
Towards Theoretical Foundations of Clustering

by

Margareta Ackerman

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2012

c©Margareta Ackerman 2012

Abstract

Clustering is a central unsupervised learning task with a wide variety of applications.
Unlike in supervised learning, different clustering algorithms may yield dramatically differ-
ent outputs for the same input sets. As such, the choice of algorithm is crucial. When
selecting a clustering algorithm, users tend to focus on cost-related considerations, such as
running times, software purchasing costs, etc. Yet differences concerning the output of the
algorithms are a more primal consideration. We propose an approach for selecting clustering
algorithms based on differences in their input-output behaviour. This approach relies on
identifying significant properties of clustering algorithms and classifying algorithms based
on the properties that they satisfy.

We begin with Kleinberg’s impossibility result, which relies on concise abstract properties
that are well-suited for our approach. Kleinberg showed that three specific properties cannot
be satisfied by the same algorithm. We illustrate that the impossibility result is a consequence
of the formalism used, proving that these properties can be formulated without leading to
inconsistency in the context of clustering quality measures or algorithms whose input requires
the number of clusters.

Combining Kleinberg’s properties with newly proposed ones, we provide an extensive
property-base classification of common clustering paradigms. We use some of these properties
to provide a novel characterization of the class of linkage-based algorithms. That is, we distil
a small set of properties that uniquely identify this family of algorithms.

Lastly, we investigate how the output of algorithms is affected by the addition of small,
potentially adversarial, sets of points. We prove that given clusterable input, the output of
k-means is robust to the addition of a small number of data points. On the other hand,
clusterings produced by many well-known methods, including linkage-based techniques, can
be changed radically by adding a small number of elements.

Contents

1 Introduction 1
1.1 Previous Work . 4

1.1.1 Our Contributions . 5

2 Preliminaries 7
2.1 Definitions and Notation . 7
2.2 Common Clustering Methods . 8

2.2.1 Linkage-Based Clustering . 8
2.2.2 Objective-Based Clustering . 9

3 Axioms of Clustering 11
3.1 Kleinberg’s Axioms . 12
3.2 Axioms of Clustering-Quality Measures . 14

3.2.1 Clustering-Quality Measure Analogues to Kleinberg’s Axioms 14
3.2.2 Representation Independence . 15

3.3 Examples of Clustering-Quality Measures . 15
3.3.1 Gamma . 15
3.3.2 C-Index . 16

3.4 Dependence on Number of Clusters . 18

4 A Characterization of Linkage-Based Algorithms 20
4.1 Defining Linkage-Based Clustering . 21
4.2 Properties of k-Clustering Functions . 23

4.2.1 Locality . 23
4.2.2 Consistency . 23
4.2.3 Richness . 25
4.2.4 Refinement Preserving . 25

4.3 Main Result . 25
4.3.1 The Properties Imply that the Function is Linkage-Based 25
4.3.2 Every Linkage-Based k-Clustering Function Satisfied the Properties . 30

4.4 Relaxations of a Linkage Function and Corresponding Characterizations . . . 32
4.4.1 Simplified Linkage Function . 32
4.4.2 General Linkage Function . 33

3

5 A Classification of Partitional Clustering Methods 35
5.1 Properties of Clustering Functions . 35
5.2 Property-Based Classification of k-Clustering Functions 36

5.2.1 Properties that could be used as axioms 37
5.2.2 Taxonomy Proofs . 38

5.3 Relationships Between Properties . 42
5.3.1 Relationships Between Richness Properties 42
5.3.2 Relationships Between Consistency and Richness Properties 43

5.4 Impossibility Results . 44

6 Clustering Oligarchies 46
6.1 Definitions . 47
6.2 Main Results . 49
6.3 Methods that Prohibit Oligarchies . 51

6.3.1 k-means, k-medians and k-medoids 51
6.3.2 Lloyd’s Method with Random Initial Centers 53

6.4 Methods that Admit Oligarchies . 54
6.4.1 Separability-Detecting Algorithms . 54
6.4.2 Lloyd’s Method with Furthest Centroids Initialization 56

6.5 Related work . 56

7 A Characterization of Hierarchical Linkage-Based Algorithms 57
7.1 Definitions . 57
7.2 Hierarchical and Linkage-Based Algorithms 59

7.2.1 Hierarchical Algorithms . 59
7.2.2 Linkage-Based Algorithms . 60
7.2.3 Locality . 60
7.2.4 Outer Consistency . 61

7.3 Main Result . 62
7.3.1 All Local, Outer-Consistent Hierarchical Functions are

Linkage-Based . 62
7.3.2 All Linkage-Based Functions are Local and Outer-Consistent 67
7.3.3 Necessity of Both Properties . 67

7.4 Divisive Algorithms . 68

8 Conclusions and Future Work 70
8.1 Summary . 70
8.2 Previous work revisited . 71
8.3 Future Directions . 74

Chapter 1

Introduction

Clustering is a fundamental and immensely useful tool for exploratory data analysis. It is
used in a wide range of applications. For instance, clustering is used in facility allocation
to determine the placement of new services. In marketing, it is applied to identify groups
of customers to which new products can be targeted. In phylogeny, a field whose aim is to
reconstruct the tree of life, clustering techniques are used to construct phylogenetic trees.

The popularity of clustering is hardly surprising, as its goal is natural: to identity groups
of similar items within data. Yet while the intuitive goal of clustering is simple, formalizing
this task is much more challenging.

One of the main difficulties to formalizing clustering is that, unlike supervised learning,
clustering is inherently ambiguous. Consider for example the data set displayed in Figure 1.1,
in which there are two reasonable clusterings one with two and the other with three clusters.
Ambiguity often occurs even when the number of clusters is fixed. Figure 1.2 illustrates
a data set with two reasonable partitions into two clusters. Two radically different, yet
reasonable, clusterings into three partitions are shown in Figure 1.3.

Figure 1.1: Two reasonable clusterings, with a different number of clusters, of the same data
set.

The ambiguous nature of clustering led to a wide range of mathematical formaliza-
tions that define clustering. Perhaps the most common method for formalizing clustering is
through clustering quality measures, which express the goal of clustering using concise math-
ematical formulae. Clustering quality measures map pairs of the form (dataset, clustering)

1

Figure 1.2: Two reasonable 2-clusterings of the same data set.

to real numbers. These measures define the goal of clustering by providing methods for
comparing clusterings, suggesting that clusterings with better scores correspond to better
clusterings. Some clustering quality measures are used to drive clustering algorithms, in that
context quality measures are often referred to as “objective functions.” Some common ob-
jective functions formalize the idea that a cluster should have strong internal cohesion. For
example, one of the most popular clustering objective functions is k-means, which calculates
the squared sum of distances from elements to the centers of mass of their clusters. That is,
given a clustering (or, partition) C = {C1, · · · , Ck}, the k-means cost of C is

k∑
i=1

∑
x∈Ci

d(x, ci)
2,

where ci is the center of mass of cluster Ci and d(x, ci) denotes the distance between x and
ci.

Figure 1.3: Two radically different 3-clusterings of the same data set.

Other common clustering objective functions, including ratio cut and normalized cut [41],
focus on cluster separation instead of cluster cohesion. Formal definitions of these objectives
are given in the preliminary section (Chapter 2). Unfortunately, for most popular clustering
objectives, finding the clustering with optimal value of the objective function is NP -hard
([32], [34]). Therefore, in practice, heuristics are used. This further increases the set of
available clustering tools.

2

Figure 1.4: Two different 2-clusterings of the same data set. The clustering on the left hand
side is found by single-linkage, while the clustering displayed on the right is obtained by
k-means and related heuristics.

Not only are there many clustering algorithms, but these algorithms also tend to have
very different input-output behaviour. Unlike algorithms for supervised learning, clustering
algorithms often output drastically different solutions over the same data. One such example
is illustrated in Figure 1.4, where the clustering on the left hand side is obtained by the single-
linkage algorithm while center-based methods such as k-means obtain the partition on the
right. Another example is found in Figure 1.3. On the left hand side is a partition with
large separation between clusters, which is obtained by common linkage-based techniques
(eg. average-linkage) as well as objective functions such as min-diameter and k-center. On
the other hand, the k-means objective outputs the clustering on the right hand side1.

The diversity of clustering techniques presents a real challenge for a user who needs to
choose a technique for a specific application. Currently, such decisions are often made in a
very ad hoc, if not completely random, manner. Given the crucial effect of the choice of a
clustering algorithm on the resulting clustering, this state of affairs is truly regrettable. Cost
related factors are often considered, such as running time and software purchasing costs. Yet
these considerations do not go to the heart of the difference between these algorithms. To
make an informed choice, it is first necessary to understand fundamental differences in the
input-output behaviour of different clustering paradigms.

