
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

134

Reducing the Disk IO Bandwidth Bottleneck through Fast Floating

Point Compression using Accelerators

Ajith Padyana
1
, Devi Sudheer

2
, Pallav Kumar Baruah

3
, Ashok Srinivasan

4

Abstract

Compute-intensive tasks in high-end high

performance computing (HPC) systems often

generate large amounts of data, especially floating-

point data that need to be transmitted over the

network. Although computation speeds are very

high, the overall performance of these applications

is affected by the data transfer overhead. Moreover,

as data sets are growing in size rapidly, bandwidth

limitations pose a serious bottleneck in several

scientific applications. Fast floating point

compression can ameliorate the bandwidth

limitations. If data is compressed well, then the

amount of data transfer is reduced. This reduction

in data transfer time comes at the expense of the

increased computation required by compression and

decompression. It is important for compression and

decompression rates to be greater than the network

bandwidth; otherwise, it will be faster to transmit

uncompressed data directly [1]. Accelerators such

as Graphics Processing Units (GPU) provide much

computational power. In this paper, we show that

the computational power of GPUs and CellBE

processor can be harnessed to provide sufficiently

fast compression and decompression for this

approach to be effective for data produced by many

practical applications. In particularly, we use Holt`s

Exponential smoothing algorithm from time series

analysis, and encode the difference between its

predictions and the actual data. This yields a

lossless compression scheme. We show that it can be

implemented efficiently on GPUs and CellBE to

provide an effective compression scheme for the

purpose of saving on data transfer overheads.

Manuscript received January 16, 2014.

Ajith Padyana, Department of Mathematics and Computer

Scuence, Sathya Sai Institute of Higher Learning, Muddenahalli
Campus, India.

Devi Sudheer, IBM IRL, Delhi, India.

Pallav Kumar Baruah, Department of Mathematics And
Computer Scuence, Sathya Sai Institute of Higher Learning,

Prashanthi Nilayam Campus, Puttaparthi, Ananthpur, India.
Ashok Srinivasan, Department of Computer Science, Florida

State University, Florida, USA.

The primary contribution of this work lies in

demonstrating the potential of floating point
compression in reducing the I/O bandwidth

bottleneck on modern hardware for important

classes of scientific applications.

Keywords

Throughput, Compression Ratio, Holt's Exponential

Smoothening, CellBE, GPU.

1. Introduction

There has been tremendous improvement in

computing power of high end computing system in

recent years. But I/O has not been keeping pace with

computing power. The gap between computing

power and I/O has been growing over the years and it

is further increasing due to availability of various

accelerators which enhance computations. For

example, world's second fastest GPU enabled Titan

Supercomputer has a peak performance of 20

petaflops/s (Pflop/s) and a maximum possible I/O

bandwidth of 240 GB/s[3]. The ratio of I/O

performance to compute performance is even worse

in the top supercomputers. The current trend of

increase in core-counts are causing applications that

were previously not I/O bound to become I/O bound,

and the situations is expected to become worse in the

near future. If we can use computational power for

reducing the data size, then this will reduce the data

transfer overhead, leading to increased overall

application performance.

In addressing this issue, we keep in mind the

following typical computing paradigm. Typical

scientific simulations involve a large number of

iterations. In each iteration, the state of a physical

system, which consists of a large set of floating point

numbers, is updated. Every few iterations, the state of

the system is output to disk. This data is later

analyzed or visualized. For example, until recently

NCCS at ORNL housed Jaguar, which was one of the

fastest supercomputer in the world, and the Lens

GPU cluster is available for data analysis and

visualization. Data may also be output for check

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

135

pointing purposes, which is increasingly becoming

important, in order to provide fault tolerance.

When I/O time becomes a bottleneck, applications

either have to run more slowly or to perform I/O less

frequently. We propose a technique to compress the

data produced by applications to address this I/O

bottleneck issue. We use the abundant computing

power available to reduce I/O usage, which is a

scarce resource. For example, if we obtain a 50%

compression ratio, then we are effectively doubling

the bandwidth available to applications. However, it

is important for the overhead associated with

compression and decompression to be small. If we

wish to store the data produced for analysis later,

then it should be faster to compress the data and

transfer it, rather than to transfer the uncompressed

data directly. Similarly, it should be faster for the

data analysis or visualization application to read the

compressed data and uncompressed it, rather than for

it to read the uncompressed data directly.

