
Optimization of the Hop-Byte Metric for
Effective Topology Aware Mapping

C. D. Sudheer
Department of Mathematics and Computer Science

Sri Sathya Sai Institute of Higher Learning, India

Email: cdsudheerkumar@sssihl.edu.in

A. Srinivasan
Department of Computer Science

Florida State University, Tallahassee, FL 32306, USA

Email: asriniva@cs.fsu.edu

Abstract—Suitable mapping of processes to the nodes
of a massively parallel machine can substantially improve
communication performance by reducing network conges-
tion. The hop-byte metric has been used as a measure of
the quality of such a mapping by several recent works.
Optimizing this metric is NP hard, and thus heuristics
are applied. However, the heuristics proposed so far do
not directly try to optimize this metric. Rather, they use
some intuitive methods for reducing congestion and use
the metric just to evaluate the quality of the mapping.
In fact, heuristics intending to optimize other metrics too
don’t directly optimize for them, but, rather, use the metric
to evaluate the results of the heuristic. In contrast, we
pose the mapping problem with the hop-byte metric as
a quadratic assignment problem and use a heuristic to
directly optimize for this metric. We evaluate our approach
on realistic node allocations obtained on the Kraken system
at NICS. Our approach yields values for the metric that
are up to 75% lower than the default mapping and
66% lower than existing heuristics. However, the time
taken to produce the mapping can be substantially more,
which makes this suitable for somewhat static, though
possibly irregular, communication patterns. We introduce
new heuristics that reduce the time taken to be comparable
to that of existing fast heuristics, while still producing
mappings of higher quality than existing ones. We also use
theoretical lower bounds to suggest that our mapping may
be close to optimal, at least for medium sized problems.
Consequently, our work can also provide insight into the
tradeoff between mapping quality and time taken by other
mapping heuristics.

I. INTRODUCTION

Recent works [3], [4], [5], [6], [8], [9], [10], [11] have

shown substantial communication performance improve-

ment on large parallel machines by suitable assignment

of processes or tasks to nodes of the machine. Earlier

works on graph embedding are usually not suitable

for modern machines because the earlier works used

metrics suitable for a store-and-forward communication

mechanism. On modern machines on the other hand,

in the absence of network congestion, latency is quite

independent of location; communication performance

is limited by contention on specific links. Yet another

significant difference is that the earlier works typically

embedded graphs onto standard network topologies such

as hypercubes and meshes. On massively parallel ma-

chines, jobs typically acquire only a fraction of the nodes

available, and the nodes allocated do not correspond to

any standard topology, even when the machine does.

For example, we show below in fig. 1 an allocation

for 1000 nodes on the 3D torus Jaguar machine at

ORNL. We can see that the nodes allocated are several

discontinuous pieces of the larger machine. Assignment

of tasks to nodes that take this into account can reduce

communication overhead. For example, we used a spe-

cific mapping to reduce communication time in a load

balancing algorithm by over 30% on Jaguar, and this

mapping also reduced MPI allgather time by a similar

amount.

Recent works use heuristics that can be intuitively

expected to reduce network congestion and then evaluate

it either empirically or using some metric. The hop-

byte metric has attracted much attention recently. It is

defined as the sum over all the messages of the product

of the message size and number of hops the message

has to traverse. On a store-and-forward network, this

would correspond to the total communication volume.

The intuition behind this metric is that if the total

communication volume is high, then it is also likely to

increase the contention for specific links, which would

then become communication bottlenecks. Although this

metric does not directly measure the communication

bottleneck caused by contention, heuristics with low

values of this metric tend to have smaller communication

overheads. This serves as a justification for this metric.

The advantage of this metric is that it requires only the

machine topology, while computing contention would

require routing information. We discuss recent develop-

ments in this topic in section 2.

In contrast to other approaches, we use the hop-byte

metric for producing the mappings too, rather than just

using it for evaluating the mapping. Optimizing for the

hop-byte metric can easily be shown to be a specific

case of the Quadratic Assignment Problem (QAP), which

Fig. 1. Allocation of 1000 nodes on Jaguar. The axes correspond to
indices on the 3D torus, and the green region corresponds to allocated
nodes.

is NP hard. Exact solutions can be determined using

branch and bound for small problem sizes. We use the

existing GRASP heuristic for medium-sized problem.

