
A Buffered-Mode MPI Implementation for the Cell BE™
Processor

Arun Kumar1, Ganapathy Senthilkumar1, Murali Krishna1, Naresh Jayam1,
Pallav K Baruah1, Raghunath Sharma1, Ashok Srinivasan2, Shakti Kapoor3

1Dept. of Mathematics and Computer Science, Sri Sathya Sai University,

Prashanthi Nilayam, India.

2Dept. of Computer Science, Florida State University.

3IBM, Austin.

Abstract. The Cell Broadband Engine™ is a heterogeneous multi-core
architecture developed by IBM, Sony and Toshiba. It has eight computation
intensive cores (SPEs) with a small local memory, and a single PowerPC core.
The SPEs have a total peak single precision performance of 204.8 Gflops/s, and
14.64 Gflops/s in double precision. Therefore, the Cell has a good potential for
high performance computing. But the unconventional architecture makes it
difficult to program. We propose an implementation of the core features of MPI
as a solution to this problem. This can enable a large class of existing
applications to be ported to the Cell. Our MPI implementation attains bandwidth
up to 6.01 GB/s, and latency as small as 0.41 µs. The significance of our work is
in demonstrating the effectiveness of intra-Cell MPI, consequently enabling the
porting of MPI applications to the Cell with minimal effort.

Keywords: MPI, Cell processor, heterogeneous multi-core processors.

1 Introduction

The Cell is a heterogeneous multi-core processor targeted at the gaming industry.
There is also much interest in using it for high performance computing. Some
compute intensive math kernels have shown very good performance on the Cell [1],
demonstrating its potential for scientific computing. However, due to its
unconventional programming model, applications need to be significantly changed in
order to exploit the full potential of the Cell. As a solution to the programming
problem, we provide an implementation of core features of MPI 1, which uses each
SPE as if it were a node for an MPI process. This will enable the running of the large
code base of existing MPI applications.

Each SPE has a small (256 KB) local store that it can directly operate on, and
access to a larger common main memory from/to which it can DMA data. If one
attempts to directly port an application to the SPE, then the small size of the SPE local
store poses a significant problem. For applications with data larger than the local store
size, a software-controlled cache approach is feasible, wherein the data is actually in
the main memory and moved to the local store as needed. Some features to automate
this process are expected in the next releases of the compiler and operating
system [2,3]. These features would allow the porting of applications in a more generic

fashion, except for the parallel use of all the SPEs. Our MPI implementation handles
the parallelization aspect too. We have hand-coded some large-data applications in
order to analyze the performance of our implementation. For small memory
applications, we have modified our MPI implementation so that such applications can
be ported right now, without needing the compiler and operating system support
expected in the near future.

Existing MPI implementations for the shared memory architectures cannot be
directly ported to the Cell, because the SPEs have somewhat limited functionality. For
example, they cannot directly operate on the main memory – they need to explicitly
DMA the required data to local store and then use it. In fact, they cannot even
dynamically allocate space in main memory.

Heterogeneous multi-core processors show much promise in the future. In that
perspective, we expect the impact of this work to be much broader than just for the
Cell processor, by demonstrating the feasibility of MPI on heterogeneous multi-core
processors.

The rest of the paper is organized as follows. In §2, the architectural features of the
Cell processor that are relevant to the MPI implementation are described. Our MPI
implementation is described in §3. The performance results are presented in §4. We
discuss related work in §5. We then describe limitations of the current work, and
future plans to overcome these limitations, in §6, followed by conclusions in §7.

2 Cell Architecture

The Cell processor consists of a cache coherent PowerPC core and eight SPEs running
at 3.2 GHz. All of them execute instructions in-order. It has a 512 MB to 2 GB
external main memory, and an XDR memory controller provides access to it at a rate
of 25.6 GB/s. The PPE, SPEs, DRAM controller, and I/O controllers are all connected
via four data rings, collectively known as the EIB. Multiple data transfers can be in
progress concurrently on each ring, including more than 100 outstanding DMA
memory requests between main storage and the SPEs. Simultaneous transfers on the
same ring are also possible. The EIB’s maximum intra-chip bandwidth is 204.8 GB/s.

Each SPE has its own 256 KB local memory from which it fetches code and reads
and writes data. Access latency to and from local store is 6 cycles [4] (page 75, table
3.3). All loads and stores issued from the SPE can only access the SPE’s local
memory. Any data needed by the SPE that is present in the main memory must be
moved into the local store explicitly, in software, through a DMA operation. DMA
commands may be executed out-of-order.

In order to use the SPEs, a process running on the PPE can spawn a thread that
runs on the SPE. The SPE’s local store and registers are mapped onto the effective
address space of the process that spawned the SPE thread. Data can be transferred
from the local store of one SPE to the local store or special registers of another SPE
by obtaining these memory mapped addresses.