Compression has been proposed in the past as a

solution to bandwidth bottlenecks. However, the

overhead associated with it has prevented it from

being used for floating point data in practical

situations. We propose a high throughput

compression algorithm and apply it on a set of

applications. The compression it achieves is less than

that of popular compression algorithms. However, its

low computational overhead makes it effective in

dealing with various types of I/O bottlenecks for

large classes of applications.

Our compression algorithm predicts future data in a

data stream based on prior data, using techniques

from time series analysis. It then computes some

measure of the difference between the predicted

value and the actual data. If the prediction is accurate,

then we obtain several zeros in the most significant

bits. These results can then be encoded efficiently.

We give further details below.

Table 1: Data Sets used for evaluation of

algorithms

No Name Applications

1 Bloweybq Sparse Matrix

2 Msg_sppm 3-D Hydro Dynamics

3 Andrews Eigen Value Problem

4 Lp_ken_18 Linear Programming

5 rail4284 Linear Programming

6 para-4 Semiconductor Device

7 2D_27628_bjtcai Semiconductor Device

8 Ohne2 Semiconductor Device

9 c-58 Non Linear Optimizations

10 Memplus Memory Circuit

11 apache2 Finite Difference

12 Num_comet Astro physics simulations

13 a0nsdsil Lin.Complimentary Problem

14 Msg_bt CFD

15 Ted_AB_unscaled FEM: Thermoelasticity

16 msg sweep 3D Neutron Transport

17 num control Min. in data assimilation

18 Num_brain Simulation of Brain impact

19 Msg_sp CFD

20 Climate Climate Modelling

Let the data set to be stored at some stage in the

computation be given by S = (x1, x2, ..., xn). For

example, this may represent the weather conditions at

all grid points, at a certain point in time, in a climate

modeling application. We use time series analysis

techniques to predict xi after seeing the first i-1

components of the vector. Even though the

dimensions are usually spatially, rather than

temporally, related, time series analysis can be used.

Our ability to predict depends on short range

correlations that are often present in scientific

applications. For example, the weather conditions at a

certain grid point in a weather forecasting

applications may be somewhat close to that at nearby

points. We hope to be able to predict the sign,

exponent and the most significant bits of the

mantissa, while the least significant bits are hard to

predict. If pi is the predicted value, then we compute

an exclusive-OR of the bit-patterns of the floating

point numbers representing xi and pi and encode the

result losslessly.

We target the implementation details of our technique

to GPUs, which are used as accelerators on the Forge

system, for instance. With the abundance of

computing power provided by accelerators, such as

GPUs and Cell Processors, we hope that our work

will further stimulate research in high throughput

floating point compression techniques to ameliorate

bandwidth bottlenecks. The outline of the rest of the

paper is as follows. We next describe our

compression algorithm in next section. We then

describe our data sets and experimental setup

different sections respectively. We present our

optimizations and empirical evaluation results in next

section. We summarize related work in next section

and present our conclusions.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

136

2. Time Series Based Floating point

Compression Algorithm

We use the Holt exponential smoothing algorithm for

time-series prediction. This is an extension of

exponential smoothing that includes a term for linear

trends. It is also known as double exponential

smoothing. Assume that at time t we have observed yt

and estimated the level (a smoothed average) Lt and

the slope bt in the series. Then a k-step ahead forecast

is Ft+k = Lt+ bt+k. Holt`s method allows the estimates

of level and slope to be adjusted with each new

observation. The updating equations for Lt and bt

from Lt-1, bt-1and yt are:

 (1)

 (2)

for given α and β in [0,1].

To start the process, both L1 and b1 must be specified.

Possible starting values are L1 = y1 and b1= y2 – y1.

Thus, no forecasts can be made until y1 and y2 have

been observed. By convention, we let F1 = y1.

We next describe the application of Holt`s linear

exponential smoothening to the compression of the

floating point numbers. Algorithm 1 describes the

steps for fast floating point compression using Holt`s

exponential smoothening. Decompression can be

performed in a similar manner.This algorithm

compresses linear sequences of single precision

floating point numbers. It predicts the next floating

point number, which is taken to be zero initially. As

part of prediction, it uses series of previous values to

predict the current value as given in equation 1 and 2.

Once the prediction is done, the original number is

XOR-ed with the predicted value. The XOR operation

turns identical bits into zeros. Hence, if the prediction

is accurate, the XOR would result in many leading

zero bits. The compression algorithm then determines

the number of leading zero bytes and encodes the

count in a two-bit value. The resulting two-bit code

and the non-zero remainder bytes are written to the

compressed stream. The latter are emitted without any

form of encoding. In figure 1 we have shown the

format for storing compressed data.

