COT5405: Fall 2006

Lecture 11

LP for Max-SAT

Max: $\Sigma_{c} w_{c} z_{c}$
Subject to:
$\Sigma_{i} y_{i}\left[\right.$ i varies over non-negated variables of c] $+\Sigma_{i}\left(1-y_{i}\right)$ [i varies over negated variables of c] $\geq z_{c}, \forall c$ $y_{i}, z_{c} \in\{0,1\}$
Relaxation: $0 \leq y_{i}, z_{c} \leq 1$.

Algorithm 3:

1. Compute optimal solution y^{*}, z^{*} for relaxed LP.
2. Set $x_{i}=1$ with probability y^{*}, and 0 otherwise.

Theorem: The value of the solution W from algorithm 3 satisfies: $E(W) \geq\left(1-e^{-1}\right) O P T$.

Proof:

Without loss of generality, let a clause c be $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$.

$$
\begin{aligned}
E\left(W_{c}\right) & =w_{c}\left(1-\text { probability that none of the } x_{i} \text { s are rounded to } 1\right) \\
& =w_{c}\left(1-\Pi\left(1-y^{*}{ }_{k}\right)\right) .
\end{aligned}
$$

From the relationship of geometric to arithmetic mean,
$\left[\Pi\left(1-y^{*}{ }_{k}\right)\right]^{1 / k} \leq(1 / k) \Sigma\left(1-y^{*}{ }_{k}\right) \Rightarrow \Pi\left(1-y^{*}{ }_{k}\right) \leq\left[(1 / k) \Sigma\left(1-y^{*}{ }_{k}\right)\right]^{k}=\left[1-(1 / k) \Sigma y^{*}{ }_{k}\right]^{k} \leq\left[1-z^{*} / k\right]^{k}$
$\Rightarrow E\left(W_{c}\right) \geq w_{c}\left(1-\left[1-z^{*}{ }_{c} k\right]^{k}\right)$.
Let $\beta_{k}=1-(1-1 / k)^{k}$. We can show that $1-[1-z / k]^{k} \geq \beta_{k} z, z \in[0,1]$ (review question, Lec 10).
So, $E\left(W_{c}\right) \geq w_{c} \beta_{k} z^{*}{ }_{c} \geq w_{c} z^{*}{ }_{c}\left(1-e^{-1}\right)$, using the result of review question 2 of Lec 10 .
So, $\mathrm{E}(\mathrm{W}) \geq\left(1-e^{-1}\right) \Sigma w_{c} \mathrm{z}^{*}{ }_{\mathrm{c}} \geq\left(1-e^{-1}\right) O P T$.
Algorithm 4: Derandomize algorithm 3, using either $E\left(W_{c}\right) \geq w_{c} \beta_{k} z^{*}$ for each clause, or $E(W) \geq \beta_{k} \Sigma w_{c} z^{*}{ }_{c}$, where k is the largest number of variables in any clause.

Algorithm 5: Randomly select algorithm 1 or algorithm 3 with probability $1 / 2$ each. It is expected factor $3 / 4$ algorithm for the following reason:
In algorithm 1, $E\left[W_{c}\right]=\left(1-2^{-k}\right) W_{c} \geq\left(1-2^{-\mathrm{k}}\right) \mathrm{W}_{\mathrm{c}} z^{*}{ }_{c}$.
In algorithm $2, \mathrm{E}\left[\mathrm{W}_{\mathrm{c}}\right] \geq\left[1-(1-1 / k)^{k}\right] \mathrm{w}_{\mathrm{c}} z^{*}{ }_{c}$.
So, $E\left[W_{c}\right] \geq 0.5\left[1-(1-1 / k)^{k}\right] w_{c} z^{*}{ }_{c}+0.5\left(1-2^{-k}\right) w_{c} z^{*}{ }_{c}$. Note that $\left[1-(1-1 / k)^{k}\right]+\left(1-2^{-k}\right) \geq 3 / 2$.
Algorithm 6: Try algorithms 2 and 4, and choose the better one.