3 MPI Design

In this section, we describe our basic design for the blocking point to point
communication. We also describe the application start-up process. We have not

described the handling of errors, in order to present a clearer high-level view of our
implementation.

3.1 MPI Initialization

A user can run an MPI application, provided it uses only features that we have
currently implemented, by compiling the application for the SPE and executing the
following command on the PPE:

mpirun –n <N> executable arguments
where <N> is the number of SPEs on which the code is to be run. The mpirun process
spawns the desired number of threads on the SPEs. Note that only one thread can be
spawned on an SPE, and so <N> cannot exceed eight on a single processor or sixteen
for a blade. We have not considered latencies related to the NUMA aspects of the
architecture in the latter case.

Note that the data for each SPE thread is distinct, and not shared, unlike in
conventional threads. The MPI operations need some common shared space through
which they can communicate, as explained later. This space is allocated by mpirun.
This information, along with other information, such as the rank in
MPI_COMM_WORLD, and the command line arguments, are passed to the SPE
threads by storing them in a structure and sending a mailbox message1 with the
address of this structure. The SPE threads receive this information during their call to
MPI_Init. The PPE process is not further involved in the application until the threads
terminate, when it cleans up allocated memory and then terminates. It is important to
keep the PPE as free as possible for good performance, because it can otherwise
become a bottleneck.

3.2 Point-to-point communication

We describe the implementation of point-to-point communication. Collective
operations were implemented on top of the point-to-point operations.

Communication Architecture. Let N be the number of MPI nodes. The mpirun
process allocates N message buffers in main memory in its address space. Since the
SPE threads are part of the mpirun process, they can access the buffers allocated by
mpirun. Buffer Pi is used by SPE i to copy its data, when SPE i sends a message.
Thus, even though SPEs cannot dynamically allocate space in main memory, they can
use space allocated by mpirun. SPE i manages the piece of memory Pi, to allocate
space within Pi for its send calls.

The sender and receiver processes communicate information about messages
through meta-data queues maintained in SPE local stores. There are N*(N – 1) queues
in total. Queue Qij is used by SPE i to send information about a message to SPE j. Qij
is present in the local store of SPE j (the receiver). Thus each SPE maintains N-1
queues. These queues are organized as circular arrays. Each entry in Qij contains
information about the location of the message within Pi, the message tag, the data
type, message size, communicator identifier and flag bits. The total size of an entry is

1 A mailbox message is a fast communication mechanism for 32-bit messages.

16 bytes. The flag field is either valid, indicating that the entry contains information
on a sent message that has not been received, or is invalid, indicating that it is free to
be written by the sending SPE. All entries are initialized to invalid.

Send Protocol. The send operation from SPE i to SPE j, shown in fig. 1 (a),
proceeds as follows: The send operation first finds the offset of a free block in buffer
Pi, managed by it. The message data is copied into this location in Pi. The copying is
done through DMA operations. Since the SPE's data and Pi are in main memory, the
data is first DMA-ed into the local store from main memory in pieces, and then DMA-
ed out to Pi. The send operation does a single DMA or a series of DMAs, depending
on the size of the message (a single DMA transfer can be of 16KB maximum). SPE i
then finds the next entry in the meta-data queue Qij and waits until it is marked
invalid. This entry is updated by DMA-ing the relevant information, with flag set to
valid. Send returns after this DMA completes. Note that we use blocking DMAs in
copying data, to ensure that Pi contains the entire data before the corresponding entry
has flag set to valid.

On matching tag and communicator,
copy data from message buffer Pi,

into application area

Invalidate meta-data entry by
setting flag to invalid.

Search for valid entry in queue Qij

Get offset of free block in buffer Pi

Copy Message into Pi

DMA meta-data into queue Qij
after the entry is marked invalid

 (a) (b)
Fig. 1. Execution of (a) send and (b) receive for a message from SPE i to SPE j.

Receive Protocol. The receive operation has four flavors. (i) It can receive a

message with a specific tag from a specific source, (ii) it can receive a message with
any tag (MPI_ANY_TAG) from a specific source, (iii) it can receive a message with a
specific tag from any source (MPI_ANY_SOURCE), or (iv) it can receive a message
with any tag from any source. Case (i) is shown in fig. 1 (b).

The receive operation on SPE j for a message from SPE i proceeds as follows, in
case (i). The meta-data queue Qij, is searched in order to find a valid entry with the
specific tag and communicator value. The searching is done from the logical front of
the circular array to the logical end, in a linear order, to avoid overtaking of an older
entry by a newer one with the same tag value. The search is repeated until a matching
entry is found. Once a matching entry is found, the location of the message in main
memory is obtained from the location field of the meta-data entry and the data is
copied from Pi into the location for the application variable, in a similar manner as in
the send operation. Finally, the meta-data entry is marked invalid.

