Efficient Barrier Implementation on the POWERS Processor

C.D. Sudheer
IBM Research
New Delhi, India
sudheer.chunduri@in.ibm.com

Abstract—POWERS is a new generation of POWER
processor capable of 8-way simultaneous multi-threading
per core. High-performance computing capabilities, such as
high amount of instruction-level and thread level parallelism,
are integrated with a deep memory hierarchy. Fine-grained
parallel applications running on such architectures often rely
on an efficient barrier implementation for synchronization.
We present a variety of barrier implementations for a 4-chip
POWERS node. These implementations are optimized based
on a careful study of the POWERS8 memory sub-system. Our
best implementation yields one to two orders of magnitude
lower time than the current MPI and POSIX threads based
barrier implementations on POWERS. Apart from providing
efficient barrier implementations, an additional significance
of this work lies in demonstrating how certain features of the
memory subsystem, such as NUMA access to remote L3 cache
and the impact of prefetching, can be used to design efficient
primitives on the POWERS.

Keywords-Barrier; POWERS; MPI; pthreads;

I. INTRODUCTION

The POWERS is a new high-end processor from IBM,
and IBM’s first high-end processor to be available under
OpenPOWER Foundation. It provides up to 8-way SMT
per core, thus permitting a high degree of parallelism in
node. Further details on its architecture are presented in
Section II. Applications may implement parallelism using
multiple threads, multiple processes, or a combination. In
many applications involving fine-grained parallelization, the
performance of barrier calls play a crucial role [1]. In this
paper, we present our efficient MPI and POSIX pthreads
barrier implementations on a 4-chip POWERS server.

An efficient barrier implementation relies on characteri-
zation of the memory sub-system. We present early related
work on the POWERS memory sub-system in section III,
and also related work on similar architectures, especially in
the context of collective communication implementations.
We present our results on additional characterization of the
memory subsystem in section I'V. We then describe a variety
of popular barrier algorithms in section V.

Section VI presents our comprehensive evaluation of
these algorithms, along with results of optimization for
the POWERS architecture. In particular, the most effective
optimizations account for NUMA effects in remote L3 cache

Ashok Srinivasan
Dept. of Computer Science
Florida State University
Tallahassee, USA
asriniva@cs.fsu.edu

access and the impact of pre-fetching to cache. Our best
implementation achieves latency of around 1 ups - 4 us
on 1 and 8-way SMT respectively. This improves on the
existing implementations by one to two orders of magnitude.
Our implementation uses characteristics of the memory sub-
system, which can also help optimize other applications, as
mentioned in section VII on future work.
The primary contributions of this paper are as follows.

o Developing efficient MPI and POSIX threads based
barrier implementations that improve on existing ones
by one to two orders of magnitude.

« Demonstrating the potential for optimization through
control of hardware prefetching by the POWERS core.
This will be useful for optimizing other applications
too on POWERS.

« Demonstrating optimization of data movement on
multi-chip POWERS servers by accounting for NUMA
effects in access to L3 cache.

II. POWERS8 ARCHITECTURE

POWERS is the eighth-generation POWER processor [2],
designed for both high thread-level performance and system
throughput on a wide variety of workloads. POWERS pro-
cessor is implemented in IBM’s 22nm SOI technology [3].
Each POWERS chip has up to 12 processor cores, a 50%
increase over the previous generation POWER processor.
The 649mm?2 die, shown in Figure 1, includes 12 enhanced
8-way multithreaded cores with private L2 caches, and a
96MB high-bandwidth eDRAM L3 cache.

The POWERS memory hierarchy includes a per-core L1
cache, with 32KB for instructions and 64KB for data, a per-
core SRAM-based 512KB L2 cache, and a 96MB eDRAM-
based shared L3 cache. The cache line size on POWERS is
128 bytes. In addition, a 16MB off-chip eDRAM L4 cache
per memory buffer chip is supported. There are 2 memory
controllers on the chip supporting a sustained bandwidth
of up to 230GB per second. The POWERS chip has an
interconnection system that connects all components within
the chip. The interconnect also extends through module and
board technology to other POWERS processors in addition
to DDR3 memory and various I/O devices.