Algorithm 1 holt‘s Linear exponential for floating

pointcompression

1.Input: float* Array, int N

2. int *A = (int *) Array

3. int Level = Input[0], Slope= Input[1] - Input[0]

4. float Alpha = Beta = 0

5. Define A[-1] = 0

6. for i = 0 to N-1 do

7. Pred = Level[i] + Slope[i]

8. X = A[i] XOR Pred

9. Data[i] = trailing non-zero bytes of X

10. Code[i]= code for number of trailing non zero

bytes of X

11. Level[i] =α*Input[i] + (1-α)(Level[i-1] + Slope[i-

1])

12. Slope[i] = β*(Level[i] - Level[i-1]) + (1-

β)Slope[i-1]

13. end for

Algorithm 2 holt‘s Linear exponential for floating

point decompression

1. Input: Compression representation of Data Code

2. int Pred = 0

3. int Level = Input[0], Slope= Inp ut[1] - Input[0]

4. float Alpha = Beta = 0

5. Define A[-1] = 0

6. for i = 0 to N-1 do

7. Recover X from Compact representation of Data

and Code

8. X = A[i] XOR Pred

9. Level[i] =α*Input[i] + (1-α)(Level[i-1] +

Slope[i-1])

10. Slope[i] = β*(Level[i] - Level [i-1]) + (1-

β)Slope[i-1]

11. Pred = Level[i] + Slope[i]

12. end for

13. Store Code and Data compactly.

Decompression works as follows. It starts by reading

the two-bit header. Then the number of non-zero bytes

specified by the two-bit header is read and zero

extended to a full 32-bit number. Then the series of

previous values and the predictor are updated using

the operations in reverse to that used in compression

phase. This lossless reconstruction is possible because

XOR is a reversible operation. The algorithm

interprets all the 32-bit floats as integers and uses

integer arithmetic in order to perform the XOR

operations.

3. Data Used For Compression

Algorithm

The data sets used are summarized in table 1 They are

from the University of Florida sparse matrix

collection [5] Many of these sparse matrices are from

real parallel applications. The original data were all in

double precision. We converted them to single

precision numbers. Sparse matrices are not a natural

fit for our hardware [6], and so they provide a good

test for the effectiveness of our implementation.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

137

Figure 1: Schematic of Data Encoding

4. GPU Implementation

Compression Phase:
In this phase, the floating-point data is read from a

file, sent to the GPU device for compression, and the

compressed data is written back to another file. After

the uncompressed data is read from a file into an

array, the total floating point number count is

calculated and this value is divided by

FloatsPerBlock.
NumBlocks = TotalNumFloats/Floats Per Block

The implementation of compression steps are given

below:

 Copy Raw Data to Device

 Data Partition

 Perform Compression in Shared Memory

 Write Code and Compressed Data to

Global Memory

 Copy Compressed Data back to Host

Decompression Phase
In this phase, the compressed data is read from a file,

sent to the device for decompression and the

decompressed data is written to another file. The

steps involved in this decompression phase are given

below:

 Find Block Offsets from Metadata

 Copy Compressed Data to Device

 Copy Compressed Data to Shared

Memory

 Perform Decompression in Shared

Memory

 Write Decompressed Data to Global

Memory

 Copy Decompressed Data back to Host

5. Evaluation of Holt’s Compression

Algorithm

First we present the compression ratios (ratio of

compressed size to original size). It can be seen in

Table 2 that the scheme yields good compression for

some data-sets but poor compression for a few others.

The reason for this is that we achieve good prediction

only for data sets which are predictable. This happens

for certain types of applications, such as

hydrodynamics on a uniform mesh (\#2), certain

sparse matrices (\#1), Linear Programming (\#5), etc.

For applications with random data (\#19), the data is

not predictable with the simple scheme that we are

using. In any case, there are applications classes for

which we get significant compression.

Comparison of Optimization Levels

Implementation is classified into following

Optimization Levels:

 Level 0: No Optimization

 Level 1: Use of Double Buffering

 Level 2: Increased 115 floats for each

thread

 Level 3: Increased computation threads to

64.

The above optimization levels are not inclusive of

each other, although such an inclusion would

increase performance significantly, due to want of

shared memory. Padding compressed sizes for 4-byte

aligned, avoiding bank conflicts and increasing

number of threads for memory transfers between

shared and global memory has been implemented in

levels 1,2 and 3.

