 

the amount of data to decompress. 

 

Figure 9 shows the impact of optimizations on the 

performance of the computational phases of 

compression and decompression. The timings 

obtained are almost identical for all data samples, and 

do not depend on the compression obtained. The 

basic compression and decompression code had 

somewhat modest performance. We manually 

unrolled the loop eight times, and after this, the 

compiler was able to improve the performance 

substantially, as shown in the second bars for 

compression and for decompression. We also 

vectorized the compression code by hand, but 

obtained only a slight improvement in performance. 

We, therefore, did not vectorize the decompression 

code by hand. 

 

We next compare the effect of multiple buffering for 

the input and output data. The code was initially 

single buffered. That is, before the computational 

phase for each block, we would request the 

corresponding data, wait for it, and then compute. We 

would then put the compressed data back to main 

memory, and block until that DMA was completed. 

Figure 10 show that the DMAs consumed a 

significant fraction of the total time. We next multi-

buffered the code, so that data for three input buffers 

could simultaneously be in flight, and data for four 

output buffers could simultaneously be in flight. The 

large number of buffers was primarily to deal with 

large variance in DMA times in an earlier version of 

the code [2]. We fixed that problem, related to paging 

issues, so that the variance is no longer high. Figure 

10 shows that the DMA Costs in the multi-buffered 

code are insignificant. An earlier version of the code 

had yet inefficiency. After compression of each 

block, the SPE would send the PPE and mailbox 

message to inform it that a block had been 

compressed. The PPE can then save that compressed 

data to disk. This permits a pipelined compress and 

store scheme, which overlaps compression and IO. 

However, the mailbox overhead is somewhat 

significant even on one SPE, and increases when 

several SPEs are used. So, instead we have  an SPE 

send a mailbox message only every C iterations, for a 

suitably large value of C (which depends on data size 

too). In fact, each SPE does not send a mailbox 

message. Instead, they synchronize after compressing 

every C block using our efficient barrier 

implementation with an overhead of at most 1μs with 

16 SPEs, and one SPE sends a mailbox message. This 

makes the synchronization overhead insignificant, as 

shown in figure 10. 

 

7. Parallel Implementation on 

Multiple SPEs 
 

We now describe the parallel implementation, 

evaluate its performance, and discuss the implications 

of the results for the four types of bandwidth 

bottlenecks that we mentioned earlier. 

 

Implementation 

In the parallel implementation, each SPE 

independently compresses and decompresses blocks 

of data. The blocks are assigned to the SPEs in a 

block cyclic manner, with a parameter C to the code 

specifying the number of adjacent blocks that an SPE 

will handle. For example, if C is 2 and 8 SPEs are 

involved in the computation, then SPE 0 will get 

blocks 0, 1, 16, 17, 24, 25, · · ·. A cyclic distribution 

is important because we are assuming a pipelined 

scheme. The PPE should transmit compressed data 

continuously. If the data were partitioned into P 

pieces on P SPEs, then the early work of SPEs with 

high ranks would not be used until the end,which is 

not conducive to pipelining. Each SPE is assigned a 

different portion of main memory to write all of its 

output. The amount of memory allocated for each 

SPE’s data is sufficient to hold all its compressed 

data in the worst case. So SPEs can work 

independently. The PPE takes data from each SPEs 

output location cyclically and transmits them, C 

blocks at a time. 

 
 

Figure 13:  Throughput of just the compression 

phase of minigzip, for the case where it gives 

fastest compression. 

 

We use a block size C to be greater than one for the 

following reason, apart from the need for reducing 

synchronization cost, as mentioned earlier. Figure 11 
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shows the IO performance in writing 32 MB data to a 

file, writing a block at a time. We can see that the 

data sent in each call needs to be around 100 KB for 

getting close to optimal bandwidth. This is much 

larger than the the size of a single block. We need to 

choose C such that the data size for C blocks will 

normally yields good throughput on transmission. On 

the other hand, for smaller data files, this may 

provide enough parallelism. So, we choose smaller 

values of C for smaller files. 