The POWERS based Scale Out servers [4] such as the
one we used in our work are based on IBM‘s Murano

dual-chip module (DCM) [5], which puts two half-cored
POWERS chips into a single POWERS socket and links
them by a crossbar [6]. Each DCM contains two POWERS
chips mounted onto a single module that is plugged into a
processor socket. For example, a 12-core DCM actually has
two 6-core POWERS processors mounted on the module.
The particular server we used in this work is 8247-42L [7],
and it has 2 sockets, each with one DCM containing two 6-
core POWERS chips. In total, it has 24 cores with 192-way
parallelism.

Each POWERS core can issue and execute up to ten
instructions and 4 load operations can be performed in a
given cycle [2]. This higher load/store bandwidth capability
compared to its predecessor makes POWERS more suitable
for high bandwidth requirements of many commercial, big
data, and HPC workloads.

POWERS also has enhanced prefetching features such
as Instruction speculation awareness and Data prefetch
depth awareness. Designed into the load-store unit, the
data prefetch engine can recognize streams of sequentially
increasing or decreasing accesses to adjacent cache lines
and then request anticipated lines from more distant levels
of the memory hierarchy. After a steady state of data
stream prefetching is achieved by the pipeline, each stream
confirmation causes the engine to bring one additional line
into the L1 cache, one additional line into the L2 cache,
and one additional line into the L3 cache [2]. Prefetching is
automatically done by the POWERS hardware and is config-
urable through the Data Streams Control Register (DSCR).
The POWER ISA supports instructions and corresponding
programming language intrinsics to supply a hint to data
prefetch engines to override the automatic stream detection
capability of the data prefetcher [3]. Our shared memory
based barrier implementation is optimized as described later
by configuring this DSCR register.

: e i €
b R ST iy

o

Figure 1. POWERS processor chip

ITII. RELATED WORK

In [8] various aspects of a POWERS system were studied
using microbenchmarks, and the performance of OpenMP
directives is evaluated. The performance of few scientific
applications using OpenMP is evaluated and it highlights
the overhead of OpenMP primitives especially when 8-way
SMT is used in each core.

Communication between the cores in a cache coherent
system is modeled in [9] using Xeon Phi as a case study.
Using their model, they designed algorithms for collective
communication.

Our barrier implementation is not built on top of
point-to-point primitives. Rather, all processes directly
use a common region of shared memory. Such use of
shared memory has been shown to be more efficient
than implementing collectives on top of point-to-point
primitives [10] on the Opteron. We have also implemented
collectives using shared memory for Cell BE and Xeon
Phi. In our earlier work, we had used double buffering
on the programmer controlled caches (local stores) of the
Cell processor to optimize MPI [11]. We also showed that
double buffering can be effective even on the Xeon Phi
[12]. Since the caches on Xeon Phi are not programmer
controlled, we induce the same benefits by careful design of
the algorithms. Though our implementations on POWERS
use shared memory, the implementation is tuned considering
the cache hierarchy and prefetching features of POWERS
rather than through the above optimization techniques.

IV. EVALUATION OF MEMORY SUBSYSTEM

Understanding the memory bandwidth, memory access
latency or the cache-to-cache bandwidth on the POWERS
is crucial to optimize parallel codes. Here we focus on the
chip organization used in the POWERS scale-out servers,
which uses a 2 socket configuration. The L3 cache is shared
among the the cores and a core can access a remote L3
cache block and the latency for the access depends on the
placement of the remote core. The remote core could be
present on the same chip, or same socket or a remote socket,
and access latency varies accordingly. To achieve better
parallel performance, core binding and NUMA placement
are crucial.

To better understand the NUMA effects of the POWERS
memory subsystem, we used two benchmarks to measure
the core to core access latency. First, we use the standard
ping-pong benchmark [13] to measure the point-to-point
communication latency. Message passing latency between
two nodes or between two cores within a node is commonly
determined by measuring ping pong latency. MPI latency
is usually defined to be half of the time of a ping pong
operation with a message of size zero.

