
 1

COP4530 – Data Structures, Algorithms and Generic Programming
Recitation 3

Date: September 12th, 2005

Lab objectives:

1) Learn to use the list STL.
2) Learn how to use the DDD debugger.
3) Discussion and Q & A about Assignment 1.
4) Quiz.

Setup tasks:

1. Logon to your CS account.

2. Create a directory named cop4530.

3. Go into the cop4530 directory and create a sub-directory named recitation.

4. Go into the recitation directory. Type the command pwd. You should see
something similar to the following on the screen:

/home/majors/your_username/cop4530/recitation

5. Type the following command,

cp –r ~cop4530/fall05/recitation/rect3 .

You should see some error messages similar to the following,

cp: cannot open
`/home/courses/cop4530/fall05/recitation/rect3/lists/readstudent.cpp' for
reading: Permission denied
cp: cannot open `/home/courses/cop4530/fall05/recitation/rect3/wcount-good.cpp'
for reading: Permission denied

Note: The warnings above indicate that some files cannot be read because the
permissions have been set to non-world viewable.

 2

Task 1 : Learn to use the list STL.

1. Go into the lists directory.

2. Open the file readname. cpp. This client program uses the list STL to store in names
keyed in by the user. When the user is done, the program prints out all the names stored
in the linked-list.

3. Suppose you wish to write a similar program to print out some student information. This
program should store the name, age and section of each student.

i. Modify the program readname.cpp to prompt the user for the age and section
corresponding to each name.

ii. Store all three information about each student in a single linked-list.

iii. Use a FOR or WHILE-loop to print out the information stored in the linked list.

4. A sample output for such a program is shown below:

Enter name ('exit' when done): Susan
Enter age: 19
Enter section: 1
Enter name ('exit' when done): John
Enter age: 21
Enter section: 2
Enter name ('exit' when done): Bill
Enter age: 23
Enter section: 1
Enter name ('exit' when done): Janet
Enter age: 20
Enter section: 2
Enter name ('exit' when done): exit
Name = Susan, Age = 19, Section = 1
Name = John, Age = 21, Section = 2
Name = Bill, Age = 23, Section = 1
Name = Janet, Age = 20, Section = 2

Sample solutions will be provided in the file lists/readstudent.cpp. This file
will be made available by 2:00 p.m. today (September 12th, 2005). You may obtain the
files by typing the following command in your current directory.

cp ~cop4530/fall05/recitation/rect3/lists/readstudent.cpp .

 3

Task 2 : Learn to use the DDD debugger.

A debugger allows us to run other program executables and examine the behavior of these
programs as they are running. Debuggers are especially helpful when there is a mysterious bug
in the program that is not apparent at first glance.

One of the more popular debuggers for UNIX would be the GDB (the GNU debugger). A
graphical front-end version of GDB is known as the DDD.

1. Open the file wcount-bad.cpp.

2. Compile the program and run the executable. The desired effect of the program should
be as follows:

i. The user is allowed to add enter 3 distinct words. If the word entered already
exists, the count for the word is incremented for each repeated entry.

ii. The program should not accept any new words if all 3 slots are full.

The desired output for the program is as follows:

Please enter word (-1 to quit)
one
Please enter word (-1 to quit)
two
Please enter word (-1 to quit)
three
Please enter word (-1 to quit)
four
Array is full. Cannot add word.
Please enter word (-1 to quit)
one
Please enter word (-1 to quit)
three
Please enter word (-1 to quit)
-1
Exiting program..
wordarray[0] = one, count = 2
wordarray[1] = two, count = 1
wordarray[2] = three, count = 2

3. This program has logic errors. Use the DDD debugger to determine the location of the
error.

4. Fix the error to produce the desired output above. Hint: An unused function in the
program will be helpful.

 4

A sample solution will be provided in the file wcount-good.cpp. This file will be
made available by 12:00 p.m. today. (September 12th, 2005). You may obtain the file by
typing the following in your current directory:

cp ~cop4530/fall05/recitation/rect3/wcount-good.cpp .

Task 2 : Discussion and Q& A about Assignment 1

Advice from TA:

1. Read the project requirements carefully.
• You should attempt to satisfy all the requirements of the project.
• Your executable will be tested with an automated script, so your program should

behave in the same way as the executable.
• Your program should also print out the output in the same manner as the

executable.
• When in doubt, clarify with instructor or TA. Do not assume.

2. Start now if you have not done so.
You need time to test and debug your program.

3. Plan ahead before you code.
Although this is a warm-up project, you should still plan ahead before your start. For
instance, you should decide on how you need to store the data so that it can be efficiently
accessed when needed.

4. Familiarize yourself with the reading and parsing input.
This is one of the more fun parts of the project. You get to practice/hone some of your
programming skills in parsing input.

5. Test your program extensively and write your own test files.
Do not presume that your program will only be tested with the sample input data already
provided.

Exercise

Log on to linprog.cs.fsu.edu and use the DDD debugger to solve a bug
problem with an executable created from the file squares-bad.cpp located in your
rect3 directory.

 5

6. Use I/O redirect to test your program with an input test file.
A sample file input.txt is provided to you. You can test your program by typing,

proj1 FLIGHTS.txt < input.txt

7. Seek help from instructor or TAs if you are stuck for too long.
If you have been staring at the same segment of code for the past 3 hours and still can’t
figure out what is wrong, you need help! Submit your current work using the submission
script and email me at toh@cs.fsu.edu with a brief description of your problem.

8. Adhere to good programming styles and practices as your program will be graded on
design and readability (see Syllabus),

e.g. indent your code, include comments on major subroutines or algorithms (but not on
every line of code), close all open file descriptors, and etc.

9. Do your own work.

Q & A: ?

Task 4 : Quiz

Please answer the questions in the quiz handout.

References

Topic Links

Templates 1. http://www.cplusplus.com/doc/tutorial/tut5-1.html

DDD Debugger 1. http://www-users.itlabs.umn.edu/classes/Fall-
2002/csci1113/ddd_handout.pdf

2. http://www.gnu.org/manual/ddd/html_mono/ddd.html