We propose an approach for providing guidance to clustering users centred on differences
the input-output behaviour of algorithms. Our approach is based on identifying significant
properties of clustering functions that, on one hand distinguish between different clustering
paradigms, and on the other hand are intended to be relevant to the domain knowledge that
a user might have access to. Based on domain expertise, users could then choose which
traits they want an algorithm to satisfy, and select an algorithm accordingly. The emphasis
of the current thesis is to develop this approach. We identify properties that highlight
fundamental differences in the input-output behaviour of clustering paradigms, and prove
which algorithms satisfy these properties. This leads to improved understanding of clustering

1The data set illustrated in Figure 1.3 motivates our discussion in Chapter 6 where we study the underlying
cause leading to such differences in the output of common clustering methods.

3

algorithms, which in turn helps make a more informed choice when selecting an algorithm
for a specific application.

Before elaborating on our contributions, we discuss previous work on theoretical founda-
tions of clustering.

1.1 Previous Work

Mostly in recent years, a few different approaches towards developing a general theory of
clustering have been investigated. Ben-David [10] considers a sample-based framework for
clustering, where the input is an independent and identically distributed sample from a
distribution, and the goal is to provide a partition of the full domain set. In subsequent work,
Luxburg and Ben-David [42] propose other avenues for investigation towards a statistical
theory of clustering.

In another direction of research, by Blum, Balcan, and colleagues ([8], [7], and [9]), the
emphasis is on properties of clusterings that make clustering computationally easier. In
particular, it is assumed that there is some correct, unique target clustering. If it is then
known that the target satisfies certain conditions, this prior could be used to help uncover
the target clustering. They propose examples of such priors, and show that there is an
efficient algorithm that finds the right clustering for each prior.

The direction of research towards a general theory of clustering that is most relevant to
our work is concerned with distilling natural, abstract properties of clustering. This line of
research has been used to study different aspects of clustering. Meila [35] studies properties
of criteria for comparing clusterings, functions that map pairs of clusterings to real numbers,
and identifies properties that are sufficient to uniquely identify several such criteria. Puzicha
et al.[39] explore properties of clustering objective functions. They propose a few natural
axioms of clustering objective functions, and then focus on objective functions that arise by
requiring functions to decompose into additive form.

Most work on abstract properties of clustering is concerned with clustering functions.
Wright[43] proposes axioms of clustering functions in a weighted setting, where every domain
element is assigned a positive real weight, and its weight may be distributed among multiple
clusters. There have also been several property-based characterizations of the single-linkage
algorithm. Jardine and Sibson[29] formulate a collection of properties that define single
linkage within the class of hierarchical clustering functions. More recently, Ben-David and
Bosagh Zadeh [44] characterize single linkage in the partitional setting (using the k-stopping
criteria). In addition, Carlsson and Memoli [13] provide a characterization of the single-
linkage algorithm in the hierarchical clustering setting.

One of the most influential papers in this line of work is Kleinberg’s [31] impossibility
result. Kleinberg proposes three axioms of clustering functions, each sounding natural, and
proves that that no clustering function can simultaneously satisfy these properties. This
result has been interpreted as stating the impossibility of defining what clustering is, or even
of developing a general theory of clustering.

We have recently found out that an approach for selecting clustering algorithms that

4

is similar to ours has been proposed by Fischer and Van Ness [23]. However, the sets of
properties they discuss is very different from ours. Many of their properties require the
assumption that the data lie in Euclidean space (and sometimes even restricted to the two-
dimensional plane), while we focus on properties that make no assumptions on the underlying
space. In a follow-up to that paper, Chen and Van Ness [15, 14, 16] investigated properties of
linkage-functions. As such, these results apply to selecting clustering algorithms only when
users known that they are interested in a linkage-based technique and also have some prior
knowledge about the desired linkage function. In contrast, we rely exclusively on properties
of the input-output behaviour of algorithms. This enables the use of our properties for
comparing algorithms across different clustering paradigms. We emphasize that none of our
results have appeared before.

1.1.1 Our Contributions

We begin this thesis with a rebuttal to Kleinberg’s impossibility result. We show that the
impossibility result is, to a large extent, due to the specific formalism used by Kleinberg,
rather than being an inherent feature of clustering. While Kleinberg’s axioms are inconsistent
in the setting of clustering functions, we show that consistency is retained in a closely related
setting of clustering-quality measures. In Chapter 3, we translate Kleinberg’s axioms into
the latter setting, and show that several clustering-quality measures satisfy these properties.

In the remainder of this thesis, we work towards a general theory of clustering by study-
ing the input-output behaviour of clustering algorithms. While clustering axioms would
identify what is common to all clustering functions, concisely formulated properties can be
used to distinguish between different clustering paradigms. Identifying properties that bring
to light fundamental differences between clustering algorithms and classifying them accord-
ingly provides a disciplined approach for the selection of clustering techniques for specific
applications.

In Chapter 4, we distil a set of abstract properties that distinguish between linkage-based
clustering and all other clustering paradigms. Linkage-based clustering is a family of clus-
tering methods that include some of the most commonly-used and widely-studied clustering
algorithms. We provide a simple set of properties that, on one hand is satisfied by all the
algorithm in that family, while on the other hand, no algorithm outside that family satisfies
all of the properties in that set. This characterization applies in the partitional setting by
using the k-stopping criteria, and allows for a comparison of linkage-based algorithms to
other common partitional methods.

The ultimate vision is that there would be a sufficiently rich set of properties that would
provide a detailed, property-based, taxonomy of clustering methods. This taxonomy could
then be used to guide algorithm selection for a wide variety of clustering applications. In
Chapter 5, we take a step towards this goal by using natural properties to examine some
popular clustering approaches, and present a property-based classification of these methods.

At the end of Chapter 5, we study relationships between the properties, independent
of any particular algorithm. We illustrate some positive relationships between some of the
properties that we study. Finally, we strengthen Kleinberg’s impossibility result [31] by using

5

a relaxation of one of the properties that he proposed. Our proof is also notably simpler
than the proof of the original impossibility result.

In Chapter 6, we study differences in the input-output behaviour of clustering algorithms
when a small number of points is added. We show that the output of some algorithms is
highly sensitive to the addition of small sets. In such cases, we call such sets oligarchies.
On the other hand, there are clustering methods that are robust to the addition of small
sets, even when those are selected in an adversarial manner. As discussed in Chapter 6,
robustness to small sets is an important consideration when selecting an algorithm, and the
desired behaviour depends on the application.

While most of this thesis is concerned with partitional clustering, in Chapter 7, we turn
to the hierarchical clustering setting. We provide a generalization of our characterization of
linkage-based algorithms to the hierarchical setting. While the characterization presented
in Chapter 4 shows how linkage-based algorithms with the k-stopping criteria differ from
other partitional clustering methods, this result shows how linkage-based algorithms are
distinguished from other hierarchical techniques. We also show that linkage-based algorithms
are distinct from a class of bisecting algorithms in the following strong sense: no linkage-
based algorithm can be used to simulate the input-output behaviour of any algorithm in this
class. We conclude with a discussion of our results in Chapter 8.

6

Chapter 2

Preliminaries

In this chapter, we introduce our notation, definitions, and common clustering algorithms
that will be referred to throughout the thesis.

2.1 Definitions and Notation

Clustering is a very wide and heterogenous domain. We choose to focus on a basic sub-
domain where the input to the clustering function is a finite set of points endowed with
a between-points distance (or similarity) function, and the output is a partition of that
domain. This sub-domain is rich enough to capture many of the fundamental issues of
clustering, while keeping the underlying structure as succinct as possible.

Definition 1 (Distance function). A distance function is a symmetric function d : X×X →
R+, such that d(x, x) = 0 for all x ∈ X.

The objects that we consider are pairs (X, d), where X is some finite domain set and d
is a distance function over X. These are the inputs for clustering functions. The size of a
set X, denoted |X|, refers to the number of elements in X.

Given a distance function d over X and a positive real c, c · d is defined by setting, for
every pair x, y ∈ X, (c · d)(x, y) = c · d(x, y).

Two distance functions d over X and d′ over X ′ agree on a domain set Y if Y ⊆ X,
Y ⊆ X ′, and d(x, y) = d′(x, y) for all x, y ∈ Y .

At times we consider a domain subset with the distance induced from the full domain
set. We let (X ′, d′) ⊆ (X, d) denote X ′ ⊆ X and d′ = d|X ′, which is defined by restricting
the distance function d to (X ′)2.

We say that a distance function d over X extends distance function d′ over X ′ if X ′ ⊆ X
and for all x, y ∈ X ′, d(x, y) = d′(x, y).

A k-clustering C = {C1, C2, . . . , Ck} of data set X is a partition of X into k disjoint

subsets of X (so,
⋃
i

Ci = X). A clustering of X is a k-clustering of X for some 1 ≤ k ≤ |X|.

A clustering is trivial if either all data belongs to the same cluster, or every element is in a
distinct cluster.