The table I shows MPI latency between two POWERS
cores with the two MPI processes placed onto different

chips. For convenience, we use the following naming con-
vention. The chips on the 2-socket POWERS server is
referred as socket 0 having two chips A and B, and socket 1
having two chips C and D. One MPI process is always bound
onto a core in chip A, and latency is measured by placing
the other task onto different chips. As can be seen from
the latency numbers, when the two cores are on the same
chip (A), the latency is less compared to when the cores
across the chips communicate. Also, notice the latency with
cores between A and B, which are on the same socket, is
less compared to the same between A and C. MPI tasks are
bound to cores using MPI runtime process binding options.
For this particular experiment OpenMPI rankfile option was
used to bind the processes.

Remote core Latency
on (us)
chip A 0.67
chip B 1.27
chip C 1.38
chip D 1.47

Table 1
0-BYTE PING PONG LATENCY

These results convey that careful placing of tasks onto
cores is essential for obtaining better MPI latency. Another
benchmark we use is a 2-process barrier. The table II
shows the barrier latency when the two MPI processes
are mapped onto cores on different chips. One process is
always bound to chip A and the second process moved
across the chips and measure the barrier latency. These
results also demonstrate the significance of NUMA effects
on the MPI latency and potential importance of binding for
scaling parallel codes on POWERS.

2nd process Latency
on (us)
chip A 0.33
chip B 0.39
chip C 0.43
chip D 0.46

Table II
2-TASK BARRIER LATENCY

Yet another important feature we need to understand is
effect of mapping within a chip. For this, we consider a 6-
process barrier with all the 6 processes mapped onto the 6
cores in the same chip. The barrier code was run with all the
possible 6! permutations of the process-core mapping, and
results showed that affinity does not have a significant effect
on the latency as shown in the table III. The understanding
from these benchmarks is used in optimizing our barrier
implementation as described in section VI.

Min 0.295

Max 0.328

Average | 0.303
Table 1T

BARRIER LATENCY IN A CHIP WITH ALL POSSIBLE MAPPINGS.

V. BARRIER ALGORITHMS

We now present various algorithms we have used for
barrier [11][12]. We used POSIX shared memory as a
communication channel between the processes using POSIX
functions shm_open and mmap. The shared memory region
is contiguous and is memory mapped at the time of the
creation of the communicator for MPI and during the
pthread_init for pthreads implementation. We design our
algorithms and implementations based on our observations
on the performance of the memory subsystem. We explain
our rationale further in section VI.

Let the number of processes be P. All the algorithms
except dissemination, follow the gather/broadcast style. In
this approach, a designated process, called the root, waits
for all the processes to enter the barrier. After that, the root
broadcasts this information to all processes. When a process
receives the broadcast, it exits the barrier.

Dissemination [14]: In the kth step, process i sets a flag
on process i + 2% (mod P) and polls on its flag until it is set
by process P + i - 2k (mod P). This algorithm takes [log2 P
steps.

K-ary tree [15]: The processes are logically mapped to
the nodes of a tree of degree k. Every process calculates
its children using the following formula: (k x rank) + 4,
where i = {i e NA(1 <i<k)A(l1 <i<P)}. We
have modified the algorithm slightly from [15] to avoid false
sharing; in the gather phase, each node polls on the flags of
its children till they are set before setting its own flag. In the
broadcast phase, every node resets the flags of its children
before exiting the barrier. The algorithm takes 2[log, (P)]
steps.

Centralized: In Centralized algorithm, a shared memory
segment consists of P flags is used. In the gather phase, a
process sets its flag and polls on it until it is unset. The root
process resets the flags after all the processes have entered
the barrier. A process exits the barrier only when its flag has
been reset.

Tournament [14]: In each round of the gather phase of
the algorithm, processes are paired and the winner goes to
the next round. A process with lower rank is considered to
be the winner and waits for its flag to be set by its losing
partner. The overall winner initiates the broadcast phase.
The broadcast phase is similar to the one used in the tree
algorithm. The gather phase takes [log,(P)] steps and the
broadcast phase takes [log, (P)] steps.

Binomial Spanning Tree (BST) [16]: The processes

are logically mapped to a binomial spanning tree. The
working principle differs from the free algorithm only in
the fashion in which it constructs the tree. Each process
calculates its children by adding 2' to its rank, where
i ={i € NA (logy(rank) < i < [log(P)]) A (rank + 2" <
P)}.

VI. EMPIRICAL EVALUATION

We first describe the computational infrastructure and then
present results of the empirical evaluation.