Figure 2: Compression Throughput comparisons

for the four optimization levels

Compression speed depends on the compression ratio

achieved; greater the compression of data, fewer are

the data that need to be transferred from global

memory to shared memory. Compression/

Decompression throughput achieved without

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

138

optimizations was inadequate, yielding a

performance of less than 2 GBps. But after tuning the

code for performance, a maximum throughput of 5.2

GBps could be achieved.

Figure 3: Decompression Throughput

comparisons for the four optimization levels

Figure 4 and 5 shows compression and

decompression throughputs for data sets \#1, \#10,

\#9 \#3, \#6 and \#2. The data sets have been chosen

with varying sizes and fairly good compression

ratios. The data sets have been plotted with

increasing sizes. The throughput shown in Figure 6

only reflects the computation time and does not

include the time taken for data transfers between host

and device.

Figure 4: Compression/Decompression

throughput comparisons optimization Level 3.

As can be seen from Figure 6 the throughput

increases as the sizes of data sets increase. The

reason for this is that the number of threads created is

directly proportional to data size. GPU power is fully

extracted with thousands of threads running in

parallel. More the number of threads, greater is the

utilization of the GPU memory bandwidth and

greater is the performance obtained. With smaller

data sizes, only a few threads are created to compress

them in order to avoid increased data fragmentation

which results in sub-optimal throughputs.A

comparison is also made between compression and

decompression throughput for optimization Level-4.

Compression fairs slightly better as this phase has

been optimized more than the decompression phase.

Apart from the 64 threads which are busy with

computation, more threads are added to improve

transfers between shared and global memory. Testing

for various block size i.e. number of threads per

block, it has been observed that the compression

phase works best with 128 threads per block and

decompression phase with 192 threads per block.

Register usage by threads (i.e. number of variables

per thread), warp scheduling and usage of local

memory and shared memory determine throughputs

achieved with different block sizes.

Time Distribution

In the results, throughput is calculated only with

respect to compression speeds. If the GPU is used

only to compress or decompress data of an

application running on the CPU, then the data first

needs to be transferred to the GPU and results need to

be copied back to the host. This transfer is limited to

8 GBps peak by the PCIe bus. Although the transfer

speed is quoted as 8 GBps, average transfer speed

obtained is only around 5 GBps. Compared to

computation time, data transfer time is quite high.

However, applications running on systems with

accelerators typically use accelerators to handle the

bulk of the computation. So, data that needs to be

computed will typically already be present on the

GPU, and does not need to be transferred from the

host. Similarly, in decompression, the uncompressed

data may not need to be sent back to the host.As can

be seen from the Figures 5 and 6, time taken for host

to device transfer is lesser than for the reverse case.

This is due to two reasons. Since block

synchronization is not possible in CUDA [5] each

block writes its compressed data to fixed locations in

the global memory. The entire global array where

compressed data is stored are transferred and written

back to host. The size of this array is larger than the

input data as it has been allocated for the worst case

scenario of zero compression.

Figure 5: Time distribution in Compression phase

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

139

Figure 6: Time distribution in Uncompression

phase

In the decompression phase, the time taken to transfer

data from host to device is obviously lesser as only

compressed data is transferred whereas

uncompressed data is transferred from device to host.

Comparison with Cell BE

An IBM Cell BE processor comprises of 1 PPU and 8

SPUs, where the PPU offloads the computation to

CPUs to be done in parallel. For SPUs to compute on

data, the PPU needs to DMA this data over a

bandwidth of 25 GBps. The output is DMAed back to

the PPU by the SPU. The PPU is a fully functional

processor and so can host an entire OS on it, making

the Cell BE an independent device.

Figure 7: Compression throughput in Cell and

GPU

The structure of the GPU however is different. The

cores of the GPUs are little more than functional

units and contain very little logical units. Therefore, a

GPU can be used only as a co-processor to the CPU

and cannot be used to run programs independently

without CPU collaboration. The CPU in this case can

be compared to the PPU in Cell which offloads

computation to the GPU. The data needs to be

transferred from host to device for computation. The

GPU however has an extra level of indirection. After

transferring data from host RAM to device RAM

(global memory), the data then again needs to be

transferred to the shared memory of the multi-

processors for computation. This extra transfer can be

compared to the transfer between PPU and SPU in

Cell discounting the DMA overheads in Cell.