An advantage of the QAP formulation is that we can

use theoretical lower bounds to judge the quality of

our solution. The time taken to determine the mapping

using an exact solver or GRASP increases rapidly with

problem size. In that case, we consider a couple of

alternate approaches. In the first case, we develop new

heuristics that improve on some limitations of other

heuristics for this problems. In the second case, we use

graph partitioning to break up the problem into smaller

pieces, and then apply GRASP to each partition. We

discuss our approach further in section 3.

We evaluate our approach on six different communica-

tion patterns. We determine the values of the metric for

different heuristics using node allocations obtained on

the Kraken supercomputer at NICS. In contrast to other

works that usually assume some standard topology, our

results are based on actual allocations obtained. We see

up to 75% reduction in hop-bytes over the default allo-

cation, and up to 66% reduction over existing heuristics.

Furthermore, our results are usually within a factor of

two of a theoretical lower bound on the solution. For

small problem sizes, that lower bound is usually just

a little over half the exact solution. Consequently, it is

likely that our solutions are close to optimal. We describe

our results further in section 4.

The outline of the rest of the paper is as follows. We

describe related work in section 2 followed by descrip-

tion of our approach in section 3. We present empirical

results in section 4 and summarize our conclusions in

section 5.

II. RELATED WORK

Mapping of processes to nodes based on the network

topology attracted much attention in the earlier days of

parallel computing. It lost its importance for some time

with the advent of communication mechanisms such as

worm-hole routing. However, for reasons explained in

section I, it had once again attracted much attention

recently.

Different topological strategies for mapping torus pro-

cess topologies onto the the torus network of BlueGene/L

were presented by Yu, Chung, and Moreira [9]. Bhatele

and Kale [5] proposed topology-aware load-balancing

strategies for CHARM++ based Molecular Dynamics

applications. Their analysis maps mesh and torus process

topologies to other mesh and torus network topologies.

Several techniques for mapping regular communication

graphs onto regular topologies were developed [7]. The

mapping is a NP-hard problem [13]; hence heuristics

are used to approximate the optimal solution. Heuristic

techniques for mapping applications with irregular com-

munication graphs to mesh and torus topologies were

developed, and some of them even take advantage of

the physical coordinate configuration of the allocated

nodes [8]. The performance of these heuristics were

evaluated based on the hop-byte metric. Hoefler and

Snir [10] present mapping algorithms that are meant

for more generic use and the algorithms are evaluated

using the maximum congestion metric – the message

volume on the link with maximum congestion. Their

heuristics based on recursive bisection and graph sim-

ilarity were used to map application communication

patterns on realistic topologies. The metrics here again

are used to evaluate the mappings rather than being

used to determining the mapping. The algorithm Greedy

Graph Embedding (GGE) proposed in [10] is used by

us for comparison, because it performs best among the

heuristics they have proposed. Furthermore, the algo-

rithm can be used with arbitrary communication patterns

and network topologies, even though the implementation

in [10] was more restricted.

Krishna et al. developed topology aware collective

algorithms for Infiniband networks. These networks are

hierarchical with multiple levels of switches, and this

knowledge was used in designing efficient MPI col-

lective algorithms [11]. The reduced scalabilty of the

latency and effective bandwidth due interconnect hot

spot for fat-tree topologies is addressed with topology-

aware MPI node ordering and routing-aware MPI collec-

tive operations [12]. Graph partitioning libraries such as

SCOTCH and Metis provide support for mapping graphs

to network topologies.

Massively parallel systems such as Cray XT and

BlueGene/P systems are generally heavily loaded with

multiple jobs running and sharing the network resources

simultaneously, this results in application performance

being dependent on the node allocation for a particular

job. Balaji et al. analyzed the impact of different process

mappings on application performance on a massive Blue

Gene/P system [14]. They show that the difference can

be around 30% for some applications and can even be

two fold for some. They have developed a scheme where

by the user can describe the application communication

pattern before running a job, and the runtime system then

provides a mapping that potentially reduces contention.

III. MAPPING HEURISTICS

A. Problem formulation

We model the problem using two graphs. The node

graph G is an undirected graph with vertices representing

the nodes of the machine that have been allocated to

the job submitted, and edge weights eij representing

the number of hops between the vertices i and j linked

by that edge. The hops can be determined from the

machine topology information and knowledge of the

nodes actually allocated. These can usually be obtained

on most supercomputing systems. We assume that static

routing is used, which is fairly common.