A. Computational Platform

We ran all the benchmarks on one node of an IBM cluster
with 8 POWERS processor nodes clocking at 3.32 GHz.
Each node has two socket dual-chip module (DCM), with 6
cores per chip and a total of 24 cores per node. We use the
IBM Parallel Environment (PE) Runtime Edition for Linux
Version 1.3 [17] for MPI codes. We use the IBM XL C/C++
13.1.2 compiler for the thread based codes. For testing the
OpenMPI barrier, we use the recent OpenMPI version 1.8.4.
We use a modified version of the OSU MPI benchmark suite
[13], that benchmarks collectives on MPI COMM WORLD,
to measure the performance of MPI collective operations
on the POWERS. To obtain statistically sound results, we
repeated the measurements 2 million times and we give the
results as the average values.

While running MPI based benchmarks for OpenMPI
barrier and IBM PE MPI barrier, the code was compiled
with appropriate compiler flags such that the shared mem-
ory (sm) is used for MPI communication. For both the
MPIs, appropriate core binding runtime options are used
to map the processes onto the cores. With the IBM PE
MPI, environment variables such as MP_TASK_AFFINITY,
MP_BIND_MODE, MP_BIND_LIST are used for pro-
cess binding. With OpenMPI, rankfiles and -map-by
options are used. For pthreads based codes, we use
pthread_attr_setaffinity_np library call to map a thread onto
a specific core. With the XL based OpenMP, OMP_PLACES
is used for explicitly binding the threads to the cores.

We use the OpenMP micro-benchmark suite (version 3.X)
from EPCC to quantify these overheads [18] and with this
benchmark we used a sample size of 10000.

Our analysis of various implementations for barrier is
presented next.

B. Flag representation

All the algorithms use a shared memory segment of size P
flags, one important aspect is to evaluate the different options
for representing the flag. Since a flag is accessible by all the
cores, the size for the flag need to be chosen carefully con-
sidering the data prefetching and cache coherency effects.
We evaluate different options for representing the flag.

26

24

Latency (us)

22

0 5 10 15 20 25
Tree degree (k)

Figure 2. k-ary tree barrier latency

One possibility is to use one integer for representing
the flag. We use the k-ary tree algorithm to evaluate this.
POWERS cache line size is 128B, and hence for a 24 process
MPI, with this representation all the flags fit in one cache
line. So, many processes access the same cache line, and this
could potentially lead to higher false sharing cache misses.
In effect, a store access to the cache line by a core results
in invalidation of the cache line at the other cores. Using
this flag representation, a latency of 21 us was observed
for the barrier and the hardware counter data showed high
amount of cache misses. We then experimented using the
other possibility of using one cache line for representing the
flag, and this incurs in much lesser latency of 1.8 us. Hence,
using one integer for flag is not a good option, and hence
we represent flag with one cache line. This observation is
different from what we observed with our implementation
for Xeon Phi, where, despite false sharing, the first option
was better. As discussed in [12], with the first option, better
vectorization was observed and effect of false sharing was
not seen. However, on POWERS the first option results in
more cache misses.

C. Optimal degree for k-ary tree

Given that k-ary tree has many different implementations
based on the degree, we need to identify the optimal degree.
We discuss about this next.

Figure. 2 compares the influence of the tree degree for the
k-ary tree algorithm. It gives the latency for a 24 process
barrier, where a process is mapped onto one core. All the
implementations represent the flag with one cache line. The
number of steps in the algorithm reduces as the degree of
the tree increases. This is reflected in the decrease in the
latency of the algorithm as the tree degree increases. The
best latency of roughly around 1.81 us is observed with
tree degrees 5, 7 or 8. Each POWERS chip has 6 cores,
and possibly with these degrees, the number of inter-chip
data transfers are less thus resulting in better latency. Next,

Latency (us)

-

183
,
Le7 16
14 | | 124 123 124
-
I 104 I 104
1 2 3 4 5 6

Number of cache lines for flag

Figure 3. k-ary tree degree (5) with different cache lines per flag

we look at the k-ary tree barrier operation flow in terms of
memory accesses to evaluate it better.