However, this transfer is not mandatory but greatly

improves performance. The bandwidth within the

GPU is 177 GBps (Tesla M2050) which can be

compared to the bandwidth of 204.8 GBps (8 SPUs X

25.6 GBps) between PPUs and SPUs.

Figures 7 and 8 throughput of compression and

decompression over two extreme data sets. Data

fragmentation is lesser with fewer threads.

Figure 8: Uncompression throughput in Cell and

GPU

The extra overhead of transfer between host and

device is not considered for this comparison.

Although this comparison cannot be termed

completely fair, it does provides a rough estimation.

We can also see from these figures that the

throughput achieved in both compression phase and

decompression in GPU are better than that of CellBE

processor.

Figure 9: Optimization of the computational phase

of compression and decompression. (1) Basic code,

(2) with loop unrolling, and (3) vectorized.

6. Implementation of Floating Point

Compression on a Single SPE

In this section, we discuss implementation and

optimization of the algorithm on a single SPE.

However, one important aspect of the implementation

is motivated by the need to parallelize it later – we

divide the data into blocks of 3968 floats each, and

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

140

compress each block independently. This will enable

the SPEs in a parallel implementation to work on

different blocks independently. The block size was

chosen such that the data for a block can be brought

in through a single DMA, and the compressed data

can be written back in a single DMA, even in the

worst case.

Figure 10: Fraction of time spent in different

phases of the algorithm (bottom: computation,

middle: put, top: get). (1) Compression, single

buffering, (2) Compression, multi-buffering, (3)

Compression with multi-buffering and infrequent

synchronization, (4) Decompression, single

buffering, (5) Decompression, multi-buffering.

This decomposition into blocks is illustrated in fig. 1.

The compressed data contains a sequence of pairs,

where each pair is the metadata for a block followed

by compressed data for that block. The metadata first

contains the sizes of the compressed and

uncompressed data, followed by a few bytes reserved

for possible use later. This is followed by the code for

all the data in the block. A few empty bytes may

follow, in order to ensure that the compressed data is

aligned along integer boundaries. Up to 127 extra

bytes may be allocated at the end of the compressed

data section of each block, in order to ensure 128-

byte alignment of the next block. The space overhead

of this is less than one percent of the original data

size. Such alignment is useful because it enables

DMAs between main memory and SPEs to be 128

byte aligned.

Figure 11: Throughput to disk using

asynchronous (aioWrite) and synchronous IO.

We observed a significant improvement in

performance for DMA puts that are 128 byte aligned

compared with 16 byte aligned. Therefore, the

marginal increase in space is acceptable.

Compression is fairly straight forward. First, we wish

to find suitable parameters _ and _. We use a small

fraction of the data and compress it with different

values of the parameters to find suitable values.

Different SPEs work simultaneously on different

values of the parameters, in order to complete the

search fast, when we use multiple SPEs. We search in

the range [0.95, 1.05], because the optimal is usually

in this range. The overhead associated with finding

the parameters is around 10% of the compression

time. We choose the parameter values that gave best

compress ratio, and use it in the actual compression

phase. The selected values of the two parameters are

written at the beginning of the compressed file.

Figure 12: Total throughput of compression and

decompression on 16 SPEs. The data are arranged

in decreasing order of compression achieved.

In the main compression computation, the SPE brings

in data, compresses it, and writes it back to main

memory. Decompression is a little more involved,

because the location and size of compressed data for

each block is unknown. The PPE first quickly

computes an index for the starting location for each

block, using the metadata entry specifying

compressed data size. (The time taken is less than 2%

of the total time in a parallel computation, and an

even smaller fraction with one SPE.) The SPE gets

this index and uses it to determine the starting

location for each block. We allocate two buffers,

capable of storing 2048 entries each, for the index on

the SPE. This is not sufficient for large data sizes. So

the SPE needs to occasionally bring in a new index

block. Two buffers are used in order to enable double

buffering. So, the SPE rarely needs to wait much for

an index to arrive. The location and size of a block

can be determined from the index. Once the

compressed data is received, the SPE uses the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

141

uncompressed size field in the metadata to determine

the amount of data to decompress.

Figure 9 shows the impact of optimizations on the

performance of the computational phases of

compression and decompression. The timings

obtained are almost identical for all data samples, and

do not depend on the compression obtained. The

basic compression and decompression code had

somewhat modest performance. We manually

unrolled the loop eight times, and after this, the

compiler was able to improve the performance

substantially, as shown in the second bars for

compression and for decompression. We also

vectorized the compression code by hand, but

obtained only a slight improvement in performance.

We, therefore, did not vectorize the decompression

code by hand.