The task graph G′ = (V ′, E′) represents the submitted

job. Each vertex is represents a process running on a

node and edge weight e′ij represents the total sizes of

messages, in both directions, between vertices i and j

linked by that edge. The number of vertices in this

graph must equal the number in the node graph. If there

are more tasks than nodes, then a graph partitioning

algorithm can be applied to aggregate tasks so that this

condition is satisfied.

Minimizing the hop-bytes then is the following

quadratic assignment problem, where xij = 1 implies

that task j is assigned node i.

min
∑

ij

∑

kl

eike
′

jlxijxkl, (1)

subject to:
∑

i

xij = 1, for all j

∑

j

xij = 1, for all i

xij in {0,1}

This is a well known NP hard problem and considered

hard to approximate, though there are reasonable approx-

imation algorithms [2] for dense instances. The exact

solution can be found for small instances using branch

and bound (bounds are used to reduce the search space).

A couple of popular lower bounds are the elimination

bound and the Gilmore-Lawler bound. We use the exact

solution for small instances, and also the bounds for

medium size instances, in order to evaluate the effec-

tiveness of our heuristics.

B. GRASP heuristic

Several heuristics have been proposed for QAP, based

on meta-heuristics such as simulated annealing, tabu

search, ant colony optimization, and greedy randomized

adaptive search procedures (GRASP). GRASP is based

on generating several random initial solutions, finding

local optima close to each one, and choosing the best

one. We use a GRASP heuristic for QAP from [1].

C. MAHD and exhaustive MAHD heuristics

We first describe our faster heuristic, Minimum Av-

erage Hop Distance (MAHD), in Algorithm 1 below.

It improves on the following limitation of the GGE

[10] heuristic. GGE replaces step 7 of algorithm 1 with

a strategy that places the task on the node closest to

its most recently mapped neighbor. We would ideally

like this task to be close to all its neighbors. MHT [8]

addresses this by placing the node closest to the centroid

of all previously mapped neighbors. On the other hand

MHT works only on meshes. Our algorithm works on

a general graph, and places the task, in this step, on

the node that has the minimum average hop distance

to nodes on which all previously mapped neighbors of

the task have been mapped. MHT also selects a random

node on which to place the initial task. We intuitively

expect a task with the maximum number of neighbors

to be a ”central” vertex in a graph, and so try to map

it to a node which is ”central” in its graph. We do this

by placing it on the node with the minimum average

hop distance to any other vertex. The first task selected

may not actually be ”central” (for instance, in the sense

centrality measures such as betweenness centrality). We

introduce an Exhaustive MAHD (EMAHD) heuristic to

see if a better choice of initial vertex is likely to lead

to significant improvement in mapping quality. In this

heuristic, we try all possible nodes as starting vertices,

and then choose the one that yields the best time.

Algorithm: MAHD heuristic. (The actual implemen-

tation deals with special cases such as the graphs not

being connected.)

D. Hybrid heuristic with graph partitioning

If |V ′| is too large for GRASP to be feasible, then we

use the following hybrid heuristic. We partition graphs

G and G′ into partitions of size p each. Any graph

partitioning algorithm can be used. We use a multilevel

heuristic available in parMetis. We create graphs H and

Algorithm 1 MAHD(G, G′)

1. s = vertex in G with maximum number of neighbors

2. p = vertex in Gẃith minimum average hop distance

to all other vertices

3. Assign task s to node p

4. Insert all neighbors of s into max-heap H, where the

heap is organized by the number of neighbors

5. while H in not empty do

6. s = H.pop();

7. s is mapped to a node with minimum average hop

distance to processes hosting mapped neighbors of

s;

8. Insert neighbors of s into H if they are not in H

and have not been mapped;

9. end while

H ′ corresponding to the partitions of G and G′ respec-

tively. In H , each vertex corresponds to a partition in G
and in H ′, each vertex corresponds to a partition in G′.