As described in section V, the k-ary tree barrier involves
two phases, gather and broadcast. In the gather phase, all
the processes having children polls on their flags, and this
involves remote cache load accesses. In the broadcast phase,
every process resets the flags of its children, and this involves
remote cache store accesses. So, in essence, the cache line
(flag) corresponding to a process ’i’ is moved between the
caches of process ’i’ and its parent. This results in cache
conflict misses which effects the overall latency. The effect
of conflict misses increases as we increase the degree k.
Another issue that should be effecting the latency is the
number of steps involved in the algorithms with different
degrees. With lower degrees, the number of steps in the
gather and broadcast phases are high, resulting higher inter-
chip data transfers. With degrees 5, 7 or 8§, these transfers
are less, and we could use one of these as our as our optimal
k-ary tree degree.

The additional complexity in the analysis results due to
the interplay of the aggressive prefetching done by the data
prefetch engine. We now discuss the potential impact of
prefetching on the performance of the barrier.

D. Prefetch effects

In our implementation, all the process flags are stored
contiguously in memory. The access to a flag by a core
results in placing the corresponding cache line in its L1
cache, however, due to the aggressive prefetching used by
the core, a stream of cache lines are also brought into its
L1 cache. This stream of lines contains the cache lines
corresponding the flags of the other processes. So, when the
other cores attempt for a prefetch issue for their respective
flags, those prefetch requests are rejected as the requested
lines are already in transit. The others cores will then get
access to their lines only through a demand load request
rather through a prefetch request. The demand request for
the line by the these cores will be serviced from the remote
cache which already have these. This request is referred to

as an L3 lateral cast-out or an intervention request, and this
access to remote caches incurs in more latency.

With an aim to gain more insight into the processing
of this implementation of k-ary tree, we monitor hardware
counters related to the memory. They indicate a high ratio
of L3 store misses and a high amount of L3 prefetches. This
validates our above reasoning about the detrimental effects
of prefetching for this representation of one cache line per
flag.

To reduce the miss rate due to the prefetching, one
possible approach is to store the flags corresponding to the
process far apart such that prefetch engine will not load
the valid lines of other processes. One possibility is to use
multiple cache lines to represent the flag instead of just one
cache line. Figure 3 gives the latency for the k-ary tree
barrier with degree 5 for varying number of cache lines
per flag. The best latency of 1.04 us is observed when 5
or 7 cache lines are used per flag. With 5 cache lines, the
hardware counter data showed less L3 misses. POWERS
uses a default DSCR value of 0 and with this a ramp depth
of 4 is used by the data prefetch engine [2], so possibly
4 cache lines are brought in per one prefetch data stream
request. Hence, when 5 cache lines are used per flag, each
core get its flag into its cache as a prefetch request rather
than as a demand load request. So, when the memory access
stream stride is beyond 4 cache lines, the prefetch will not
be loading the valid lines corresponding to the remote cores.

However, using 5 cache lines for a flag is not a scalable
solution as each MPI communicator in an application uses
a separate shared memory segment, leading to possible
high memory requirement. Hence, we need other ways
to address prefetching effects, and we could achieve it
by configuring the prefetch engine at the run time. As
described in section II, the POWERS core has the support
to configure the data prefetch engine. We used the intrinisic
__prefetch_set_dscr_register() [3] to set the required value in
the DSCR register. Intrinsic __prefetch_get_dscr_register()
can be used to know the default DSCR value. We used these
intrinsics with the 1 cache line per process implementation,
and set the DSCR value such that hardware prefetching
is disabled. We set the DSCR to 40. The results for this
implementation is compared with the other two prior ones
next.

Figure. 4 compares the three implementations, i.e., i.
one cache line for flag with the default hardware prefetch
enabled, ii. 5 cache lines for flag, and iii. one cache line for
flag with hardware prefetch disabled. These implementations
are tested with different tree degrees, and ii. and iii. perform
consistently better than i. Considering the high memory
requirement for the approach of using 5 cache line for flag,
we select iii. as our best barrier implementation. And clearly,
degree 5 gives the best latency, and hence from here any
reference to k-ary tree based implementation corresponds to
the implementation of iii. with degree 5. Next, we do further

with Prefetch —e—
28 | no Prfetch —e— |
: 5 cache lines
26 1
24 | «
w22t B
2
2
8 18¢f g
16 1
1.4 B
12 1
1
0 5 10 15 20 25
Tree degree (k)
Figure 4. k-ary tree barrier latency for tree order

analysis of k-ary tree based implementation to understand its
operation better.