7

For a clustering C, let |C| denote the number of clusters in C. For x, y ∈ X and clustering
C of X, we write x ∼C y if x and y belong to the same cluster in C and x 6∼C y, otherwise.

Definition 2 (Clustering function). A clustering function is a function that takes a pairs
(X, d), and outputs a clustering of X.

We also consider clustering function that take the number of clusters as a parameter.
This parameter is often denoted “k”, leading to the name “k-clustering functions”.

Definition 3 (K-clustering function). A k-clustering function is a function that takes a pair
(X, d) and an integer 1 ≤ k ≤ |X|, and outputs a k-clustering of X.

We say that (X, d) and (X ′, d′) are isomorphic domains, denoting it by (X, d) ∼ (X ′, d′),
if there exists a bijection φ : X → X ′ so that d(x, y) = d′(φ(x), φ(y)) for all x, y ∈ X.

We say that two clusterings C of some domain (X, d) and C ′ of some domain (X ′, d′)
are isomorphic clusterings, denoted (C, d) ∼=C (C ′, d′), if there exists a domain isomorphism
φ : X → X ′ so that x ∼C y if and only if φ(x) ∼C′ φ(y).

2.2 Common Clustering Methods

We define some common clustering functions referred to throughout the thesis.

2.2.1 Linkage-Based Clustering

Linkage-based clustering algorithms are iterative algorithms that begin by placing each point
in a distinct cluster, and then repeatedly merge the closest clusters. When the k-stopping
criteria is applied, the algorithm terminates when a specified number of clusters is formed.

The distance between clusters is determined by a linkage function. The linkage functions
used by the most common linkage-based algorithms are as follows.

• Single linkage: mina∈A,b∈B d(a, b).

• Average linkage:
∑

a∈A,b∈B d(a,b)

|A|·|B|

• Complete linkage: maxa∈A,b∈B d(a, b).

We elaborate on linkage-based algorithm in Chapter 4. Linkage-based algorithms are
also frequently applied in the hierarchical clustering setting, where linkage function are
used to construct dendrograms, which simultaneously represent multiple clusterings. This is
discussed in detailed in Chapter 7.

8

2.2.2 Objective-Based Clustering

Many clustering algorithms aim to find clusterings with low loss with respect to a specific
objective function. An example of such an objective function is Min-Sum, the sum of within-
cluster distances,

Min-sum(C, (X, d)) =
∑
x∼Cy

d(x, y).

Every objective function O has a corresponding clustering function F that outputs a
clustering that optimizes O, namely F (X, d, k) = argminC a k-clustering of X O(C, (X, d)) where
argmax is used instead of argmin if higher values of O represent better clusterings.

Such clustering functions differ from (often more computationally efficient) algorithms
that aim to find clusterings with low loss with respect to a specific objective function, but
may not output an optimal solution.

We now present k-means, centroid, and similarity-based clustering objective functions.

Similarity-based

Similarity-based objective functions, typically estimated by spectral relaxations, focus on
between-cluster edges. They are defined using similarities instead of distances. A similar-
ity function is defined like a distance function, but the implied meaning of larger values
represents greater similarity, instead of greater distance.

Given a cluster Ci ⊆ X, let C̄i = X\Ci. Given Ci, Cj ⊆ X, we define cut(Ci, Cj) =∑
x∈Ci,y∈Cj

s(x, y). Let the volume of a cluster Ci be the sum of within-cluster similarities,

vol(Ci) =
∑

x,y∈Ci
s(x, y). We consider two similarity-based objective functions. The first is

Ratio Cut,

RatioCut(C, (X, s)) =
∑
Ci∈C

cut(Ci, C̄i)

|Ci|
.

The next objective function is called Normalized Cut, as it normalizes by cluster volume.

NormalizedCut(C, (X, s)) =
∑
Ci∈C

cut(Ci, C̄i)

vol(Ci)
.

Centroid

Following Kleinberg’s [31] definition, (k, g)-centroid clustering functions find a set of k “cen-
troids” {c1, . . . , ck} ⊆ X so that

∑
x∈X mini g(d(x, ci)) is minimized, where g : R+ → R+ is

a continuous, non-decreasing, and unbounded function. The k-medoids objective function is
obtained by setting g to the identity.

k-means

The k-means objective is to find a set of k elements {c1, c2, . . . , ck} in the underlying space,
so that

∑
x∈X mini d(x, ci)

2 is minimized. A common variation on the k-means objective
function is k-medians, which is obtained by omitting the square on d(x, ci).

9

This formalization of k-means assumes that the data lies in a normed vector space. This
method is typically applied in Euclidean space, where the k-means objective is equivalent to
k-means(C, (X, d)) =

∑
Ci∈C

1
|Ci|
∑

x,y∈Ci
d(x, y)2. (See [38] for details).

The most common heuristic for findings clusterings with low k-means loss is Lloyd’s
method.

Definition 4 (Lloyd’s method). Given a data set (X, d), and a set S of points in Rn, the
Lloyd’s method performs the following steps until two consecutive iterations return the same
clustering.

1. Assign each point in X to its closest element of S. That is, find the clustering C of X
so that x ∼C y if and only if argminc∈S‖c− x‖ = argminc∈S‖c− y‖.

2. Compute the centers of mass of the clusters. Set S = {ci = 1
|Ci|
∑

x∈Ci
x | Ci ∈ C}.

A common initialization for Lloyd’s method is to select k random points from the input
data set ([24]). We call this algorithm Randomized Lloyd. It is also commonly referred to
as “the k-means algorithm.” In order to find a solution with low k-means loss, it is common
practice to run Randomized Lloyd multiple times and then select the minimal cost clustering.

Another well-known initialization method for Lloyd’s method is furthest-centroid initial-
ization [30]. Using this method, given a set X, the initial points S = {c1, . . . , ck} are chosen
as follows: c1 is the point with maximum norm (instead, an arbitrary point can be chosen).
Then, for all i between 2 and k, ci is set to be the point in X that maximizes the distance
from the other points that were already chosen. That is, ci = argmaxx∈X minj∈[i−1] d(x, cj).

Both of these methods of initialization have significant shortcomings. In particular, such
common initialization techniques can fail dramatically even when the data is very nice, such
as i.i.d. samples of very well-separated spherical Gaussian in Rd [18]. Additionally, random
center initialization is unstable, in the sense that the final solution is sensitive to center
initialization [12]. The good news is that there is an initialization method that does not
suffer from these problems. The method is typically credited to Hochbaum and Shmoys [27].
The idea is to start by randomly selecting more centers than needed, then pruning some
the centers, and finding remaining centers that maximize minimum distance between centers
already selected. For a detailed description of this initialization method, see, for example,
[12].

10

Chapter 3

Axioms of Clustering

In his highly influential paper, [31], Kleinberg advocates the development of a theory
of clustering that will be “independent of any particular algorithm, objective function, or
generative data model.” As a step in that direction, Kleinberg sets up a set of axioms aimed
to define what a clustering function is. Kleinberg suggests three axioms, each sounding
plausible, and shows that these seemingly natural axioms lead to a contradiction - there
exists no function that satisfies all three requirements.

Kleinberg’s result is often interpreted as stating the impossibility of defining what clus-
tering is, or even of developing a general theory of clustering. We disagree with this view.
In this chapter, we show that the impossibility result is, to a large extent, due to the specific
formalism used by Kleinberg rather than being an inherent feature of clustering.

Rather than attempting to define what a clustering function is, we turn our attention to
the closely related issue of evaluating the quality of a given data clustering. In this chapter
we develop a formalism and a consistent axiomatization of that latter notion.

As it turns out, the clustering-quality framework is more flexible than that of clustering
functions. In particular, it allows the postulation of axioms that capture the features that
Kleinberg’s axioms aim to express, without leading to a contradiction.

A clustering-quality measure is a function that maps pairs of the form (dataset, clustering)
to some ordered set (say, the set of non-negative real numbers), so that these values reflect
how ‘good’ or ‘cogent’ that clustering is. Formally, a clustering-quality measure (CQM) is a
function that is given (X, d) and a clustering C over (X, d) and returns a non-negative real
number, as well as satisfies some additional requirements. In this chapter we explore the
question of what these requirements should be.

Measures for the quality of a clustering are of interest not only as a vehicle for axioma-
tizing clustering. The need to measure the quality of a given data clustering arises naturally
in many clustering issues. The aim of clustering is to uncover meaningful groups in data.
However, not any arbitrary partitioning of a given data set reflects such a structure. Upon
obtaining a clustering, usually via some algorithm, a user needs to determine whether this
clustering is sufficiently meaningful to rely upon for further data mining analysis or practical
applications. Clustering-quality measures aim to answer this need by quantifying how good

11

is any specific clustering.
Clustering-quality measures may also be used to help in clustering model-selection by

comparing different clusterings over the same data set (e.g., comparing the results of a given
clustering paradigm over different choices of clustering parameters, such as the number of
clusters).

