COT 5405: Fall 2006

Lecture 22

Rabin-Karp Algorithm

The Idea

Interpret strings as numbers by interpreting symbols as digits in $\{0,1, \ldots,|\Sigma|-1\}$.
Example: $\Sigma=\{a, b, c, d, e, f, g, h, i, j\}$. Interpret this as $\{0,1,2,3,4,5,6,7,8,9\}$.
So, the string acdab is interpreted as 02302 .
Let p be the value of the pattern, P. This can be computed in $O(m)$ time using Horner's rule: $p=P[m]+10(P[m-1]+10(P[m-2]+\ldots))$.
$t_{0}:=$ the value of $T[1 \ldots m]$ can similarly be computed in $O(m)$ time.
Note that $t_{s+1}=10\left(t_{s}-10^{m-1} T[s+1]\right)+T[s+m+1]$ can be computed in constant time if we pre-compute $10^{\mathrm{m}-1}$ (in $O(\mathrm{~m})$ time).

In order to find all matches, we can compare p with t_{s} for each s. The time complexity is $O(m+n)=O(n)$.

Rabin-Karp Algorithm

The numbers involved in the application of the above idea may be very large. So, we work in modulo $q \geq|\Sigma|$.

Define

- $p^{\prime}=p \% q$.
- t_{0} is defined in a similar manner.

Rabin-Karp(T, P)

- Pre-processing to compute p^{\prime} and t_{0}
- for $s=0$ to $n-m$
- if $p^{\prime}==t_{s}$
- if $\mathrm{P}[1 \ldots \mathrm{~m}]=\mathrm{T}[\mathrm{s}+1 \ldots \mathrm{~s}+\mathrm{m}]$
- Print s
- if $\mathrm{s}<\mathrm{n}-\mathrm{m}$
- $t_{s+1}=\left[|\Sigma|\left(t_{s}-h T[s+1]\right)+T[s+m+1]\right] \% q$
- $\mathrm{h}=|\Sigma|^{\mathrm{m}-1} \% \mathrm{q}$

This takes $\Theta((n-m+1) m)$ time in the worst case.