In case of MPI_ANY_TAG by a receiver j from a specific source i, the first valid
entry in Qij with the same communicator is matched. MPI_ANY_SOURCE has two
cases similar to the above, except that queues Qij, for each i, are searched.

Lock Free Data Structure. The meta-data queues are handled in a lock free
approach. Each queue is an array of entries which is filled by the sender in a circular
fashion. The receiver maintains the range of the entries to be searched, in its local
store. The need for locks has been avoided by using the fact that the local store is
single ported. That is, at a given clock cycle, either a DMA operation can access the
local store or the load store unit of the SPE can access it. DMA writes are in units of
128 bytes. The meta-data entry is less than 128 bytes and will therefore be seen in
full, or not seen at all, by the receive operation when the receiver’s search for the
entry and the sender’s DMA of it are taking place simultaneously. (The size of each
entry is 16 bytes, which divides 128, and so all entries are properly aligned too.)
Therefore the send and receive can operate in a lock free fashion.

Communication modes. MPI_Send may be implemented in either buffered mode,
as in the description above, or in synchronous mode. In the latter, the send can
complete only after the matching receive has been posted. The rendezvous protocol is
typically used, where the receive copies the data directly, without an intermediate
buffer, and then both send and receive complete. A safe application should not make
any assumption on the choice made by the implementation [5]. Implementations
typically use the buffered mode for small messages, and switch to synchronous mode
for large messages [6]. We too switch to synchronous mode for large messages. The
send then writes the address of the data in main memory into the meta-data entry, and
blocks until the receive operation copies this data.

4 Performance Evaluation

We evaluated the performance of our MPI implementation, in order to determine the
bandwidth and latency as a function of the message size. We also evaluated the
performance of a parallel matrix-vector multiplication kernel using our MPI
implementation. We performed our experiments on a 3.2 GHz Rev 2 Cell blade with
1 GB main memory running Linux 2.6.16 at IBM Rochester. We had dedicated access
to the machine while running our tests.

Figures 2 and 3 show the latency and bandwidth results respectively, using the
pingpong test from mpptest [7]. We switch from buffered mode to synchronous mode
for messages larger than 2 KB. The pingpong test was modified to place its data in
main memory, instead of in local store. We timed the operations by using the
decrementer register available in the SPE, which is decremented at a frequency of
14.318 MHz, or, equivalently, around every 70 ns. The latency is comparable to that
on good shared memory implementations, such as around 1.1 μs for MPICH with
Nemesis on Xeon [8] and around 0.3 μs for the same on an Opteron [6]. The peak
bandwidth is 6.01 GB/s, compared with around 0.65 GB/s and around 1.5 GB/s in the
latter two respectively. Thus, the performance is comparable to good shared memory
implementations on full-fledged cores, even though the SPEs have limited
functionality.

0
1
2
3
4
5
6
7

0 2 4 8 16 32 64 128 256

Message Size (Bytes)

La
te

nc
y(

µs
)

Fig. 2. Latency results.

0

2

4

6

8

 1
KB

 2
KB

 4
KB

 8
KB

16
KB

32
KB

64
KB

128
KB

256
KB

 1
MB

 2
MB

 4
MB

Message Size(Bytes)

B
an

dw
id

th
(G

B
/s

)

Fig. 3. Bandwidth results.

We also studied the performance of a parallel double precision matrix-vector

kernel using a simple 1-dimensional decomposition. We transformed the application
by placing the data in the main memory and inserting DMA instructions wherever
necessary. We did not use SPE intrinsics to optimize this application, nor was the
algorithm chosen optimal, because our focus was on the parallelization. The only MPI
communication in this application is an MPI_Allgather call. We got a throughput of
6.08 Gflops for a matrix of dimension 512 and throughput of 7.84 Gflops for a square
matrix of dimension 1024. The same implementation yields 0.292 Gflops on a single
core 2 GHz Opteron, and 0.553 Gflops on 8 Opteron processors/4 nodes connected
with Gigabit Ethernet. An optimized BLAS implementation for this kernel on a single
3.2 GHz 3GB RAM Xeon processor at NCSA yields 3 Gflops.

5 Related Work

Conventional shared memory MPI implementations run a separate process on each
processor. These processes have distinct address spaces. However, operating systems
provide some mechanisms for processes to be allocated shared memory regions,
which can be used for fast communication between processes. There are a variety of
techniques that can be used, based on this general idea. They differ in scalability,
effects on cache, and latency overhead. A detailed comparison of popular techniques
is presented in [9]. The TMPI implementation takes a slightly different approach, by
spawning threads instead of processes [10]. Since the global variables of these threads
are shared (unlike that of the SPE threads in our implementation), some program
transformation is required to deal with these. They too use O(N2) lock-free queues,
but the implementation differs from ours. Note that some implementations on
conventional processors need memory barriers to deal with out of order execution,
which is common on modern processors[11]. In-order execution on the Cell avoids
such problems.