Clustering-quality measure corresponding to common objective functions, such as k-
means or k-mediods have some shortcomings for the purpose at hand. Namely, these mea-
sures are usually not scale-invariant, and they cannot be used to compare the quality of
clusterings obtained by different algorithms aiming to minimize different clustering costs
(e.g., k-means with different values of k). See Section 3.4 for more details.

Clustering quality has been previously discussed in the applied statistics literature, where
a variety of techniques for evaluating ‘cluster validity’ were proposed. Many of these meth-
ods, such as the external criteria discussed in [37], are based on assuming some predetermined
data generative model, and as such do not answer our quest for a general theory of clustering.
In this work, we are concerned with quality measures regardless of any specific generative
model, for examples, see the internal criteria surveyed in [37].

We formulate a theoretical basis for clustering-quality evaluations, proposing a set of
requirements (‘axioms’) of clustering-quality measures. We demonstrate the relevance and
consistency of these axioms by showing that the top performing measures in Milligan’s [37]
extensive empirical study of internal validity criteria satisfy our axioms.

3.1 Kleinberg’s Axioms

Kleinberg, [31], proposes the following three axioms for clustering functions. These axioms
are intended to capture the meaning of clustering by determining which functions are worthy
of being considered clustering functions and which are not. Kleinberg shows that the set is
inconsistent - there exist no functions that satisfies all three axioms.

The first two axioms require invariance of the clustering that F defines under some
changes of the input distance function.

Function Scale Invariance: Scale invariance requires that the output of a clustering
function be invariant to uniform scaling of the input.

A function F is scale-invariant if for every (X, d) and positive c, F (X, d) = F (X, c · d).
Function Consistency: Consistency requires that if within-cluster distances are de-

creased, and between-cluster distances are increased, then the output of a clustering function
does not change. Formally,

• Given a clustering C over (X, d), a distance function d′ is (C, d)-consistent, if d′(x, y) ≤
d(x, y) for all x ∼C y, and d′(x, y) ≥ d(x, y) for all x 6∼C y.

• A function F is consistent if F (X, d) = F (X, d′) whenever d′ is (F (X, d), d)-consistent.

Function Richness: Richness requires that by modifying the distance function, any
partition of the underlying data set can be obtained.

12

Figure 3.1: A consistent change of a 6-clustering that gives rise to an arguably better 3-
clustering.

A function F is rich if for each partitioning C of X there exists a distance function d
over X so that F (X, d) = C.

Theorem 1 (Kleinberg, [31]). There exists no clustering function that simultaneously sat-
isfies scale invariance, consistency and richness.

We strengthen the above result in Section 5, by considering a relaxation of the consistency
axiom. Our result also provides a simpler proof for this Theorem.

The intuition behind these axioms is rather clear. Let us consider, for example, the
Consistency requirement. It seems reasonable that by pulling closer points that are in the
same cluster and pushing further apart points in different clusters, our confidence in the
given clustering will only rise. However, while this intuition can be readily formulated in
terms of clustering quality (namely, “changes as these should not decrease the quality of a
clustering”), the formulation through clustering functions says more. It actually requires
that such changes to the underlying distance function should not create any new contenders
for the best-clustering of the data.

For example, consider Figure 3.1, where we illustrate a good 6-clustering. On the right
hand-side, we show a consistent change of this 6-clustering. Notice that the resulting data has
a 3-clustering that may be better than the original 6-clustering. While one may argue that
the quality of the original 6-clustering has not decreased as a result of the distance changes,
the quality of the 3-clustering has improved beyond that of the 6-clustering. This is the case,
for example, when Dunn’s index is used (this index is discussed in more detail below). This
illustrates a significant weakness of the consistency axiom for clustering functions.

The implicit requirement that the original clustering remain the best clustering following
a consistent change is at the heart of Kleinberg’s impossibility result. As we shall see below,
once we relax that extra requirement, the axioms are no longer unsatisfiable.

13

3.2 Axioms of Clustering-Quality Measures

In this section we change the primitive that is being defined by the axioms from clustering
functions to Clustering-Quality Measures (CQMs). We reformulate the above three axioms
in terms of CQMs and show that this revised formulation is not only consistent, but is also
satisfied by a number of natural and effective clustering-quality measures. In addition, we
extend the set of axioms by adding another axiom (of clustering-quality measures) that is
required to rule out some measures that should not be counted as CQMs.

3.2.1 Clustering-Quality Measure Analogues to Kleinberg’s Ax-
ioms

The translation of the Scale Invariance axiom to the CQM terminology is straightforward:

Definition 5 (Scale Invariance). A quality measure m satisfies scale invariance if for every
clustering C of (X, d), and every positive c, m(C, (X, d)) = m(C, (X, c · d)).

The translation of the Consistency axiom is the place where the resulting CQM formu-
lation is indeed weaker than the original axiom for functions. While it clearly captures the
intuition that consistent changes to d should not hurt the quality of a given partition, it
allows the possibility that, as a result of such a change, some partitions will improve more
than others1.

Definition 6 (Consistency). A quality measure m satisfies consistency if for every clustering
C over (X, d), whenever d′ is (C, d)-consistent, then m(C, (X, d′)) ≥ m(C, (X, d)).

Definition 7 (Richness). A quality measure m satisfies richness if for each non-trivial clus-
tering C of X, there exists a distance function d over X such that

C = ArgmaxC{m(C, (X, d)) | C is non-trivial}.

To demonstrate the consistency of the three axioms for clustering quality measures, we
rely on a well-known quality measure, Dunn’s index[20].

Definition 8. Dunn’s index of a clustering C over (X, d) is

Dunn(C, (X, d)) =
minx 6∼Cy d(x, y)

maxx∼Cy d(x, y)
.

Theorem 2. Consistency, Scale Invariance, and Richness for clustering-quality measures
form a consistent set of requirements.

1The following formalization assumes that larger values of m indicate better clustering quality. For some
quality measures, smaller values indicate better clustering quality - in which case we reverse the direction of
inequalities for consistency and use Argmin instead of Argmax for richness.

14

Proof. We show that the three requirements are satisfied by Dunn’s index. Note that larger
values of Dunn’s index indicate better clustering quality. First, we show that Dunn’s
index satisfies consistency. Let d′ be a (C, d)-consistent distance function. Consistent
changes can only increase between-cluster distances and decrease within-cluster distances.
So, minx 6∼Cy d

′(x, y) ≥ minx 6∼Cy d(x, y) and maxx∼Cy d
′(x, y) ≤ maxx∼Cy d(x, y). This implies

that Dunn(C, (X, d′)) ≥ Dunn(C, (X, d)).
For richness, given a non-trivial clustering C of a data set X, we define a distance function

d as follows. For all pairs x, y ∈ X set d(x, y) = 1 if x ∼C y, and set d(x, y) = 2 otherwise.
Then Dunn(C, (X, d)) = 2. Consider any non-trivial clustering C ′ of X different than C.
Since C ′ is both non-trivial and different from C, it must either have a within-cluster edge
of length 2, or a between-cluster edge of length 1. So Dunn’s index of Dunn(C, (X, d)) ≤
1 < Dunn(C, (X, d)).

Finally, for any c > 0, and any (X, d) and clustering C of X, Dunn(C, (X, c · d)) =
Dunn(C, (X, d)). It follows that scale-invariance, consistency, and richness are consistent
axioms.

3.2.2 Representation Independence

This axiom resembles the permutation invariance objective function axiom by Puzicha et
al. [39], modeling the requirement that clustering should be indifferent to the individual
identity of clustered elements. This axiom of clustering-quality measures does not have a
corresponding Kleinberg axiom.

Definition 9 (Representation Independence). A quality measure m is representation inde-
pendent if for all clusterings C, C ′ over (X, d) where C ∼=C C

′, m(C, (X, d)) = m(C ′, (X, d)).

Theorem 3. The set of axioms consisting of Representation Independence, Scale Invariance,
Consistency, and Richness, (all in their CQM formulation) is a consistent set of axioms.

Proof. Just note that Dunn’s index satisfies all four axioms.

3.3 Examples of Clustering-Quality Measures

We demonstrate that our proposed axioms of CQMs are satisfied by some measures that
have been shown to perform well in practice. In a survey of validity measures, Milligan
[37] performs an extensive empirical study of internal validity indices. His study compared
how clustering quality measures compare with external validity indices (namely Rand and
Jaccard) on a large number of data sets where a correct clustering is known. We show here
that the top performing internal criteria examined in [37] satisfy our axioms.

3.3.1 Gamma

The Gamma measure was proposed as a CQM by Baker and Hubert [6] and it is the top
performing measure in Milligan’s [37] study. Let d(+) denote the number of times that a

15

between-cluster edge is larger than a within-cluster edge, and let d(−) denote the opposite
result.

