
1

1

Lecture 9

Introduction to Perl

COP 3344 Introduction to UNIX

Fall 2007

Acknowledgment: These slides are modified versions of Prof. Sudhir
Aggarwal’s slides

2

Advantages of Perl

• Fills the gap between shell programming and

a conventional compiled programming

language like C or C++

• Perl code is very dense

– Size is often 30% to 70% that of similar C code

• Good for simple programs that you want to

code quickly

– Good for text manipulation

• It is very portable

3

A Sample Perl Program

• Program features

– #! specifies the program that executes the file

• The -w flag prints warnings

– Comments start with #

– White space can be used almost anywhere

– Statements end with a ;

hello

#!/usr/bin/perl -w

#Test program: hello world
print “hello world!\n”;

exit 0;

$ chmod 700 hello

$./hello
Hello world!

4

Scalar Data in Perl

• A scalar is a single item of data

– A number, for example 255 or 3.1416e2

– A string, for example ‘hello\n’ or “good bye”

• ‘the \n does not have a special meaning here’

• “the \n here represents the newline character”

• “the $var variable is replaced by its value here”

• Perl uses strings and numbers almost interchangeably

– Implicit conversion in performed between strings and numbers

depending on the operations performed on the scalar data

hello

#!/usr/bin/perl -w

#Test program: hello world
print ‘hello world!\n’;

exit 0;

$ chmod 700 hello
$./hello

Hello world!\n$

5

Scalar Variables

• Names preceded by $ regardless of its use

on the left or right side of an assignment

• Examples

$sum = 14

$sum = $var + 47.3

pprog2
#!/usr/bin/perl -w

$help="aid";
$s="band" . $help;

print "$s\n";

$./pprog2
bandaid

6

Examples of Operators

= assignment

+, -, *, … arithmetic

<, <=, … relational

&&, ||, ! logical

++, -- increment, decrement

eq, ne, lt, gt, le, ge string relational

cmp string comparison

. concatenation

x string repetition

“fred” x 3 result is “fredfredfred”

2

7

Line Input Operator <STDIN>

• The <STDIN> operator reads line of input

– Read from standard input, up to and including the next

newline character

$line = <STDIN>;

– If the end-of-file is reached, then <STDIN> returns undef,

which acts like 0 or the empty string

– The chomp operator is used to remove a newline from the

end of a string

chomp ($line = <STDIN>);

pprog3
#!/usr/bin/perl -w

$line = <STDIN>;
if($line eq "\n"){

 print "Blank line!\n";}

else{
 print "The line was: $line";}

$./pprog3

Blank line!

$./pprog3

sdf
The line was: sdf

8

Acting on Each Line
#!/usr/bin/perl -w -n

print;

• The -n causes the program to be executed on each

line

pprog4
#!/usr/bin/perl -w -n

print;

$./pprog4 < datafile
Name GPA
asd 4.0

sdf 3.2

fghsd 3.6

qwer 4.0

datafile
Name GPA
asd 4.0

sdf 3.2

fghsd 3.6

qwer 4.0

9

Pattern Matching
• Match patterns using m/Pattern/

– Usually used with the binding operator =~

– Example: $mystring =~ m/cat+/ has the value true if

$mystring has any of the following values: cat, catt, cattt,

...

pprog5
#!/usr/bin/perl -w -n

if($_ =~ m/4\.0/)

{

 print $_;
}

$./pprog5 < datafile
asd 4.0

qwer 4.0

datafile
Name GPA

asd 4.0

sdf 3.2

fghsd 3.6
qwer 4.0

10

Pattern Matching with

Substitution

• Substitute patterns using s/Pattern/Substitute/

pprog6
#!/usr/bin/perl -w -n
$line = $_;

$line =~ s/cat+/dog/;

print $line;

$./pprog6 < datafile2
dogs are good
dogs are good

dogs are good, good cat

datafile2
dogs are good

cats are good
catts are good, good cat

pprog7
#!/usr/bin/perl -w -n

$line = $_;

$line =~ s/cat+/dog/g;
print $line;

$./pprog7 < datafile2
dogs are good

dogs are good

dogs are good, good dog