Much work is being performed to make the programming of the Cell processor
easier, such as developing frameworks that will enable the programming of the Cell at
an abstract level [12,13,14]. Work has also been done to port a number of
computational kernels like DGEMM, SGEMM, 1D FFT and 2D FFT to the Cell
processor [1], and close to peak performance is obtained on DGEMM. Results on
other kernels too show much superior performance to those on conventional
processors.

6 Limitations and Future Work

We have implemented some core features of MPI 1, but not the complete set. We plan
to implement more features. If the code size is too large, then we intend to provide
overlaying facilities in the library itself, which will bring in code to the local store as
needed. Also, we intend to implement a customized software cache and study the
impact of the latencies introduced due to the use of a software cache and NUMA
aspects of the blade. We intend to implement non-blocking calls. Also, we plan to
optimize the collective communication calls using Cell-specific features. The non-
MPI portion of the application still needs some compiler and OS support in order to
be ported without changes to the code for large memory applications. We expect this
to be accomplished by other groups.

7 Conclusions

We have shown the feasibility of an efficient MPI implementation on the Cell
processor, using the SPEs as MPI nodes. Applications using only the core features of
MPI can use our implementation right now, without any changes to the code if the
application fits into the local store memory. Large applications can either make some
hand-coded changes, or wait for compiler and OS support that is expected in the near
future. Our approach, therefore, reduces the programming burden, which is
considered a significant obstacle to the use of the Cell processor. Furthermore, our

implementation demonstrates that simple cores for future generation heterogeneous
multicore processors may run MPI applications efficiently.

Acknowledgments. We thank several employees at IBM Bangalore for running the
performance tests on the Cell hardware. Most of all, we express our gratitude to
Bhagawan Sri Sathya Sai Baba, Chancellor of Sri Sathya Sai University, for bringing
us all together to perform this work, and for inspiring and helping us toward our goal.

References
1. Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., Yelick, K.: The Potential of the

Cell Processor for Scientific Computing, Proceedings of the ACM International
Conference on Computing Frontiers, (2006)

2. An Introduction to Compiling for The Cell Broadband Engine Architecture, Part 4:
Partitioning Large Tasks, (2006) http://www-128.ibm.com/developerworks/edu/pa-dw-
pa-cbecompile4-i.html

3. An Introduction to Compiling for The Cell Broadband Engine Architecture, Part 5:
Managing Memory, (2006) http://www-128.ibm.com/developerworks/edu/pa-dw-pa-
cbecompile5-i.html

4. Cell Broadband Engine Programming Handbook, Version 1.0, April (2006) http://www-
306.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585
F/$file/BE_Handbook_v1.0_10May2006.pdf

5. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI – The Complete
Reference, Volume 1, The MPI Core, second edition, MIT Press (1998)

6. Buntinas, D., Mercier, G., Gropp, W.: Implementation and Shared-Memory Evaluation of
MPICH2 over the Nemesis Communication Subsystem. Proceedings of the Euro
PVM/MPI Conference, (2006)

7. Gropp, W., Lusk, E.,: Reproducible Measurements of MPI Performance Characteristics,
Argonne National Lab Technical Report ANL/MCS/CP-99345, (1999)

8. Buntinas, D., Mercier, G., Gropp, W.: Design and Evaluation of Nemesis, a Scalable,
Low-Latency, Message-Passing Communication Subsystem, Proceedings of the
International Symposium on Cluster Computing and the Grid, (2006)

9. Buntinas, D., Mercier, G., Gropp, W.: Data Transfers Between Processes in an SMP
System: Performance Study and Application to MPI, Proceedings of the International
Conference on Parallel Processing, (2006) 487-496

10. Tang, H., Shen, K., Yang, T.: Program Transformation and Runtime Support for Threaded
MPI Execution on Shared-Memory Machines, ACM Transactions on Programming
Languages and Systems, 22 (2000) 673-700

11. Gropp, W., Lusk, E.,: A High-Performance MPI Implementation on a Shared-Memory
Vector Supercomputer, Parallel Computing, 22 (1997) 1513-1526

12. Fatahalian, K., Knight, T.J., Houston, M., Erez, M.,: Sequoia: Programming the Memory
Hierarchy, Proceedings of SC2006, (2006)

13. MultiCore Framework, Harnessing the Performance of the Cell BE™ Processor, Mercury
Computer Systems, Inc., (2006) http://www.mc.com/literature/literature_files/MCF-ds.pdf

14. Ohara, M., Inoue, H., Sohda, Y., Komatsu, H., Nakatani, T.: MPI Microtask for
Programming the Cell Broadband EngineTM Processor, IBM Systems Journal, 45 (2006)
85-102