Formally,

d(+) = |{{x, y, x′, y′} ⊆ X | x ∼C y, x′ 6∼C y′, d(x, y) < d(x′, y′)}|,
and

d(−) = |{{x, y, x′, y′} ⊆ X | x ∼C y, x′ 6∼C y′, d(x, y) ≥ d(x′, y′)}|.
The Gamma clustering-quality measure is defined as

d(+)− d(−)

d(+) + d(−)
.

The range of values of gamma is [0,1] and larger values indicate greater clustering quality.
We show that Gamma satisfies our four axioms of clustering-quality measures.

Theorem 4. Gamma satisfies consistency, richness, scale-invariance, and representation
independence.

Proof. To see that Gamma is consistent, observe that a consistent change can only increase
d(+) and decrease d(−), thus increasing the numerator of Gamma. However, since the num-
ber of within-cluster pairs and between-cluster pairs remains unchanged, the denominator is
unaffected. As such, the value of Gamma cannot decrease following a consistent change.

To see that richness is satisfied, consider any non-trivial clustering C of X. Construct a
distance function d as follows: if x ∼C y, then set d(x, y) = 1, and otherwise, set d(x, y) = 2.
Then Gamma of C is 1, the largest possible value of Gamma, since all within-cluster distances
are smaller than all between-cluster distances. Observe that C is the only clustering of (X, d)
with d(−) = 0. It follows that the Gamma of any other non-trivial clustering of (X, d) is
strictly smaller than 1.

Since uniform scaling preserves the order of pairwise distances, the Gamma measure is
unaffected by uniform scaling of the distance function, and so the measure is scale invariant.
Gamma is also representation independent as it does not depend on the labellings of the
data.

3.3.2 C-Index

C-Index is the second best performing quality measure in Milligan’s study. The measure
was introduced by Hubert and Levin [28]. Let dw(C, d) denote the sum of within-cluster
distances,

dw(C, d) =
∑
x∼Cy

d(x, y).

Let nw be the number of within-cluster pairs in C, that is nw = |{{x, y} ⊆ X | x ∼C y}|.
Let min(nw, d) be the sum of the nw minimal distances in d, and let max(nw, d) be the

sum of the nw maximal distances in d. The c-index is defined as follows.

16

Definition 10 (C-Index). The c-index of a clustering C over (X, d) is

dw(C, d)−min(nw, d)

max(nw, d)−min(nw, d)
.

The range is [0, 1], and smaller values indicate better clustering quality.

Lemma 1. C-index is consistent.

Proof. A consistent change can be viewed as a series of changes each affecting a single edge.
We consider consistent changes that modify a single edge, for all possible choices of that
edge.

Within-cluster edges: Following a consistent change, a within-cluster edge either shrinks,
or remains unchanged. Suppose that e ∈ max(nw, d) and e 6∈ min(nw, d). Then the nu-
merator and denominator of the c-index decrease by the same amount. We show that such
change can only decrease the c-index, improving the quality of the clustering.

Let a = dw(C, d) − min(nw, d), the numerator of the c-index. Let b = max(nw, d) −
min(nw, d), the denominator of the c-index. Let α > 0 be the amount by which the edge
e decreases after the consistent change. Then the new value of the c-index, following the
consistent change, is a−α

b−α . We show that a−α
b−α < a

b
. Since max(nw, d) ≥ dw(C, d), it follows

that a−α
b−α ≤

a
b
.

Suppose that e ∈ min(nw, d) and e 6∈ max(nw, d). Then min(nw, d) and dw(C, d) decrease
by the same amount, and so the change is removed in the subtraction, not effecting the
numerator. The denominator increases after such a consistent change, causing the c-index
to decrease, improving the quality.

If e ∈ max(nw, d) ∩ min(nw, d), then shrinking that edges does not effect the value
of the c-index, by leaving both the numerator and denominator unchanged. Finally, if
e 6∈ max(nw, d) and e 6∈ min(nw, d), then only the numerator can decrease, and so the
c-index can only improve.

Between-cluster edges: Such edges leave dw(C, d) unchanged, and can only increase fol-
lowing a consistent change. If e ∈ max(nw, d) and e 6∈ min(nw, d), then it improves the
clustering quality by increasing the denominator.

If e ∈ min(nw, d) and e 6∈ max(nw, d), then the numerator and denominator decrease by
the same amount, improving the quality by same argument as for the within-cluster edge
case where e ∈ max(nw, d) and e 6∈ min(nw, d).

If e ∈ max(nw, d) ∩min(nw, d), the numerator decreases, and the denominator does not
change, improving the quality of the partition. Finally, if e 6∈ max(nw, d) and e 6∈ min(nw, d)
then the c-index is unchanged.

Theorem 5. C-index satisfies the four axioms of clustering-quality measures.

Proof. Consistency follows by Lemma 3.3.2. To see that richness is satisfied, consider any
non-trivial clustering C of X. Construct a distance function d as follows: if x ∼C y, then set

17

d(x, y) = 1, otherwise, set d(x, y) = 2. Then the c-index of clustering C is 0, the minimal
possible C-index value. Now consider any other non-trivial clustering C ′ 6= C of X.

Consider any constant c > 0 and data set (X, d). Then the c-index of data set (X, c ·d) =
c-index(X, d). Finally, the c-index is representation independent since it does not rely on
data labellings.

3.4 Dependence on Number of Clusters

The clustering-quality measures discussed here up to now are independent of the number of
clusters, which enables the comparison of clusterings with a different number of clusters. In
this section we discuss an alternative type of clustering quality evaluation, that depends on
the number of clusters. Such quality measures arise naturally from common loss functions
(or, objective functions) that drive clustering algorithms, such as k-means or k-medoids.

These common loss functions fail to satisfy two of our axioms, scale-invariance and rich-
ness. One can easily overcome the dependence on scaling by normalization. As we will show,
the resulting normalized loss functions make a different type of clustering-quality measures
from the measures we previously discussed, due to their dependence on the number of clus-
ters.

A natural remedy to the failure of scale invariance is to normalize a loss function by
dividing it by the variance of the data, or alternatively, by the loss of the 1-clustering of the
data.

Common loss functions, even after normalization, usually have a bias towards more re-
fined clusterings – they assign lower cost (that is, higher quality) to more refined clusterings.
This prevents using them as a meaningful tool for comparing the quality of clusterings with
different number of clusters. We formalize this feature of common clustering loss functions
through the notion of refinement preference2:

Definition 11 (Refinement). For a pair of clusterings C,C ′ of the same domain, clustering
C ′ is a refinement of C if every cluster in C is a union of clusters of C ′.

Definition 12 (Refinement Preference). A measure m is refinement preferring if for every
clustering C of (X, d) that has a non-trivial refinement different from C, there exists some
non-trivial refinement C ′ such that m(C ′, (X, d)) < m(C, (X, d)).

We show that several well-known objective functions are refinement preferring.

Theorem 6. Min-sum and k-medoids are refinement preferring.

Proof. Consider any clustering C that has a non-trivial refinement different from C. Given
any refinement C ′ of C, its set of within-cluster distances is a strict subset of that of C. Since
min-sum is the sum of within-cluster distances, and all distances are positive, it follows that
the min-sum cost of C ′ is lower than that of C.

2The following formalization assumes that lower scores indicate better clustering quality. If higher scores
indicate better clustering quality, reverse the direction of the inequality.

18

To see that k-medoids is refinement preferring, consider a non-trivial refinement C ′ of C
that has only one within-cluster pair (x, y) where x is a cluster center in C. The k-medoids
cost of C ′ is d(x, y)2. The clustering C has a within-cluster pair additional to (x, y), and so
it follows that the k-medoids cost of C is greater than d(x, y)2.

Theorem 7. If the data lies in a normed vector space, then k-means is refinement preferring.

Proof. Consider any clustering C that has a non-trivial refinement different from C. Let C ′

be any refinement of C that has a single within-cluster pair (x, y). Then x and y share some
center c in C, and so their contribution to C is ‖x− c‖2 + ‖y − c‖2, implying that the cost
of C is greater than ‖x− c‖2 + ‖y− c‖2 as it has within-cluster pairs other than (x, y). The
cost of C ′ is at most ‖x− c‖2 + ‖y − c‖2, since using the center of mass of {x, y} instead of
c can only improve the cost of C ′.

We now show that refinement preferring measures fail to satisfy the richness axiom.

Theorem 8. If a quality measure m is refinement preferring, then it fails the richness axiom.

Proof. Let m be a refinement preferring measure. The richness axiom requires that for every
domain set X, and every non-trivial clustering C of X, there exists a distance function d so
that C has optimal m value over all clusterings of (X, d).

