COT 5405: Fall 2006

Lecture 23

DFA for String matching

Finite Automaton

- 1. Set of states, Q.
- 2. Start state $q \in Q$.
- 3. Set of accepting states, $A \subseteq Q$.
- 4. Alphabet, Σ .
- 5. Transition function, $\delta: Q \times \Sigma \rightarrow Q$.

General Construction Scheme

Final state function: $\phi(w)$ is the state after scanning *w*.

- $\phi(\varepsilon) = q_0$.
- $\phi(wa) = \delta(\phi(w), a), w \in \Sigma^*, a \in \Sigma$.

Suffix function: $\sigma(x) = \max\{k: P[1 \dots k] \text{ is a suffix of } x\}.$

- $\sigma(x)$ is the length of the longest prefix of *P* that is also a suffix of *x*.
- $P_0 = \varepsilon$ is a suffix of all strings.

Construction: $Q = \{0, 1, ..., m\}, q_0 = 0, A = \{m\}, \delta(q, a) = \sigma(P_a a).$

• Note: $\sigma(x) = m$ iff *P* is a suffix of *x*, implying that a match has been found.

DFA-based Matching

FA-Matcher(T, δ , m)

q ← 0
 for i = 1 to n

 o q ← δ(q, T[i])
 o if q == m
 Print i - m

This takes $\Theta(n)$ time and $\Theta(m |\Sigma|)$ space.

Correctness of Construction

We wish to prove that the state is $\sigma(T_i)$ after scanning $T[1 \dots i]$. That is, we wish to prove that $\phi(T_i) = \sigma(T_i)$.

Theorem 32.4: $\phi(T_i) = \sigma(T_i), i = 0, ..., n$. *Proof:* We prove the theorem by induction on *i*.

Base case: $\phi(T_0) = 0 = \sigma(T_0)$. Induction hypothesis: Assume $\phi(T_i) = \sigma(T_i)$.

We wish to prove that $\phi(T_{i+1}) = \sigma(T_{i+1})$.

 $\begin{aligned} \phi(T_{i+l}) &= \phi(T_i T[i+1]) = \delta(\phi(T_i), T[i+1]) \text{ (from the definition of } \phi) \\ &= \sigma(P_{\phi(Ti)} T[i+1]) \text{ (from the definition of } \delta) \\ &= \sigma(P_{\sigma(Ti)} T[i+1]) \text{ (from the induction hypothesis)} \\ &= \sigma(T_i T[i+1]) \text{ (from lemma 32.3)} \\ &= \sigma(T_{i+l}), Q.E.D. \end{aligned}$

Constructing δ

• for q = 0 to m
$$\Theta(m)$$
 time
o for each a $\in \Sigma$ $\Theta(\Sigma)$ time
• k \leftarrow m+1
• Repeat k \leftarrow k-1 $O(m)$ time
• until P_k is a suffix of P_qa $O(m)$ time
• $\delta(q, a) \leftarrow k$

This takes $O(m^3 |\Sigma|)$ time. This can be improved to $O(m |\Sigma|)$.