1.2 . . : :
1 . .|
08 | A
@
2
g osf E
Q
®
-
04 f <
02 i
0 , , , ,
0 5 10 15 20 25

Number of MPI Tasks

Figure 5. Barrier latency with increasing number of MPI tasks (one task
mapped onto one core)

E. Further Analysis of k-ary tree

The scalability of barrier for the k-ary tree based im-
plementation as the number of processes participating in
the barrier are increased is shown in Figure. 5. When the
number of processes involved in a barrier are less than 6, all
the memory accesses involved in the barrier are contained
within a single chip and hence results in a good latency.
However, as can be seen with sudden jump in the figure,
when 7 or more processes are involved in the barrier, the
accesses go across the chip resulting in higher latency. Table
IV shows the latency for the 7 process barrier, when the 7th
process is placed across the different sockets. Higher latency
is incurred as the process moves farther from the chip, this
confirms with our earlier benchmarks discussed in section
IV.

The 7 process barrier test reveals that the inter-chip
accesses are the major contributor to the barrier latency and
the algorithm that reduces the number of transfers performs
the best. The small difference in latency between the 7
process and 24 process barrier also shows that the effect
of inter-chip accesses with the 24 process barrier is less.

Having found the best combination of tree degree and flag
representation for the k-ary tree barrier, we now compare it
with the other barrier implementations.

7th process Latency
on (us)
chip B 0.81
chip C 0.90
chip D 0.93

Table IV
7 PROCESS MPI BARRIER

E Comparison with other implementations

We compare the barrier latency for the Disemmination,
Binomial, Tournament, and k-ary tree algorithms. The flag
is represented with one cache line even in these algorithms.
Figure. 6 shows the barrier latency for these algorithms.
The k-ary tree algorithm gives performs among all the
algorithms.

In the Dissemination algorithm, the flag of a process is
updated by a different process in each round. Each time
the cache line is updated, it becomes a candidate to be
invalidated in the other caches. And also, in every round of
the algorithm there are P processes communicating across
the cores, whereas in the k-ary tree algorithm there are much
fewer processes communicating across the cores in a typical
step. Apart from the higher number of steps, the data access
pattern of dissemination involves a lot of data transfer from
remote processes. That is likely the reason for its worse
performance.

The broadcast phase in both the Tournament and k-
ary tree algorithm is similar. However the degree used
with tournament is lower, and also in the gather phase,
Tournament algorithm involves more stages thus it involves
more data transfers.

G. With SMT

Until here, we consider only the cases which only use
the 1-way SMT of each POWERS core. Now, we look at
the latency of the barrier where there more processes are
mapped onto a core using upto 8-way SMT.

Figure 7 gives the timings for the k-ary tree, Binomial and
Centralized algorithms. (note: The Centralized algorithm is
essentially k-ary tree with degree 23 for 1-way SMT and
with degree 191 for 8-way SMT). Our best barrier imple-
mentation for 1-way SMT was the k-ary tree with degree
5, and it also performs consistently well as we increase the

Latency (us)
o

3.5
216

: . 108

:] —

Disemmination Binomial Tourmament k-ary(3)

Alzorithm

Figure 6. 24 process MPI barrier latency for different algorithms

number of processes occupied per core. The performance
of Centralized implementation decreases compared to other
algorithms from the 3-way SMT, potentially due to higher
cache conflict misses. In the Centralized algorithm, the
gather and broadcast phase involve just one step. In this
algorithm every process is polling on its flag to be reset
by the root process. So, while every other process wants to
read, the root intends to perform a write. In the worst case,
there will be a cache miss for every process whose flag
the root is updating. Though cache miss effects on latency
are not observed when 1 process per core was used, with
higher number of processes per core, the performance of the
algorithm diminishes due to higher cache misses.

A 192-way MPI process barrier just takes 4.5 us with our
implementation. And the implementation scales well as we
use more processes in a core.

