
COP 4531 Algorithms
Spring 2007

Assignment 2

Due: 22 Feb 2007

Problem: In this assignment, you will implement programs to sort a list of integers in five
different ways.

Sorting methods: You should create programs that will sort a list of integers using the
methods given below.

1. InsertionSort.
2. MergeSort.
3. HeapSort.
4. Quicksort.
5. RandomizedQuicksort.

Running the program: Your program will be run as follows:

<executable-name> <input-file-name> <output-file-name>
The input file will contain a list of integers (not necessarily distinct), one per line. The output
file should contain the integers sorted in ascending order. Each line of the output file will
contain an element from the input followed by its index in the original input, as shown below.
When elements are repeated in the input, please make sure that the index corresponds to the
actual permutation produced by the sorting algorithm.

Sample input file Sample output file
23
-8
21

-8 2
21 3
23 1

Files: You should create a directory called COP4531/hw2 on linprog. This directory
should contain the following files, implementing the algorithm indicated by the file name.

1. insertionsort.c
2. mergesort.c
3. heapsort.c
4. quicksort.c
5. randomizedquicksort.c
6. Makefile: The makefile for this assignment. Typing make should create five

executables, insertionsort, mergesort, heapsort, quicksort, and randomizedquicksort,
corresponding to each of the above algorithms.

Performance evaluation: Evaluate the performance of each implementation as a function of
the number of elements sorted, and compare the algorithms. This part of the assignment is
open ended, and you should think of suitable tests to perform, so that you can come to useful
conclusions. For example, some algorithms may perform well on data that are close to being
sorted, while others may do well on random data. Some algorithm may have good theoretical
time complexity in terms of CPU operations, but poor memory access patterns, indicated by a
large number of cache misses. Some algorithms may have good average time for a given
value of input size, but a large variance. Your tests should be able to point out these
characteristics. You should describe your test methodology, present quantitative results, and
also give a summary of qualitative conclusions, comparing the algorithms.

Turning in your assignment: All your C code files should have a time stamp before
midnight, 22 Feb 2007. Please have read and execute permissions unset until at least midnight
24 Feb 2007. Read permission should be set on by noon 25 Feb 2007. Please turn in a
hardcopy of your performance result by 5 pm, 22 Feb 2007, by either placing it in my mailbox
or slipping it under my office door.

Grading: You will be graded on the following (i) correctness of your codes, (ii) performance
of your codes, especially relative to those of others in the class, and (iii) the quality of your
performance evaluation document (both, presentation, and technical quality).