Let C be any clustering that has a non-trivial refinement different from C. Note that
this property is independent of any distance function. Then since m is refinement preferring,
for any distance function d of X, there exists some refinement C ′ of C that achieves a better
score than C. It follows that m is not rich.

Many common clustering quality measures satisfy one of richness or refinement prefer-
ence, but as shown above, no measure can satisfy both. To evaluate the quality of a clustering
using a refinement preferring measure, the number of clusters should be fixed. Since the cor-
rect number of clusters is often unknown, measures that are independent of the number of
clusters apply in a more general setting.

19

Chapter 4

A Characterization of Linkage-Based
Algorithms

In spite of the wide use of clustering in many practical applications, currently, there exists no
principled method to guide the selection of a clustering algorithm. Of course, users are aware
of the costs involved in employing different clustering algorithms (software purchasing costs,
running times, memory requirements, needs for data preprocessing etc.) but there is very
little understanding of the differences in the outcomes that these algorithms may produce.
We focus on that aspect - the input-output properties of different clustering algorithms.

The choice of an appropriate clustering should, of course, be task dependent. A clustering
that works well for one task may be unsuitable for another. Even more than for supervised
learning, for clustering, the choice of an algorithm must incorporate domain knowledge.
While some domain knowledge is embedded in the choice of similarity between domain
elements (or the embedding of these elements into some Euclidean space), there is still
a large variance in the behavior of difference clustering paradigms over a fixed similarity
measure.

For some clustering tasks, there is a natural clustering objective function that one may
wish to optimize, but very often the task does not readily translate into a corresponding
objective function. Often users are merely searching for a meaningful clustering, without
a prior preference for any specific objective function. Many common clustering paradigms
do not optimize any clearly defined objective utility, either because no such objective is
defined (like in the case of, say, single linkage clustering) or because optimizing the most
relevant objective is computationally infeasible. To overcome computation infeasibility, the
algorithms end up carrying out heuristics whose outcomes may be quite different than the
actual objective-based optimum. What seems to be missing is a clear understanding of the
differences in clustering outputs in terms of intuitive and usable properties.

Some heuristics have been proposed as a means of distinguishing between the output of
clustering algorithms on specific data. These approaches require running the algorithms,
and then selecting an algorithm based on the outputs that they produce. In particular,
validity criteria can be used to evaluate the output of clustering algorithms. These measures
can be used to select a clustering algorithm by choosing the one that yields the highest

20

quality clustering [40]. However, the result only applies to the original data, and there are
no guarantees on the quality of the output of these algorithms on any other data.

We propose a different approach to providing guidance to clustering users by identifying
significant properties of the input-output behaviour of clustering functions that, on one hand
distinguish between different clustering paradigms, and on the other hand are intended to
be relevant to the domain knowledge that a user might have access to. Based on domain
expertise users could then choose which properties they want an algorithm to satisfy, and
determine which algorithms meet their requirements.

In this chapter, we make a major step by distilling a set of abstract properties that
distinguish between linkage-based clustering and any other type of clustering paradigm.
Linkage-based clustering is a family of clustering methods that include some of the most
commonly-used and widely-studied clustering paradigms. We provide a surprisingly simple
set of properties that, on one hand is satisfied by all the algorithm in that family, while on the
other hand, no algorithm outside that family satisfies (all of) the properties in that set. Our
characterization highlights the way in which the clusterings that are output by linkage-based
algorithms are different from the clusterings output by other clustering algorithms.

4.1 Defining Linkage-Based Clustering

A linkage-based algorithm begins by placing every element of the input data set into its own
cluster, and then repeatedly merging the “closest” clusters. What distinguishes different
linkage-based algorithms from each other is the definition of between-cluster distance, which
is used to determine the closest clusters. For example, single linkage defines cluster distance
by the shortest edge between members of the clusters, while complete linkage uses the longest
between-cluster edge to define the distance between clusters.

Between-cluster distance has been formalized in a variety of ways. It has been called a
“linkage function,” (see, for example, [19] and [25]). Everitte et al. [22] call it “inter-object
distance.” Common to all these formalisms is a function that maps pairs of clusters to real
numbers. No further detailing of the concept has been previously explored. We zoom in on
the concept of between-cluster distance and provide a rigorous, general definition.

Definition 13 (Linkage function). A linkage function is a function

` : {(X1, X2, d) | d is a distance function over X1 ∪X2} → R+

such that,

1. ` is representation independent: For all (X1, X2) and (X ′1, X
′
2), if ({X1, X2}, d) ∼=C

({X ′1, X ′2}, d′) then `(X1, X2, d) = `(X ′1, X
′
2, d
′).

2. ` is monotonic: For all (X1, X2, d) if d′ is a distance function over X1 ∪X2 such that
for all x ∼{X1,X2} y, d(x, y) = d′(x, y) and for all x 6∼{X1,X2} y, d(x, y) ≤ d′(x, y) then
`(X1, X2, d

′) ≥ `(X1, X2, d).

21

3. Any pair of clusters can be made arbitrarily distant: For any pair of data sets (X1, d1),
(X2, d2), and any r in the range of `, there exists a distance function d that extends d1
and d2 such that `(X1, X2, d) > r.

For technical reasons, we shall assume that a linkage function has a countable range. Say,
the set of non-negative algebraic real numbers1.

Note that a linkage function is only given the data for two clusters, as such, the distance
between two clusters does not depend on data that is outside these clusters. Condition (1)
formalizes the requirement that the distance does not depend on the labels (or identities) of
domain points. The between-cluster distance is fully determined by the matrix of between-
point distances. Conditions (2) and (3) relate the linkage function to the input distance
function, and capture the intuition that pulling the points of one cluster further apart from
those of another cluster would not make the two clusters closer. Property (4) captures the
intuition that by pulling two clusters away from each other they can be made arbitrarily
“unlinked”.

We now define linkage-based k-clustering functions.

Definition 14 (linkage-based clustering function). A k-clustering function F is linkage-
based if there exists a linkage function ` so that

• F (X, d, |X|) = {{x} | x ∈ X}

• For 1 ≤ k < |X|, F (X, d, k) is constructed by merging the two clusters in F (X, d, k+1)
that minimize the value of `. Formally,

F (X, d, k) = {Ci | Ci ∈ F (X, d, k + 1), Ci 6= C1, C 6= C2} ∪ {C1 ∪ C2},

such that {C1, C2} = argmin{C1,C2}⊆F (X,d,k+1)`(C1, C2, d).

Here are examples of linkage functions used in the most common linkage-based algorithms.

• Single linkage: `SL(A,B, d) = mina∈A,b∈B d(a, b).

• Average linkage: `AL(A,B, d) =
∑

a∈A,b∈B d(a,b)

|A|·|B|

• Complete linkage: `CL(A,B, d) = maxa∈A,b∈B d(a, b).

Note that `SL, `AL, and `CL satisfy the conditions of Definition 13 and as such are linkage
functions2.

1Imposing this restriction simplifies our main proof, while not having any meaningful impact on the scope
of clusterings considered.

2A tie breaking mechanism is often used to apply such linkage functions in practice. For simplicity, we
assume in this discussion that no ties occur. In other words, we assume that the linkage function is one-to-one
on the set of isomorphism-equivalence classes of pairs of clusters.

22

4.2 Properties of k-Clustering Functions

In this chapter, we require that k-clustering functions satisfy two natural requirements, pre-
sentation independence and scale-invariance. As will be shown in Chapter 5, all k-clustering
functions that we consider satisfy these two properties.

Definition 15 (Clustering functions). A k-clustering function is a function that takes as
input a pair (X, d) and a parameter 1 ≤ k ≤ |X| and outputs a k-clustering of the domain
X. We require such a function, F , to satisfy the following:

1. Representation Independence: Whenever (X, d) ∼ (X ′, d′), then, for every k, F (X, d, k)
and F (X ′, d′, k) are isomorphic clusterings.

2. Scale Invariance: For any domain set X and any pair of distance functions d, d′ over
X, if there exists c ∈ R+ such that d(a, b) = c·d′(a, b) for all a, b ∈ X, then F (X, d, k) =
F (X, d′, k).

We now introduce properties of k-clustering functions that we use to characterize linkage-
based clustering.

4.2.1 Locality

We now introduce a new property of clustering algorithms that we call “locality”. Intuitively,
a k-clustering function is local if its behavior on a union of a subset of the clusters (in a
clustering it outputs) depends only on distances between elements of that union, and is
independent of the rest of the domain set.

Definition 16 (Locality). A k-clustering function F is local if for any clustering C output
by F and every subset of clusters, C ′ ⊆ C,

F (
⋃

C ′, d, |C ′|) = C ′.

In other words, for every domain (X, d) and number of clusters, k, if X ′ is the union
of k′ clusters in F (X, d, k) for some k′ ≤ k, then, applying F to (X ′, d) and asking for a
k′-clustering, will yield the same clusters that we started with.

