COT 5507: Analytic Methods in Computer Science Fall 2014

Assignment 2

Due: 2 Dec 2014, 5 pm.

1. (20 points) Use the generating function manipulations listed in table 334 to derive a closed form expression for the generating function whose coefficient for z^{n} is defined as follows: $2 * 2^{n}+(-1)^{n / 2} * 3$, when n is even, and $2 * 2^{n}$ when n is odd.
2. (20 points) Use the generating function manipulations listed in table 334 to derive a closed form expression for the generating function whose coefficient for \mathbf{z}^{n} is defined as follows: $\mathrm{n}(-2)^{\mathrm{n}}$.
3. (20 points) Use the generating function manipulations listed in table 334 to derive a closed form expression for the generating function whose coefficient for z^{n} is defined as follows: (2) $)^{\mathrm{n}-1} / \mathrm{n}$, when $\mathrm{n}>0$, and 0 when $\mathrm{n}=0$.
4. (20 points) Solve the following recurrence, using generating functions:
$g_{0}=-1 / 3, g_{1}=-7 / 18, g_{n}=(-2 / 3) g_{n-1}+(1 / 3) g_{n-2}, n>1$.
5. (20 points) Solve the following recurrence, using generating functions:
$\mathrm{g}_{0}=0, \mathrm{~g}_{1}=2, \mathrm{~g}_{2}=-6, \mathrm{~g}_{\mathrm{n}}=-3 \mathrm{~g}_{\mathrm{n}-1}+\mathrm{g}_{\mathrm{n}-2}+3 \mathrm{~g}_{\mathrm{n}-3}, \mathrm{n}>2$.