We next compare the effect of multiple buffering for

the input and output data. The code was initially

single buffered. That is, before the computational

phase for each block, we would request the

corresponding data, wait for it, and then compute. We

would then put the compressed data back to main

memory, and block until that DMA was completed.

Figure 10 show that the DMAs consumed a

significant fraction of the total time. We next multi-

buffered the code, so that data for three input buffers

could simultaneously be in flight, and data for four

output buffers could simultaneously be in flight. The

large number of buffers was primarily to deal with

large variance in DMA times in an earlier version of

the code [2]. We fixed that problem, related to paging

issues, so that the variance is no longer high. Figure

10 shows that the DMA Costs in the multi-buffered

code are insignificant. An earlier version of the code

had yet inefficiency. After compression of each

block, the SPE would send the PPE and mailbox

message to inform it that a block had been

compressed. The PPE can then save that compressed

data to disk. This permits a pipelined compress and

store scheme, which overlaps compression and IO.

However, the mailbox overhead is somewhat

significant even on one SPE, and increases when

several SPEs are used. So, instead we have an SPE

send a mailbox message only every C iterations, for a

suitably large value of C (which depends on data size

too). In fact, each SPE does not send a mailbox

message. Instead, they synchronize after compressing

every C block using our efficient barrier

implementation with an overhead of at most 1μs with

16 SPEs, and one SPE sends a mailbox message. This

makes the synchronization overhead insignificant, as

shown in figure 10.

7. Parallel Implementation on

Multiple SPEs

We now describe the parallel implementation,

evaluate its performance, and discuss the implications

of the results for the four types of bandwidth

bottlenecks that we mentioned earlier.

Implementation

In the parallel implementation, each SPE

independently compresses and decompresses blocks

of data. The blocks are assigned to the SPEs in a

block cyclic manner, with a parameter C to the code

specifying the number of adjacent blocks that an SPE

will handle. For example, if C is 2 and 8 SPEs are

involved in the computation, then SPE 0 will get

blocks 0, 1, 16, 17, 24, 25, · · ·. A cyclic distribution

is important because we are assuming a pipelined

scheme. The PPE should transmit compressed data

continuously. If the data were partitioned into P

pieces on P SPEs, then the early work of SPEs with

high ranks would not be used until the end,which is

not conducive to pipelining. Each SPE is assigned a

different portion of main memory to write all of its

output. The amount of memory allocated for each

SPE’s data is sufficient to hold all its compressed

data in the worst case. So SPEs can work

independently. The PPE takes data from each SPEs

output location cyclically and transmits them, C

blocks at a time.

Figure 13: Throughput of just the compression

phase of minigzip, for the case where it gives

fastest compression.

We use a block size C to be greater than one for the

following reason, apart from the need for reducing

synchronization cost, as mentioned earlier. Figure 11

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

142

shows the IO performance in writing 32 MB data to a

file, writing a block at a time. We can see that the

data sent in each call needs to be around 100 KB for

getting close to optimal bandwidth. This is much

larger than the the size of a single block. We need to

choose C such that the data size for C blocks will

normally yields good throughput on transmission. On

the other hand, for smaller data files, this may

provide enough parallelism. So, we choose smaller

values of C for smaller files.

Evaluation

We first present compression results and then

performance results. We can see that minigzip

performs better than our compression scheme. We

get good prediction fairly frequently in certain types

of applications, such as hydrodynamics on a uniform

mesh (#18), Finite element (#9), etc. For applications

with somewhat random data, such as temperature

error (#11), the data is not predictable with the simple

scheme that we are using. In any case, there are

application classes for which we get significant

compression. This translates to a corresponding

decrease in the time taken in the transmission step.

Table 2: Compression obtained by the Holt's

compression algorithm and by minigzip.

Matrix

Original

Size(Bytes)