 

Evaluation 

We first present compression results and then 

performance results. We can see that minigzip 

performs better than our compression scheme. We 

get good prediction fairly frequently in certain types 

of applications, such as hydrodynamics on a uniform 

mesh (#18), Finite element (#9), etc. For applications 

with somewhat random data, such as temperature 

error (#11), the data is not predictable with the simple 

scheme that we are using. In any case, there are 

application classes for which we get significant 

compression. This translates to a corresponding 

decrease in the time taken in the transmission step. 

 

Table 2: Compression obtained by the Holt's 

compression algorithm and by minigzip.  

 

Matrix  

 

Original 

Size(Bytes) 

Compressed 

Size using Holt 

Compressed 

Size using 

minigzip 

1 159744 0.57 0.002 

2 503808  0.89 0.14 

3 718848  0.49 0.30 

4 798720  0.50 0.24 

5 1179648  0.66 0.38 

6 1638400  0.43  0.05 

7 1771520  0.86  0.45 

8 9465264 0.73 0.87 

9 11065344  0.18  0.006 

10 17544800 0.6 0.61 

11 31080408  1.03  0.69 

12 44254180 0.88 0.56 

13 45136128  0.07  0.001 

14 62865612 0.79 0.86 

15 70920000  0.84  0.89 

16 79752372  1.00 0.92 

17 99090432  1.02 0.86 

18 139497932  0.36 0.10 

19 145052928  0.94 0.83 

20 149845548  0.68 0.68 

 

We present performance results for compression and 

decompression using Holt’s algorithm in fig. 12, 

excluding the disk IO cost. The speed of compression 

and decompression is fairly consistent across all the 

data, and does not depend on the compression 

obtained. There is a slight dependence on file size, 

especially for decompression, with smaller files 

yielding slightly lower throughputs. We show the 

speed of minigzip in fig. 13. The timing is for just the 

compression or decompression phase, excluding 

thread creation, IO, etc. The throughput varies a lot, 

but is consistently low; that is, it would be faster to 

transmit uncompressed data directly, rather than to 

compress and send it. (Of course, if the goal were to 

save on storage space, rather than to deal with 

bandwidth bottlenecks, then minigzip would be a 

better choice than our scheme.) 

 

 
 

Figure 14:  Scalability of compression and 

Decompression. 

 

We finally show scalability with the number of SPEs 

in fig. 14, using two different data, one with large (# 

18) the other small (# 6). As expected compression 

and decompression scale well, but the larger data 

scales better than the smaller one. 

 
 

Figure 15:  Compression Throughput Holts 

Algorithm. 

 

We now present the total throughput, for 

compression and disk IO, in 15. This is ultimately the 

quantity of interest to us, because we are considering 

this as an alternative to writing uncompressed data. 

The throughput is primarily limited by disk IO speed, 
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which in turn is primarily determined by the 

compression achieved. Generally, when the 

compressed size is less than 80% of the original size, 

compression is useful for reducing IO cost. Even in 

these cases, we can see that compression does not 

decrease the performance by a large amount; there is 

just a small overhead associated with this. Results for 

reading from disk and decompressing follow a 

similar trend. 

 
 

Figure 16:  Impact of file size on compression 

throughput. The data are organized in increasing 

order of file size, and compress to a similar extent. 

 

The throughput for the compressed writes is 

influenced by the file size for small files, as seen in 

figure 16. The reason for this is that our pipelined 

implementation ideally needs several disk IOs of the 

order of 100 KB for the writing to disk to be  

efficient. Small data files do not have enough data for 

this purpose. On the other hand, disk IO may not be 

as much of the bottleneck for small files. 

