COT5405: Fall 2006

Lecture 11

LP for Max-SAT

Max: $\Sigma_c w_c z_c$ Subject to: $\Sigma_i y_i$ [i varies over non-negated variables of c] + $\Sigma_i (1-y_i)$ [i varies over negated variables of c] $\ge z_c$, $\forall c$ $y_i, z_c \in \{0, 1\}$ Relaxation: $0 \le y_i, z_c \le 1$.

Algorithm 3:

- 1. Compute optimal solution y^* , z^* for relaxed LP.
- 2. Set $x_i = 1$ with probability y^*_i , and 0 otherwise.

Theorem: The value of the solution W from algorithm 3 satisfies: $E(W) \ge (1 - e^{-1}) OPT$.

Proof:

Without loss of generality, let a clause *c* be $\{x_1, x_2, ..., x_k\}$.

 $E(W_c) = w_c (1 - probability that none of the x_is are rounded to 1)$ $= w_c (1 - \Pi(1 - y_k^*)).$

From the relationship of geometric to arithmetic mean,

 $[\Pi(1-y_{k}^{*})]^{1/k} \leq (1/k) \ \mathcal{L}(1-y_{k}^{*}) \Rightarrow \Pi(1-y_{k}^{*}) \leq [(1/k) \ \mathcal{L}(1-y_{k}^{*})]^{k} = [1-(1/k) \ \mathcal{L}y_{k}^{*}]^{k} \leq [1-z_{c}^{*}/k]^{k}$ $\Rightarrow E(W_{c}) \geq w_{c} \ (1-[1-z_{c}^{*}/k]^{k}).$

Let $\beta_k = 1 - (1 - 1/k)^k$. We can show that $1 - [1 - z/k]^k \ge \beta_k z$, $z \in [0,1]$ (review question, Lec 10). So, $E(W_c) \ge w_c \beta_k z^*_c \ge w_c z^*_c (1 - e^{-1})$, using the result of review question 2 of Lec 10. So, $E(W) \ge (1 - e^{-1}) \Sigma w_c z^*_c \ge (1 - e^{-1}) OPT$.

Algorithm 4: Derandomize algorithm 3, using either $E(W_c) \ge w_c \beta_k z^*_c$ for each clause, or $E(W) \ge \beta_k \Sigma w_c z^*_c$, where k is the largest number of variables in any clause.

Algorithm 5: Randomly select algorithm 1 or algorithm 3 with probability $\frac{1}{2}$ each. It is expected factor $\frac{3}{4}$ algorithm for the following reason:

In algorithm 1, $E[W_c] = (1 - 2^{-k})w_c \ge (1 - 2^{-k})w_c z^*_c$. In algorithm 2, $E[W_c] \ge [1 - (1 - 1/k)^k]w_c z^*_c$. So, $E[W_c] \ge 0.5 [1 - (1 - 1/k)^k]w_c z^*_c + 0.5 (1 - 2^{-k})w_c z^*_c$. Note that $[1 - (1 - 1/k)^k] + (1 - 2^{-k}) \ge 3/2$.

Algorithm 6: Try algorithms 2 and 4, and choose the better one.