Each edge in H has weight corresponding to the average

hops from nodes between the two partitions linked by

that edge. Each edge in H ′ has weight corresponding to

the total message sizes between the two partitions linked

by that edge. A mapping of partitions in H ′ to partitions

in H is performed using GRASP and mapping of tasks

to nodes within each partitions is again performed using

GRASP with corresponding subgraphs of G and G′.

IV. EVALUATION OF HEURITICS

A. Experimental platform

The experimental platform is the Cray XT5 Kraken

supercomputer at NICS. It contains 18,816 dual hex-

core Opteron nodes running at 2.6 GHz with 8 GB

memory per socket. The nodes are connected by SeaStar

2+ routers with a 3-D torus topology having dimensions

25 x 16 x 24. Compute Node Linux runs on the compute

nodes. We used the native Cray compiler with optimiza-

tion flag “−O3”.

The QAP codes were obtained from QAPlib

(http://www.opt.math.tu-graz.ac.at/qaplib/codes.html),

which includes codes from a variety of sources. A

branch and bound algorithm was used for the exact

solution, the Gilmore-Lawler bound for a lower bound1

and a dense GRASP heuristic for larger problem sizes.

Three standard collective communication patterns

used in MPI implementations – recursive doubling,

Bruck, and binomial tree – were studied. We also used

the following three irregular communication patterns. A

3-D spectral element elastic wave modeling problem

(3Dspectralwave) and a 2-D PDE (aug2dc) from the

1The Gilmore-Lawler bound performed better than the elimination
bound for large problem sizes.

University of Florida sparse matrix collection, and a 2D

unstructured mesh pattern from the ParFUM framework

available in CHARM++ library.

OSU MPI micro benchmark suite was used for the

empirical tests on the Kraken machine to observe the

impact of the heuristic based mapping on MPI collective

calls.

B. Experimental Results

Figures 2-3 compare the default mapping, GRASP

result, and the Gilmore-Lawler bound for small problem

sizes. The quality (hop-byte metric value) is divided by

that for the exact solution to yield a normalized quality.

!000000000

!000000000.........555555555

!111111111

!111111111.........555555555

!222222222

!222222222.........555555555

!333333333

!333333333.........555555555

!444444444

!444444444.........555555555

!444444444 !666666666 !888888888 !111111111000000000 !111111111222222222 !111111111444444444 !111111111666666666

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
DDDDDDDDDeeeeeeeeefffffffffaaaaaaaaauuuuuuuuulllllllllttttttttt

GGGGGGGGGiiiiiiiiilllllllllmmmmmmmmmooooooooorrrrrrrrreeeeeeeee---------LLLLLLLLLaaaaaaaaawwwwwwwwwllllllllleeeeeeeeerrrrrrrrr!BBBBBBBBBooooooooouuuuuuuuunnnnnnnnnddddddddd

Fig. 2. Quality of solutions on the recursive doubling pattern for
small problem sizes.

!000000000

!000000000.........555555555

!111111111

!111111111.........555555555

!222222222

!222222222.........555555555

!333333333

!333333333.........555555555

!444444444

!444444444.........555555555

!555555555

!444444444 !666666666 !888888888 !111111111000000000 !111111111222222222 !111111111444444444 !111111111666666666

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
DDDDDDDDDeeeeeeeeefffffffffaaaaaaaaauuuuuuuuulllllllllttttttttt

GGGGGGGGGiiiiiiiiilllllllllmmmmmmmmmooooooooorrrrrrrrreeeeeeeee---------LLLLLLLLLaaaaaaaaawwwwwwwwwllllllllleeeeeeeeerrrrrrrrr!BBBBBBBBBooooooooouuuuuuuuunnnnnnnnnddddddddd

Fig. 3. Quality of solutions on the binomial tree pattern for small
problem sizes.

We can see that the GRASP is close to the exact

solution for these problem sizes. We also note that the

lower bound is a little over the half of the exact solutions

toward the higher end of this size range. Similar trend

were observed for the other patterns, which are not

shown here.

Figures 4-9 compare the heuristics for medium prob-

lem sizes. The quality is normalized against the default

solution, because computing with the exact solution is

not feasible. These figures, therefore, show improvement

over the default mapping.

