
CIS 5930-04 Parallel Computing
Spring 2007

Assignment 2

Due: 6 Apr 2007

Problem: In this assignment, you will implement four parallel sorting algorithms using MPI.

Parallelization: Implement the following four parallel sorting algorithms using MPI for
communication.

1. Parallel Quicksort from section 14.3.
2. Hyperquicksort from section 14.4.
3. Parallel Sorting by Regular Sampling from section 14.5.
4. One other (comparison based) parallel sorting algorithm – you are free to choose this.

Files: You should create a directory called hw2 on the p690 at NCSA, containing the
following files:

1. sort1.c, implementing the code for #1 above.
2. sort2.c, implementing code for #2 above.
3. sort3.c, implementing code for #3 above.
4. sort4.c, implementing the code for #4 above. The top few lines of this code should

have a comment specifying the name of the algorithm used, and the reference where
you found it. You may make changes to the algorithm given in your reference, in order
to make it run faster, especially on large output.

5. sort.c, implementing the main function. This code should read command line
arguments provided by the user, call the appropriate sorting routine (as explained
below), and print the desired output (exactly as specified – there should be no extra
output).

6. Makefile, which is the makefile for this assignment. Typing make should create an
executable called sort, which is created by linking sort.o, sort1.o, sort2.o, sort3.o, and
sort4.o.

7. sort, which is the executable that I will run.

Running the code: Code will be run as follows:

poe sort <a> <n> <s> [<optional list of integers>] –procs <np>

In the above line, <np> refers to the number of processors. The algorithm to use for sorting
will be specified by <a>; <a> = 1 for the method 1, 2 for method 2, 3, for method 3, and 4
for method 4. The total number of (long) integers to sort is specified by <n>, which will be at
least 1. You should generate the random integers as follows. Use srand48 to seed the
random number generator using <s> (which is a long integer) as the seed. Then generate
<n> random integers using lrand48. (Remember to include the header file stdlib.h.) The
<n> integers should initially be divided by having each processor get floor((double)

<n>/<np>) or ceil((double) <n>/<p>) integers each. Then call the sorting algorithm, and
time its execution using MPI_Wtime. Then output the time taken by your algorithm, in
seconds, using "%g" in the output format. If an optional list of integers is provided in the
command line, then each integer will be in the range [0, <n>-1]. Let those integers be x1, x2,
..., xk. You should output the x1 th smallest integer in the input, the x2 th smallest integer in the
input, ..., the xk th smallest integer in the input, each on a separate line, in the order specified.

Example: poe sort 1 5 8 2 1 3 –procs 2

The random numbers generated by srand48 will be as follows, using 8 as the seed:
294734626, 830272356, 8452830, 1276961749, 1036785092. The program will run parallel
quicksort on two processors. The output will be as follows (the time taken may differ –
everything else should be exactly as given here).

Time = 2.86102e-5 s
294734626
8452830
830272356

Code organization: The basic code (in sort.c) should be organized as follows.

• Read command line arguments.
• Call srand48(<s>)
• Generate the desired samples. You may either generate them on one process, and send

them to others, or generate them directly on different processes. You need to be careful
in the latter case, to ensure that the correct random numbers are generated on each
process.

• Call MPI_Barrier
• Call MPI_Wtime
• Run the desired parallel sorting algorithm
• Call MPI_Barrier
• Call MPI_Wtime
• Output the time taken on process 0.
• Perform any output required by the optional command line arguments.

Turning in your assignment: All your files should have a time stamp before midnight, 6 Apr
2007. Please have read and execute permissions unset until at least midnight 8 Apr 2007.
Read permission should be set on by noon 9 Apr 2007.

Grading: You will be graded on the following (i) correctness of your codes, (ii) performance
of your codes, especially relative to those of others in the class, and (iii) coding style. Good
performance on method 4 is especially important. In the other methods, your implementation
should not perform considerably worse than is possible. In method 4, your grade for
performance will depend on how it compares with the best in the class, for large input sizes.