K-ary ‘degree 5 o
Binomial —e—
14 - Centralized —o— 4
N
2
>
Qo
c
Q
s
-
0 s
1 2 3 4 5 6 7 8
SMT -way
Figure 7. Latency comparison k-ary tree with Binomial Tree based and

Centralized barrier implementations for 1-way upto 8-way SMT

H. Comparison with MPI libraries

Now that we have the k-ary tree as the best among all
our implementations, we compare it with the barrier imple-
mentations available in the standard MPI libraries. Note that

these benchmarks were run using the good compile time
and run time options specified for the optimal Intra-node
collectives with the respective libraries. Figure. 8 gives the
latency for the k-ary tree barrier, IBM PE MPI barrier and
the OpenMPI barrier. Our barrier implementation perform
consistently better than others, and interestingly even the
latency for a 192 process (8-way SMT) MPI barrier with
our implementation is faster than even a 1-way MPI barrier
latency with the others.

60

K-ary ‘degree 5 o
IBM PE MPI —eo—
OpenMPl —o—

50

40

30

Latency (us)

20

10 b

0 ! ! . . .
1 2 3 4 5 6 7 8

SMT -way

Figure 8. Latency comparison k-ary tree with IBM PE MPI and OpenMPI
barriers for 1-way upto 8-way SMT

Having established that we have an efficient barrier imple-
mentation for Intra-node MPI, we now look at implementing
our barrier algorithm using a shared memory programming
model.

1. Shared memory based barrier

We use pthread programming model to implement the
barrier. We compare our barrier implementation with the
pthread barrier available in the POSIX library. Table V
shows the latency for the POSIX library pthread barrier call
and for our pthreads based barrier from 24-way up to 192-
way thread level parallelism. Our barrier implementation is
few orders of magnitude better than the library implemen-
tation.

SMT k-ary tree POSIX
degree(5) pthreads barrier
pthreads

1 1.05 127.6
2 1.41 397.8
3 1.85 624
4 2.1 1229
5 2.55 1546
6 3.06 1929
7 3.48 2252
8 4.07 2611
Table V

PTHREADS BARRIER LATENCY (US)

We also compare its performance with the barrier avail-
able in other shared memory programming models such as
OpenMP. Figure 9 shows the latency for our pthreads based
barrier and the OpenMP BARRIER! primitive from 24-way
up to 192-way thread level parallelism. Our implementation
performs around about 2-3 times faster than the OpenMP
barrier. This speedup would have a significant effect on the
parallel applications.

10

K-a'ry degree 15 (PThrea&s) —o— ' ' s
9 OpenMP BARRIER —e—
8 4
7 4
N
2 6 d
>
Q
c
2 5]
o
T
4 »
3 = 4
2 = 4
1
1 2 3 4 5 6 7 8
SMT -way
Figure 9. Latency comparison k-ary tree based pthread barrier with the

OpenMP BARRIER for 1-way upto 8-way SMT

VII. CONCLUSIONS AND FUTURE WORK

We have identified certain important performance charac-
teristics of the memory sub-system on the IBM POWERS
Processor. In particular, we have evaluated the impact of
NUMA on L3 cache access and also analyzed the effect
of prefetching on the performance of algorithms that access
data in more complex ways than a stride-based pattern. We
have used this characterization to develop an efficient barrier
implementation that is one to two orders of magnitude faster
than current MPI and pthreads implementations. In addition,
we note that the optimal implementation differs from that on
the Intel MIC architecture due to differing impacts of cache
access overhead.

The memory sub-system characteristics that we have iden-
tified can help optimize other applications, especially if they
have an irregular memory access pattern. In future work, we
plan to use our results to optimize other collective opera-
tions on a single node. Efficient collective communication
implementations for large parallel systems build on top of
efficient primitives on single node. We intend combining our
implementation with inter-node barrier implementations in
order to develop optimal solutions on large parallel systems.

'Our benchmark results on OpenMP do not match with what was
presented in [8]. As they mention, OpenMP runs were not optimized for
POWERS. In our work, the OpenMP barrier is evaluated for the best
possible OpenMP runtime for POWERS. The OpenMP based benchmarks
are compiled with the IBM XL compiler toolchain with the POWERS
specific compilation flag.

ACKNOWLEDGMENT

This material is partly based upon work supported by the
National Science Foundation under Grant No. 1525061. We
thank Sameer Kumar, Vaibhav Saxena, Manoj Dusanapudi
and Shakti Kapoor for discussions on different topics related
to this work.