!000000000.........222222222

!000000000.........333333333

!000000000.........444444444

!000000000.........555555555

!000000000.........666666666

!000000000.........777777777

!000000000.........888888888

!000000000.........999999999

!111111111

!111111111.........111111111

!111111111.........222222222

!111111111.........333333333

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000 !333333333000000000000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

GGGGGGGGGrrrrrrrrraaaaaaaaappppppppphhhhhhhhh!EEEEEEEEEmmmmmmmmmbbbbbbbbbeeeeeeeeeddddddddddddddddddiiiiiiiiinnnnnnnnnggggggggg
MMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

Fig. 4. Quality of solution on the recursive doubling pattern for
medium problem sizes.

!000000000.........111111111

!000000000.........222222222

!000000000.........333333333

!000000000.........444444444

!000000000.........555555555

!000000000.........666666666

!000000000.........777777777

!000000000.........888888888

!000000000.........999999999

!111111111

!111111111.........111111111

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

GGGGGGGGGrrrrrrrrraaaaaaaaappppppppphhhhhhhhh!EEEEEEEEEmmmmmmmmmbbbbbbbbbeeeeeeeeeddddddddddddddddddiiiiiiiiinnnnnnnnnggggggggg
MMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

Fig. 5. Quality of solution on the binomial tree pattern for medium
problem sizes.

We can see that the GRASP heuristic is consistently

better than the default and the GGE heuristic, while

MAHD and EMAHD are sometimes comparable to

GRASP. EMAHD is often much better than MAHD,

suggesting that a better choice of the initial vertex has

potential to make significant improvement to MAHD.

However, the time taken by GRASP and EMAHD

are significantly larger than that for GGE or MAHD,

as shown in figure 10. Consequently, they are more

suited to static communication patterns. Since EMAHD

typically does not produce better quality than GRASP

either, it does not appear very useful. On the other

hand, its quality suggests that if a good starting vertex

can be found for MAHD without much overhead, then

!000000000.........222222222

!000000000.........444444444

!000000000.........666666666

!000000000.........888888888

!111111111

!111111111.........222222222

!111111111.........444444444

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

GGGGGGGGGrrrrrrrrraaaaaaaaappppppppphhhhhhhhh!EEEEEEEEEmmmmmmmmmbbbbbbbbbeeeeeeeeeddddddddddddddddddiiiiiiiiinnnnnnnnnggggggggg
MMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

Fig. 6. Bruck Quality of solution on the Bruck pattern for medium
problem sizes.

!000000000.........333333333

!000000000.........444444444

!000000000.........555555555

!000000000.........666666666

!000000000.........777777777

!000000000.........888888888

!000000000.........999999999

!111111111

!111111111.........111111111

!111111111.........222222222

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

GGGGGGGGGrrrrrrrrraaaaaaaaappppppppphhhhhhhhh!EEEEEEEEEmmmmmmmmmbbbbbbbbbeeeeeeeeeddddddddddddddddddiiiiiiiiinnnnnnnnnggggggggg
MMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

Fig. 7. Quality of solution on the 3D spectral pattern for medium
problem sizes.

!000000000

!000000000.........222222222

!000000000.........444444444

!000000000.........666666666

!000000000.........888888888

!111111111

!111111111.........222222222

!111111111.........444444444

!111111111.........666666666

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

GGGGGGGGGrrrrrrrrraaaaaaaaappppppppphhhhhhhhh!EEEEEEEEEmmmmmmmmmbbbbbbbbbeeeeeeeeeddddddddddddddddddiiiiiiiiinnnnnnnnnggggggggg
MMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

Fig. 8. Quality of solution on the Aug2D pattern for medium problem
sizes.

MAHD’s quality can be improved without increasing

its run time. When the communication pattern changes

dynamically, then MAHD is a better alternative to the

above two schemes and also to GGE. It is as fast as

!000000000.........444444444

!000000000.........555555555

!000000000.........666666666

!000000000.........777777777

!000000000.........888888888

!000000000.........999999999

!111111111

!111111111.........111111111

!111111111.........222222222

!111111111.........333333333

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000 !333333333000000000000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

GGGGGGGGGrrrrrrrrraaaaaaaaappppppppphhhhhhhhh!EEEEEEEEEmmmmmmmmmbbbbbbbbbeeeeeeeeeddddddddddddddddddiiiiiiiiinnnnnnnnnggggggggg
MMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

Fig. 9. Quality of solution on the mesh pattern for medium problem
sizes.