To better understand locality, consider two runs of a clustering algorithm. In the first
run, the algorithm is called on some data set X and returns a k-clustering C. We then select
some clusters C1, C2, . . . , Ck′ of C, and run the clustering algorithm on the points that the
selected clusters consist of, namely, C1∪C2∪ . . .∪Ck′ asking for k′ clusters. If the algorithm
is local, then on the second run of the algorithm it will output {C1, C2, . . . , Ck′}.

4.2.2 Consistency

Consistency, introduced by Kleinberg [31], requires that the output of a clustering function,
be invariant to shrinking within-cluster distances, and stretching between-cluster distances.
The following is a translation of consistency into the setting of k-clustering functions.

23

Definition 17 (Consistency). Given a clustering C of some domain (X, d), we say that a
distance function d′ over X, is (C, d)-consistent if

1. d′(x, y) ≤ d(x, y) whenever x ∼C y, and

2. d′(x, y) ≥ d(x, y) whenever x 6∼C y.

A clustering function F is consistent if for every X, d, k, if d′ is (F (X, d, k), d)-consistent
then F (X, d, k) = F (X, d′, k).

We introduce two relaxations of consistency for k-clustering functions.

Definition 18 (Outer Consistency). Given a clustering C of some domain (X, d), we say
that a distance function d′ over X, is (C, d)-outer-consistent if

1. d′(x, y) = d(x, y) whenever x ∼C y, and

2. d′(x, y) ≥ d(x, y) whenever x 6∼C y.

A k-clustering function F is outer consistent if for every X, d, k, if d′ is (F (X, d, k), d)-outer-
consistent then F (X, d, k) = F (X, d′, k).

Definition 19 (Inner Consistency).

Given a clustering C of some domain (X, d), we say that a distance function d′ over X, is
(C, d)-inner-consistent if

1. d′(x, y) ≤ d(x, y) whenever x ∼C y, and

2. d′(x, y) = d(x, y) whenever x 6∼C y.

A k-clustering function F is inner consistent if for every X, d, k, if d′ is (F (X, d, k), d)-inner
consistent then F (X, d, k) = F (X, d′, k).

Clearly, consistency implies both outer-consistency and inner-consistency.
As will be show in chapter 5, outer-consistency is satisfies by many common k-clustering

functions. We will also show that average-linkage and complete-linkage are not inner consis-
tent, and therefore they are not consistent. In Lemma 12 of this chapter, we will show that
any linkage-based k-clustering function is outer-consistent.

24

4.2.3 Richness

We propose an extension on Kleinberg’s richness axiom. A k-clustering function satisfies
outer richness if for every finite collection of disjoint domain sets (each with its own distance
function), by setting the distances between the data sets, we can get F to output each of
these data sets as a cluster. This corresponds to the intuition that if groups of points are
moved sufficiently far apart, then they will be placed in separate clusters.

Definition 20 (Outer Richness). For every set of domains, {(X1, d1), . . . (Xn, dn)}, there
exists a distance function d̂ over

⋃n
i=1Xi that extends each of the di’s (for i ≤ n), such that

F (
⋃n
i=1Xi, d̂, n) = {X1, X2, . . . , Xn}.

The corresponding definition of this property using similarities instead of distances re-
quires that there be no within-cluster pairs with 0 similarity, as this would correspond to
infinite distance between these elements which cannot be represented using distances in this
framework.

4.2.4 Refinement Preserving

Recall the definition of a clustering refinement. A clustering C ′ of X is a refinement of a
clustering C of X if every cluster of C is a union of clusters of C ′.

We now introduce our final property, requiring that as the number of clusters increases,
the k-clustering function continues to refine the same clustering.

Definition 21 (Refinement Preserving Functions). A k-clustering function is refinement
preserving if for every 1 ≤ k ≤ k′ ≤ |X|, F (X, d, k′) is a refinement of F (X, d, k).

4.3 Main Result

Our main result specifies properties that uniquely identify linkage-based k-clustering func-
tions.

Theorem 9. A k-clustering function is linkage-based if and only if it is refinement-preserving
and it satisfies: Outer Consistency, Locality and Outer Richness.

We divide the proof into the following two sub-sections (one for each direction of the “if
and only if”).

4.3.1 The Properties Imply that the Function is Linkage-Based

We show that if F satisfies the prescribed properties, then there exists a linkage function
that, plugged into the procedure in the definition of a linkage-based function, will yield the
same output as F (for every input (X, d) and k).

25

Lemma 2. If a k-clustering function F is refinement preserving and it satisfies Outer Con-
sistency, Locality and Outer Richness, then F is linkage-based.

The proof comprises the rest of this section.

Proof. Since F is refinement-preserving, for every 1 ≤ k < |X|, F (X, d, k) can be constructed
from F (X, d, k+ 1) by merging two clusters in F (X, d, k+ 1). It remains to show that there
exists a linkage function that determines which clusters to merge.

Due to the representation independence of F , one can assume w.l.o.g., that the domain
sets over which F is defined are (finite) subsets of the set of natural numbers, N .

Definition 22 (The (pseudo-) partial ordering <F). <F is a binary relation over equiva-
lence classes, with respect to clustering-isomorphism. Two triples are equivalent (A,B, d) ∼=
(A′, B′, d′) if they are isomorphic as clusters, namely, if ({A,B}, d) ∼=C ({A′, B′}, d′). We
denote equivalence classes by square brackets. So, the domain of <F is

{[A,B, d] : A ⊆ N , B ⊆ N , A ∩B = ∅ and d is a distance function over A ∪B}.

We define it by: [(A,B, d)] <F [(A′, B′, d′)] if there exists a distance function d∗ over X =
A ∪B ∪ A′ ∪B′ that extends both d and d′, and there exists k ∈ {2, 3} such that

1. A,B,A′, B′ ∈ F (X, d∗, k + 1)

2. A ∪B ∈ F (X, d∗, k)

3. For all D ∈ {A,B,A′, B′}, either D ⊆ A ∪B or D ∈ F (X, d∗, k).

The definition consists of two cases, one for k = 2 and one for k = 3. If k = 3, then the sets
A,B,A′, B′ are all distinct, F (X, d∗, 4) = {A,B,A′, B′} and F (X, d∗, 3) = {A ∪B,A′, B′}.

If k = 2, then either A = A′, B = B′, A = B′, or B = A′. Without loss of generality,
assume that A = A′. Then F (X, d∗, 3) = {A,B,B′} and F (X, d∗, 2) = {A ∪B,B′}.

Intuitively, (A,B, d) <F (A′, B′, d′), if there is an input for which F creates the clusters
A,B,A′, B′ as members of some clustering F (X, d∗, k + 1), then F (X, d∗, k) merges A with
B (before it merges A′ and B′).

The relation is well defined thanks to the assumption that F is representation indepen-
dent. For the sake of simplifying notation, we will omit the square brackets in the following
discussion.

First, we show that for singleton sets <F respects the input distance function, d.

Lemma 3. For every x, y, x′, y′, such that x 6= y and x′ 6= y′, every value d1(x, y) and
d2(x

′, y′), and every refinement-preserving k-clustering function F that satisfies outer-consistency,
locality, and outer-richness,

({x′}, {y′}, d2) <F ({x}, {y}, d1) if and only if d2(x
′, y′) < d1(x, y).

26

Proof. Consider a data set on 4 points, S = {x, y, x′, y′}. Let b = d1(x, y) and a = d2(x
′, y′)

and where b > a.
By outer richness, there exists a distance function d that extends d1 and d2 so that

F (S, d, 2) = {{x, y}, {x′, y′}}. Since F is outer-consistent, we can assume that d(x, x′) =
d(x, y′) = d(y, x′) = d(y, y′) = D for some large D greater than both a and b. Since F is
refinement preserving it outputs either {{x, y}, {x′}, {y′}} or {{x}, {y}, {x′, y′}} for k = 3.
It follows that either ({x}, {y}, d1) <F ({x′}, {y′}, d2) or ({x′}, {y′}, d2) <F ({x}, {y}, d1).
By way of contradiction, assume that F (S, d, 3) = {{x, y}, {x′}, {y′}}, which would imply
that ({x}, {y}, d1) <F ({x′}, {y′}, d2) while a = d2(x

′, y′) < d1(x, y) = b.
Set c = b/a. Note that c > 1. Let d′ be such that d′(x, y) = b, d′(x′, y′) = cb, d′(p, q) = D

for all other pairs of elements in S. Then d′ is (F (S, d, 3), d)-outer-consistent. Since F
is outer-consistent, F (S, d′, 3) = F (S, d, 3). Next, consider the distance function d′′ so that
d′′(p, q) = (1/c)·d′(p, q) for all p, q ∈ S. Since F is scale invariant, by condition 2 of Definition
15, F (S, d′′, 3) = F (S, d, 3). Finally, let d′′′ be such that d′′′(x′, y′) = b, d′′′(x, y) = a and
d′′′(p, q) = D for all {p, q} 6= {x′, y′}. Note that d′′′ is (F (S, d′′, 3), d′′)-outer-consistent.
Therefore, F (S, d′′′, 3) = F (S, d, 3) = {{x, y}, {x′}, {y′}}. Since d′′′ and d are isomorphic up
to relabelling, F (S, d′′′, 3) should be {{x′, y′}, {x}, {y}} - a contradiction.