 

Potential for dealing with other bandwidth 

bottlenecks 

We have shown above that fast floating point 

compression can help deal with disk IO bandwidth 

bottlenecks. Bandwidth bottlenecks arise due to other 

factors, such as memory bandwidth, LAN bandwidth, 

and WAN bandwidth limitations.With a pipelined 

scheme for data transfer and  compression or 

decompression, it compression will be useful for 

applications that compression well if the compression 

and decompression speeds are faster than the 

bandwidth that is a bottleneck.The compression and 

decompression throughputs are in the range of 3-4 

GB/s on 16 SPEs and 1-1.5 GB/s on 6 SPEs (as in a 

Playstation). The memory bandwidth is around 25 

GB/s on the Cell and the order of 10 GB/s on many 

other platforms. So, compression is not likely to be 

effective in dealing with this bottleneck, unless faster 

algorithms or implementations are developed. 

 

We now discuss dealing with network bandwidth 

limitations in MPI applications. Here, a computation 

producing data would send the data to another Cell 

processor. The sender would send compressed data 

and the receiver would decompress the received data. 

The network bandwidth depends on the network 

used.Quad data rate Infiniband, which is not widely 

deployed, has theoretical bandwidth of 40 Gb/s or, 

equivalently, 8 GB/s. Compression would not be 

useful there. However, on most commonly deployed 

networks, the actual delivered bandwidth will be 

sufficient for compression to be useful. For example, 

the measured MPI bandwidth between two nodes on 

the CellBuzz cluster is 60 MB/s, while the bandwidth 

between two PS3s at SSSU is around 11 MB/s. 

 

We finally consider sending data over a WAN. There 

can be a wide difference in performance obtained on 

a WAN. But this performance is typically much 

lower than that on a fast network, such as Infiniband. 

For example, data transfer between the CellBuzz 

cluster at Georgia Tech and FSU obtains bandwidth 

around 2 MB/s. Thus compression can be effective. 

 

8. Related Work 
 

There has been much work performed on floating 

point compression. Many of these are based on 

predicting the next value based on previous values, 

and then compressing the result of the difference in 

the bit patterns of the predicted and actual values. 

Many of the schemes differ in how the prediction is 

made and a few other implementation details. 

Engelson, et. al.[7]use extrapolation to predict the 

next value. The FCM scheme uses certain bits of 

previously observed values to predict the next value. 

The DFCM [9] is similar, except that it predicts the 

difference in values, rather than the values 

themselves. The FPC algorithm [8] uses a 

combination of FCM and DFCM. It considers both 

and uses the better choice. It uses one bit of the code 

to store the choice used. 

A preliminary version of this work was reported in 

[2] as an extended abstract and poster. The algorithm 

considered there can be considered a simplified 

version of the Holt`s algorithm, with the parameters 

fixed as 1. There are also implementation differences 

which yield better performances now.  

 

9. Conclusion And Future Work 
 

We have investigated the effectiveness of the high 

throughput compression in improving the I/O 
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bandwidth limitations. Various applications can 

benefit from this time series based method for 

compressing the data. Our approach would be 

effective in addressing the network bandwidth 

limitations too since our compression and 

decompression speeds are a few giga bytes per 

second. We would like to evaluate other time series 

method to determine their potential for compression. 

In the future, we plan to improve our algorithm using 

various I/O optimizations. We can spawn another 

kernel to pack the compressed data on the global 

memory before the transfer is made to the host. Even 

if there is a marginal increase in computation time, 

for a data set with significant compression, the 

increase in total throughput would be a lot better. In 

order to mitigate the transfer time between host and 

device, instead of transferring the entire data before 

the compression actually begins, a streamed approach 

could be taken using cudaStreams which allows the 

possibility of overlapping transfer and computation 

of two different streams. 

 

This approach will also be useful in cases where an 

application produces a data stream and compression 

can begin even before the entire data stream is 

generated. Since it is possible to use multiple GPUs 

together, each assigned to a different host thread, the 

implementation can be extended to use multiple 

GPUs which would enhance the performance greatly. 
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