GGE, while producing mappings of better quality. Its

speed also makes it feasible to use it dynamically, while

GRASP is too slow.

!000000000

!111111111000000000000000000000000000

!222222222000000000000000000000000000

!333333333000000000000000000000000000

!444444444000000000000000000000000000

!555555555000000000000000000000000000

!666666666000000000000000000000000000

!777777777000000000000000000000000000

!888888888000000000000000000000000000

!999999999000000000000000000000000000

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000 !333333333000000000000000000

TTTTTTTTT
iiiiiiiiimmmmmmmmm
eeeeeeeee
(((((((((mmmmmmmmm
sssssssss
)))))))))

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
MMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD

EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD
GGGGGGGGGrrrrrrrrraaaaaaaaappppppppphhhhhhhhh!EEEEEEEEEmmmmmmmmmbbbbbbbbbeeeeeeeeeddddddddddddddddddiiiiiiiiinnnnnnnnnggggggggg

Fig. 10. Comparison of time taken by the heuristics.

An alternative to MAHD for large problem sizes with

dynamic communication patterns is the hybrid algorithm.

Preliminary results on 1000 nodes with partitions of

size 125 are shown in figure 11. The hybrid algorithm

performs better than the default and GGE with both

communication patterns. It is better than MAHD and

EMAHD for recursive doubling, but is worse with the

binomial tree. The binomial tree has less communication

volume than recursive doubling, and further experiments

are necessary to check if the hybrid algorithm tends

to perform better when the communication volume is

larger. We note that even for medium sized problems,

GRASP (which is the underlying heuristic behind the

hybrid algorithm), was comparable with EMAHD and

MAHD for the binomial tree, but much better for re-

cursive doubling. The hybrid scheme produces a further

reduction in quality, which makes it worse than MAHD

and EMAHD for binomial tree, but since GRASP is

much better for recursive doubling, the hybrid algorithm

is better than MAHD and EMAHD for it, though by a

smaller margin. As the number of partitions increases,

the hybrid algorithms relative advantage decreases, as

can be seen in figure 122, which is based on 16 partitions

of size 125 each.

 0

 1

 2

 3

 4

 5

RecursiveDoubling Binomial

N
o

rm
al

iz
ed

 M
ap

p
in

g
 Q

u
al

it
y

GraphPartition
MAHD
EMAHD
GraphEmbed
Default

Fig. 11. Comparison of heuristics on 1000 nodes (12,000 cores).

 0

 1

 2

 3

 4

 5

RecursiveDoubling Binomial

N
o

rm
al

iz
ed

 M
ap

p
in

g
 Q

u
al

it
y

GraphPartition
MAHD
GraphEmbed
Default

Fig. 12. Comparison of heuristics on 2000 nodes (24,000 cores).

We next evaluate how well GRASP compares with

the lower bound for medium problem sizes. Figures 13-

18 show that GRASP is around a factor of two from

the Gilmore-Lawler bound. As shown earlier, the above

bound was usually a little higher than half the exact

solution for small problem sizes, and did not get tighter

with increased sizes. These results, therefore, suggest

that GRASP is close to the optimal solution.

Finally, we wish to verify if improving the hop-

byte metric actually improves the communication perfor-

mance. (Related works mentioned in section II, dealing

with this metric, have provided further evidence in favor

of this.) Preliminary studies with recursive doubling on

the MPI Allgather implementation with 1KB messages

on problems with 128 nodes showed that GRASP and

EMAHD are about 25% faster than the default and 20%

2It was not feasible to use EMAHD for 2000 nodes due to the time
required by it.

!000000000

!222222222

!444444444

!666666666

!888888888

!111111111000000000

!111111111222222222

!111111111444444444

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000 !333333333000000000000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD
DDDDDDDDDeeeeeeeeefffffffffaaaaaaaaauuuuuuuuulllllllllttttttttt

Fig. 13. Quality of solution on the recursive doubling pattern
compared with a lower bound.

!000000000

!222222222

!444444444

!666666666

!888888888

!111111111000000000

!111111111222222222

!111111111444444444

!111111111666666666

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD
DDDDDDDDDeeeeeeeeefffffffffaaaaaaaaauuuuuuuuulllllllllttttttttt

Fig. 14. Quality of solution on the binomial tree pattern compared
with a lower bound.