Compressed

Size using Holt

Compressed

Size using

minigzip

1 159744 0.57 0.002

2 503808 0.89 0.14

3 718848 0.49 0.30

4 798720 0.50 0.24

5 1179648 0.66 0.38

6 1638400 0.43 0.05

7 1771520 0.86 0.45

8 9465264 0.73 0.87

9 11065344 0.18 0.006

10 17544800 0.6 0.61

11 31080408 1.03 0.69

12 44254180 0.88 0.56

13 45136128 0.07 0.001

14 62865612 0.79 0.86

15 70920000 0.84 0.89

16 79752372 1.00 0.92

17 99090432 1.02 0.86

18 139497932 0.36 0.10

19 145052928 0.94 0.83

20 149845548 0.68 0.68

We present performance results for compression and

decompression using Holt’s algorithm in fig. 12,

excluding the disk IO cost. The speed of compression

and decompression is fairly consistent across all the

data, and does not depend on the compression

obtained. There is a slight dependence on file size,

especially for decompression, with smaller files

yielding slightly lower throughputs. We show the

speed of minigzip in fig. 13. The timing is for just the

compression or decompression phase, excluding

thread creation, IO, etc. The throughput varies a lot,

but is consistently low; that is, it would be faster to

transmit uncompressed data directly, rather than to

compress and send it. (Of course, if the goal were to

save on storage space, rather than to deal with

bandwidth bottlenecks, then minigzip would be a

better choice than our scheme.)

Figure 14: Scalability of compression and

Decompression.

We finally show scalability with the number of SPEs

in fig. 14, using two different data, one with large (#

18) the other small (# 6). As expected compression

and decompression scale well, but the larger data

scales better than the smaller one.

Figure 15: Compression Throughput Holts

Algorithm.

We now present the total throughput, for

compression and disk IO, in 15. This is ultimately the

quantity of interest to us, because we are considering

this as an alternative to writing uncompressed data.

The throughput is primarily limited by disk IO speed,

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

143

which in turn is primarily determined by the

compression achieved. Generally, when the

compressed size is less than 80% of the original size,

compression is useful for reducing IO cost. Even in

these cases, we can see that compression does not

decrease the performance by a large amount; there is

just a small overhead associated with this. Results for

reading from disk and decompressing follow a

similar trend.

Figure 16: Impact of file size on compression

throughput. The data are organized in increasing

order of file size, and compress to a similar extent.

The throughput for the compressed writes is

influenced by the file size for small files, as seen in

figure 16. The reason for this is that our pipelined

implementation ideally needs several disk IOs of the

order of 100 KB for the writing to disk to be

efficient. Small data files do not have enough data for

this purpose. On the other hand, disk IO may not be

as much of the bottleneck for small files.

Potential for dealing with other bandwidth

bottlenecks

We have shown above that fast floating point

compression can help deal with disk IO bandwidth

bottlenecks. Bandwidth bottlenecks arise due to other

factors, such as memory bandwidth, LAN bandwidth,

and WAN bandwidth limitations.With a pipelined

scheme for data transfer and compression or

decompression, it compression will be useful for

applications that compression well if the compression

and decompression speeds are faster than the

bandwidth that is a bottleneck.The compression and

decompression throughputs are in the range of 3-4

GB/s on 16 SPEs and 1-1.5 GB/s on 6 SPEs (as in a

Playstation). The memory bandwidth is around 25

GB/s on the Cell and the order of 10 GB/s on many

other platforms. So, compression is not likely to be

effective in dealing with this bottleneck, unless faster

algorithms or implementations are developed.

We now discuss dealing with network bandwidth

limitations in MPI applications. Here, a computation

producing data would send the data to another Cell

processor. The sender would send compressed data

and the receiver would decompress the received data.

The network bandwidth depends on the network

used.Quad data rate Infiniband, which is not widely

deployed, has theoretical bandwidth of 40 Gb/s or,

equivalently, 8 GB/s. Compression would not be

useful there. However, on most commonly deployed

networks, the actual delivered bandwidth will be

sufficient for compression to be useful. For example,

the measured MPI bandwidth between two nodes on

the CellBuzz cluster is 60 MB/s, while the bandwidth

between two PS3s at SSSU is around 11 MB/s.

We finally consider sending data over a WAN. There

can be a wide difference in performance obtained on

a WAN. But this performance is typically much

lower than that on a fast network, such as Infiniband.

For example, data transfer between the CellBuzz

cluster at Georgia Tech and FSU obtains bandwidth

around 2 MB/s. Thus compression can be effective.

8. Related Work

There has been much work performed on floating

point compression. Many of these are based on

predicting the next value based on previous values,

and then compressing the result of the difference in

the bit patterns of the predicted and actual values.

Many of the schemes differ in how the prediction is

made and a few other implementation details.

Engelson, et. al.[7]use extrapolation to predict the

next value. The FCM scheme uses certain bits of

previously observed values to predict the next value.

The DFCM [9] is similar, except that it predicts the

difference in values, rather than the values

themselves. The FPC algorithm [8] uses a

combination of FCM and DFCM. It considers both

and uses the better choice. It uses one bit of the code

to store the choice used.