REFERENCES

[1] C. D. Sudheer, S. Krishnan, A. Srinivasan, and P. R. C.
Kent. Dynamic load balancing for petascale quantum Monte
Carlo applications: The alias method. Computer Physics
Communications, 184(2):284-292, 2013.

[2] B. Sinharoy, J. A. Van Norstrand, R. J. Eickemeyer, H. Q. Le,
J. Leenstra, D. Q. Nguyen, B. Konigsburg, K. Ward, M. D.
Brown, J. E. Moreira, D. Levitan, S. Tung, D. Hrusecky,
J. W. Bishop, M. Gschwind, M. Boersma, M. Kroener,
M. Kaltenbach, T. Karkhanis, and K. M. Fernsler. 1BM
POWERS processor core microarchitecture. IBM Journal of
Research and Development, 59(1):2:1-2:21, 2015.

[3] Performance Optimization and Tuning Techniques for IBM
Processors, including IBM POWERS, An IBM Redbooks
Publication. 2014.

[4] Power scale-out servers: http://www-03.ibm.com/systems/in
/power/hardware/scale-out.html, 2015.

[5] IBM Power Systems Facts and Features: Enterprise and Scale-
out Systems with POWERS Processor Technology. May 2015.

[6] Power8 iron to take on four-socket xeons: http://www.
theplatform.net/2015/05/11/power8-iron-to-take-on-four-
socket-xeons/, May 2015.

[7] IBM Power System S824L Technical Overview and Introduc-
tion, An IBM Redbooks Publication.

[8] Andrew V. Adinetz, Paul F. Baumeister, Hans Bottiger,
Thorsten Hater, Thilo Maurer, Dirk Pleiter, Wolfram Schenck,
and Sebastiano Fabio Schifano. Performance Evaluation of
Scientific Applications on POWERS. In 5th International
Workshop on Performance Modeling, Benchmarking and Sim-
ulation of High Performance Computer Systems (PMBS14)
held as part of SCi14, 2014.

[9] Sabela Ramos and Torsten Hoefler. Modeling communication
in cache-coherent SMP systems: a case-study with Xeon Phi.
In Proceedings of the 22nd international symposium on High-
performance parallel and distributed computing, pages 97—
108. ACM, 2013.

[10] Richard L Graham and Galen Shipman. MPI support for
multi-core architectures: Optimized shared memory collec-
tives. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 130-140. Springer, 2008.

[11] M.K. Velamati, A. Kumar, N. Jayam, G. Senthilkumar, P.K.
Baruah, S. Kapoor, R. Sharma, and A. Srinivasan. Opti-
mization of collective communication in intra-Cell MPL. In
Proceedings of the 14th IEEE International Conference on
High Performance Computing (HiPC), pages 488—499, 2007.

[12]

[13]

(14]

[15]

(16]

[17]

(18]

P. Panigrahi, S. Kanchiraju, A. Srinivasan, P.K. Baruah, and
C.D. Sudheer. Optimizing MPI collectives on Intel MIC
through effective use of cache. In in Proceedings of the 2014
International Conference on Parallel, Distributed and Grid
Computing (PDGC), pages 88-93, 2014.

OSU MPI Benchmarks: http://mvapich.cse.ohio-state.edu
/benchmarks/.

Debra Hensgen, Raphael Finkel, and Udi Manber. Two
algorithms for barrier synchronization. International Journal
of Parallel Programming, 17(1):1-17, 1988.

Michael L Scott and John M Mellor-Crummey. Fast,
Contention-Free Combining Tree Barriers for Shared-
Memory Multiprocessors. International Journal of Parallel
Programming, 22(4):449-481, 1994.

Nian-Feng Tzeng and Angkul Kongmunvattana. Distributed
shared memory systems with improved barrier synchroniza-
tion and data transfer. In Proceedings of the 11th international
conference on Supercomputing, pages 148-155. ACM, 1997.

IBM Parallel Environment Runtime Edition for Linux on
Power Version 1.3 simplifies parallel application develop-
ment. 2014.

J. M. Bull, F. Reid, and N. McDonnell. A microbenchmark
suite for openmp tasks. In in Proceedings of the 8th inter-
national conference on OpenMP in a Heterogeneous World
(IWOMP ’12), pages 271-274, 2012.