!111111111

!222222222

!333333333

!444444444

!555555555

!666666666

!777777777

!888888888

!999999999

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD
DDDDDDDDDeeeeeeeeefffffffffaaaaaaaaauuuuuuuuulllllllllttttttttt

Fig. 15. Bruck Quality of solution on the Bruck pattern compared
with a lower bound.

faster than GGE. The improvement over the default is

significant, though not as large as that indicated by the

hop-byte metric, because that metric is only an indirect

indication of the quality of the mapping. However, it

!111111111

!111111111.........555555555

!222222222

!222222222.........555555555

!333333333

!333333333.........555555555

!444444444

!444444444.........555555555

!555555555

!555555555.........555555555

!666666666

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD
DDDDDDDDDeeeeeeeeefffffffffaaaaaaaaauuuuuuuuulllllllllttttttttt

Fig. 16. Quality of solution on the 3D spectral pattern compared with
a lower bound.

!111111111

!222222222

!333333333

!444444444

!555555555

!666666666

!777777777

!888888888

!999999999

!111111111000000000

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD
DDDDDDDDDeeeeeeeeefffffffffaaaaaaaaauuuuuuuuulllllllllttttttttt

Fig. 17. Quality of solution on the Aug2D pattern compared with a
lower bound.

!111111111

!111111111.........555555555

!222222222

!222222222.........555555555

!333333333

!333333333.........555555555

!444444444

!444444444.........555555555

!000000000 !555555555000000000 !111111111000000000000000000 !111111111555555555000000000 !222222222000000000000000000 !222222222555555555000000000 !333333333000000000000000000

NNNNNNNNN
ooooooooo
rrrrrrrrrmmmmmmmmm
aaaaaaaaa
llllllllliiiiiiiiizzzzzzzzz
eeeeeeeee
ddddddddd
!MMMMMMMMM
aaaaaaaaa
ppppppppp
ppppppppp
iiiiiiiiinnnnnnnnn
ggggggggg
!QQQQQQQQQ
uuuuuuuuu
aaaaaaaaa
llllllllliiiiiiiiittttttttt
yyyyyyyyy

PPPPPPPPPrrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm!SSSSSSSSSiiiiiiiiizzzzzzzzzeeeeeeeee

GGGGGGGGGRRRRRRRRRAAAAAAAAASSSSSSSSSPPPPPPPPP
EEEEEEEEEMMMMMMMMMAAAAAAAAAHHHHHHHHHDDDDDDDDD
DDDDDDDDDeeeeeeeeefffffffffaaaaaaaaauuuuuuuuulllllllllttttttttt

Fig. 18. Quality of solution on the mesh pattern compared with a
lower bound.

does suggest that optimizing the hop-byte metric leads

to improved performance.

V. CONCLUSION AND FUTURE WORK

We have shown that optimizing for the hop-bytes

metric using the GRASP heuristic leads to a better

mapping than existing methods, which typically use

some metric just to evaluate the heuristic, rather than to

guide the optimization. We have evaluated the heuristic

on realistic node allocations, which typically consist of

many disjoint connected components. GRASP performs

better than GGE, which is among the best prior heuristics

that can be applied to arbitrary graphs with arbitrary

communication patterns, and performs much better than

the default mapping. In fact, GRASP is optimal for

small problem sizes. Comparison with the lower bound

suggests that GRASP may be close to optimal for

medium problem sizes too. However, it does not scale

well with problem size and is infeasible for large graphs.

We proposed two solutions for this. One is the MAHD

algorithm and the other is a hybrid algorithm. The former

is fast and reasonably good, while the latter is sometimes

better, but much slower than MAHD. For static com-

munication patterns on medium sized graphs, GRASP

would be the best option. For large problems with static

communication patterns, the hybrid approach would be

a good alternative, especially when the communication

volume is large. However, MAHD too can be effective.

For dynamic communication patterns, MAHD is the best

alternative. In fact, results with EMAHD suggest that if

a good starting vertex can be found, then MAHD may

be competitive even for many static patterns. MAHD

takes roughly the same time as GGE, but consistently

outperforms it. Preliminary experiments on MPI also

suggest that optimizing for the hop-byte metric improves

the actual MPI collective communication latency, though

not to the extent predicted by this metric. This is

reasonable, because the metric does not directly account

for the congestion bottleneck.