A preliminary version of this work was reported in

[2] as an extended abstract and poster. The algorithm

considered there can be considered a simplified

version of the Holt`s algorithm, with the parameters

fixed as 1. There are also implementation differences

which yield better performances now.

9. Conclusion And Future Work

We have investigated the effectiveness of the high

throughput compression in improving the I/O

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

144

bandwidth limitations. Various applications can

benefit from this time series based method for

compressing the data. Our approach would be

effective in addressing the network bandwidth

limitations too since our compression and

decompression speeds are a few giga bytes per

second. We would like to evaluate other time series

method to determine their potential for compression.

In the future, we plan to improve our algorithm using

various I/O optimizations. We can spawn another

kernel to pack the compressed data on the global

memory before the transfer is made to the host. Even

if there is a marginal increase in computation time,

for a data set with significant compression, the

increase in total throughput would be a lot better. In

order to mitigate the transfer time between host and

device, instead of transferring the entire data before

the compression actually begins, a streamed approach

could be taken using cudaStreams which allows the

possibility of overlapping transfer and computation

of two different streams.

This approach will also be useful in cases where an

application produces a data stream and compression

can begin even before the entire data stream is

generated. Since it is possible to use multiple GPUs

together, each assigned to a different host thread, the

implementation can be extended to use multiple

GPUs which would enhance the performance greatly.

References

[1] Ajith Padyana, Sudheer, P. K Baruah, Ashok

Srinivasan, High Throughput Compression of

floating point number in GPUs, In Proceeding of

the 2nd IEEE International Conference on

Parallel, Distributed and Grid Computing

Conference, Dec, 2012.

[2] Ajith Padyana, T.V. Siva Kumar and P.K.

Baruah, Fast Floating Point Compression on the

Cell BE Processor, In Proceedings of the 15th

IEEE International Conference on High

Performance Computing (HiPC), 2008.

[3] https://www.olcf.ornl.gov/computing-

resources/titan-cray-xk7/.

[4] University of Florida Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/.

[5] developer.download.nvidia.com/.

[6] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K.

Yelick, J. Demmel, Optimization of Sparse

Matrix-Vector Multiplication on Emerging

MulticorePlatforms, Supercomputing (SC), 2007.

[7] V.Engelson, D.Fritzson and P.Fritzon. Loseless

Compression of highvolume numerical data from

simulations. In Proceedings of the IEEE Data

Compressions Conference (DCC), pages 574-

586,2000.

[8] M.Burtscher and P.Ratanaworabhan. High

throughput compression of double-precision

floating point data. In Proceedings of the IEEE

Data Compression Conference (DCC), 2007.

[9] P Ratanaworabhan, J .Ke and M . Burtscher .Fast

Loseless Compression of scientific floating point

data. In IEEE Data Compression Conference

(DCC) pages 133-142, 2006.

Ajith Padyana received his B.Sc

(Hons) Mathematics, M.Sc

(Mathematics) degrees from Sri Sathya

Sai Institute of Higher Learning in 2005

and 2007 respectively. He also

completed his M.Tech. Currently he is

pursuing PhD and he is an assitant

professor in Department of Mathematics and Computer

Science, SSSIHL, Muddenahalli, India. His research

interests include High Performance Computing, Parallel

Programming.

C D Sudheer Kumar received his

B.Tech degree. He received his M.Tech

degree from Sri Sathya Sai Institute of

Higher Learning in 2006. He completed

his P.hd in SSSIHL in 2013. Currently

he is research scientist in IBM, IRL,

Delhi. His research interests include

High Performance Computing, Parallel

Programming, Programming for

Performance, MPI, OpenMP.

Pallav K Baruah received his

B.Sc(Hons) Mathematics,

M.Sc(Mathematics) degrees from Sri

Satya Sai Institute of Higher Learning.

Later he went on to do his PhD and

received his doctorate in x. Currently he

is a professor in Department of

Mathematics and Computer Science,

SSSIHL, AP, India. His research interests include High

Performance Computing, Bioinformatics, Parallel

Programming, Boundary Value Problems.

Ashok Srinivasan received his

Bachelor’s Degree from REC,

Tiruchirapalli in the year 1987. Then he

went on complete his master in polymer

engineering in the University of Akron.

Then he completed his PhD in

University of California, Santa Barbara

in the year 1996. Currently he is

working as Associate professor in Florida State University,

USA. His research Interests are HPC, Mathematical

Software Scalable algorithms.