One direction for future work is in reducing the time

taken by the GRASP heuristic. GRASP is a general solu-

tion strategy, rather than a specific implementation. The

particular implementation that we used is for a general

QAP problem. We plan to develop an implementation

specific to our mapping problem. For instance, solutions

generated by the fast heuristics can be used as starting

points in GRASP, thereby reducing the search space.

Furthermore, we used a dense GRASP implementation

because the node graph is complete. We can remove

edges with heavy weights (corresponding to nodes that

are far away) so that a sparse algorithm can be used. A

different direction lies in optimizing for a different met-

ric. The actual bottleneck is contention on specific links.

We have posed the problem of minimizing the maximum

contention as an integer programming problem, and will

develop heuristics to solve it.

ACKNOWLEDGMENT

This work was partially supported by an

ORAU/ORNL grant under the HPC program and

by computer time allocation from XSEDE.

REFERENCES

[1] Y. Li, P.M. Pardalos, and M.G.C. Resende, A Greedy Random-
ized Adaptive Search Procedure for the Quadratic Assignment
Problem. DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science, Vol. 16 (1994) 237-261.

[2] S. Arora, A. Frieze, and H. Kaplan, A New Rounding Procedure
for the Assignment Problem with Applications to Dense Graph
Arrangement Problems. Mathematical Programming, Vol. 92
(2002), 1-36.

[3] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J.C. Sexton,
and R. Walkup, Optimizing Task Layout on the Blue Gene/L
Supercomputer. IBM Journal of Research and Development, Vol.
49 (2005) 489-500.

[4] P. Balaji, R. Gupta, A. Vishnu, and P. Beckman, Mapping
Communication Layouts to Network Hardware Characteristics on
Massive-Scale Blue Gene Systems. Comput. Sci. Res. Dev., Vol.
26 (2011) 247-256.

[5] A. Bhatele, L.V. Kale, and S. Kumar, Dynamic Topology Aware
Load Balancing Algorithms for Molecular Dynamics Applica-
tions. In proceedings of ICS, 2009.

[6] A. Bhatele and L.V. Kale, Application-Specific Topology-Aware
Mapping for Three Dimensional Topologies. In proceedings of
IPDPS, 2008.

[7] A. Bhatele, G. Gupta, L. V. Kale, and I.-H. Chung, Automated
Mapping of Regular Communication Graphs on Mesh Inter-
connects, in Proceedings of International Conference on High
Performance Computing (HiPC), 2010.

[8] A. Bhatele and L.V. Kale, Heuristic-based techniques for map-
ping irregular communication graphs to mesh topologies, Pro-
ceedings of Workshop on Extreme Scale Computing Application
Enablement - Modeling and Tools, 2011.

[9] H. Yu, I.-H. Chung, and J. Moreira. Topology mapping for Blue
Gene/L supercomputer. In SC06, page 116, New York, NY, USA,
2006. ACM.

[10] T. Hoefler and M.Snir, Generic Topology Mapping Strategies for
Large-scale Parallel Architectures, In proceedings of the 2011
ACM International Conference on Supercomputing (ICS 2011).

[11] K. Kandalla, H. Subramoni, A. Vishnu, and D.K. Panda, ”Design-
ing Topology-Aware Collective Communication Algorithms for
Large Scale Infiniband Clusters: Case Studies with Scatter and
Gather”. The 10th Workshop on Communication Architecture for
Clusters (CAC 10), held in conjunction with Int’l Parallel and
Distributed Processing Symposium (IPDPS 2010).

[12] E. Zahavi, ”Fat-trees routing and node ordering providing con-
tention free traffic for MPI global collectives”. Journal of Parallel
and Distributed Computing, February 2012, ISSN 0743-7315,
10.1016/j.jpdc.2012.01.018.

[13] Shahid H. Bokhari, On the Mapping Problem, IEEE Trans.
Computers, vol. 30, no. 3, pp. 207214, 1981.

[14] Pavan Balaji, Rinku Gupta, Abhinav Vishnu, Pete Beckman,
”Mapping communication layouts to network hardware charac-
teristics on massive-scale blue gene systems”, Comput Sci Res
Dev (2011) 26: 247256 DOI 10.1007/s00450-011-0168-y.