To show that <F can be extended to a partial ordering, we first show that it is cycle-free.

Lemma 4. Given a k-clustering function F that is outer-consistent, refinement-preserving,
local and satisfies outer richness, there exists no finite sequence (A1, B1, d1)....(An, Bn, dn),
where n > 2, such that for all 1 ≤ i < n,

1. Ai ∩Bi = ∅,

2. di is a distance function over Ai ∪Bi and

3. (Ai, Bi, di) <F (Ai+1, Bi+1, di+1)

and (A1, B1, d1) = (An, Bn, dn).

Proof. Assume that such a sequence exists. Let Ci = Ai ∪Bi and X =
⋃n
i=1Ci.

Using outer richness, we can construct d̂ from the given set of domains (Ci, di), for all
1 ≤ i ≤ n, that extends all of the distances, such that F (X, d̂, n) = {C1, C2, . . . , Cn}.

Let us consider what happens for F (X, d̂, n + 1). Since F is refinement-preserving, the
(n+ 1)-clustering must split one of the Ci’s. Given 1 ≤ i < n, we will show that you cannot
split Ci without causing a contradiction.

Recall that (Ai, Bi, di) <F (Ai+1, Bi+1, di+1), and thus there exists a distance function d′

over X ′ = Ai∪Bi∪Ai+1∪Bi+1, and k ∈ {2, 3}, such that Ai, Bi, Ai+1, Bi+1 ∈ F (X ′, d′, k+1),
Ai ∪ Bi ∈ F (X ′, d′, k) and for all D ∈ {Ai, Bi, Ai+1, Bi+1}, either D ⊆ Ai ∪ Bi or D ∈
F (X ′, d′, k).

First, we will show that Ci must be split into Ai and Bi. Consider F (Ci, di, 2). Since
(Ai, Bi, di) <F (Ai+1, Bi+1, di+1), we know that F (Ci, di, 2) = {Ai, Bi}, by locality.

27

Now we will show that splitting Ci intoAi andBi violates (Ai, Bi, di) <F (Ai+1, Bi+1, di+1).
Using locality, we focus on the data points in Ci ∪ Ci+1. By locality, for some k ∈ {2, 3},
Ai, Bi ∈ F (Ci ∪ Ci+1, d̂/Ci ∪ Ci+1, k). At this point, the distances defined by d̂ between Ci
and Ci+1 may be different from those defined in d′.

Using outer consistency, we define distance function d̃ over X ′ that is both (F (Ci ∪
Ci+1, d̂/Ci∪Ci+1, k), d̂/Ci∪Ci+1)-outer-consistent and (F (Ci∪Ci+1, d

′, k), d′)-outer-consistent.
First, let m1 = max {d̂(x, y) | x, y ∈ Ci ∪ Ci+1} and let
m2 = max {d′(x, y) | x, y ∈ Ci ∪ Ci+1}. Finally, let m∗ = max {m1,m2}. Now, we defined

d̃ as follows:

d̃(x, y) =

{
d̂(x, y) if x, y ∈ Cior x, y ∈ Ci+1

m∗ otherwise

It is clear that d̃ meets our requirements. By outer consistency, F (Ci ∪ Ci+1, d̃, k) =
F (Ci ∪Ci+1, d̂/Ci ∪Ci+1, k), in which we showed that Ai and Bi are separate clusters. Also
by outer consistency, F (Ci ∪Ci+1, d̃, k) = F (Ci ∪Ci+1, d

′, k), in which Ai and Bi are part of
the same cluster by the ordering <F . Thus, we have a contradiction because Ci 6= Ci+1.

Note that for n = 3, the above Lemma shows antisymmetry of <F .
We make use of the following general result.

Lemma 5. For any cycle-free, anti-symmetric relation P (,) over a finite or countable
domain D there exists an embedding h into R+ so that for all x, y ∈ D, if P (x, y) then
h(x) < h(y).

Proof. First we convert the relation P into a partial order by defining a < b whenever there
exists a sequence x1, . . . , xk so that P (a, x1), P (x2, x3), . . . , P (xk, b). This is a partial ordering
because P is antisymmetric and cycle-free. To map the partial order to the positive reals,
we first enumerate the elements, which can be done because the domain is countable. The
first element is then mapped to any value, φ(x1). By induction, we assume that the first n
elements are mapped in an order preserving manner. Let xi1 . . . xik be all the members of
{x1, . . . , xn} that are below xn+1 in the partial order. Let r1 = max{φ(xi1), . . . , φ(xik}, and
similarly let r2 be the minimum among the images of all the members of {x1, . . . , xk} that
are above xn+1 in the partial order. Finally, let φ(xn+1) be any real number between r1 and
r2. It is easy to see that now φ maps {x1, . . . , xn, xn+1} in a way that respects the partial
order.

Finally, we define our linkage function by embedding the equivalence classes of triples into
the positive real numbers in an order preserving way, as implied by applying Lemma 5 to <F .
Namely, `F : {[(A,B, d)] : A ⊆ N , B ⊆ N , A ∩ B = ∅ and d is a distance function over A ∪
B} → R+ so that [(A,B, d)] <F [(A′, B′, d′)] implies `F [(A,B, d)] < `F [(A,B, d)].

Lemma 6. The function `F is a linkage function for any refinement-preserving function F
that satisfies locality, outer-consistency, and outer richness.

28

Proof. `F satisfies condition 1 of Definition 13 since it is defined on equivalence classes of
isomorphic sets. The function `F satisfies condition 2 of Definition 13 by Lemma 7. By
Lemma 8 `F satisfied condition 3 in Definition 13.

Lemma 7. Consider d1 over X1 ∪ X2 and d2 an ({X1, X2}, d1)-outer-consistent distance
function, then (X1, X2, d2) 6<F (X1, X2, d1) whenever F is refinement-preserving and satisfies
locality, outer-consistency, and outer richness.

Proof. Assume that there exist such d1 and d2 where (X1, X2, d2) <F (X1, X2, d1). Let d3
over X1 ∪X2 be a distance function such that d3 is ({X1, X2}, d1)-outer-consistent and d2 is
({X1, X2}, d3)-outer-consistent.

By outer richness, there exists a distance function d∗ that extends both d1 and d3 over
X∗ = X1 ∪ X2 ∪ X ′1 ∪ X ′2 where (X ′1 ∪ X ′2, d3) ∼ (X1 ∪ X2, d3) and F (X∗, d∗, 2) = {X1 ∪
X2, X

′
1 ∪X ′2}.

Since F (X1 ∪ X2, d1, 2) = {X1, X2}, by locality and outer-consistency, F (X∗, d∗, 3) =
{X1∪X2, X

′
1, X

′
2} or F (X∗, d∗, 3) = {X ′1∪X ′2, X1, X2}. If F (X∗, d∗, 3) = {X1∪X2, X

′
1, X

′
2},

then by applying outer-consistency, we get that (X1, X2, d1) <F (X1, X2, d2), contradicting
the assumption.

So F (X∗, d∗, 3) = {X ′1 ∪ X ′2, X1, X2}. By outer richness, there exists a distance func-
tion d∗∗ that extends both d2 and d3 over X∗ where (X ′1 ∪ X ′2, d3) ∼ (X1 ∪ X2, d3) and
F (X∗, d∗∗, 2) = {X1 ∪ X2, X

′
1 ∪ X ′2}. As before, F (X∗, d∗∗, 3) = {X1 ∪ X2, X

′
1, X

′
2} or

F (X∗, d∗∗, 3) = {X ′1 ∪X ′2, X1, X2}. If F (X∗, d∗∗, 3) = {X1 ∪X2, X
′
1, X

′
2}, then by applying

outer-consistency on F (X∗, d∗, 3), this contradicts that F (X∗, d∗, 3) = {X ′1 ∪X ′2, X1, X2}.
So, F (X∗, d∗∗, 3) = {X ′1 ∪ X ′2, X1, X2}. By outer richness, there exists a distance func-

tion d∗∗∗ over X∗ that extends both d1 and d2 where (X ′1 ∪ X ′2, d2) ∼ (X1 ∪ X2, d2) and
F (X∗, d∗∗∗, 2) = {X1 ∪ X2, X

′
1 ∪ X ′2}. Since (X1, X2, d2) <F (X1, X2, d1), F (X∗, d∗∗∗, 4) =

{X1, X2, X
′
1, X

′
2}. To obtain F (X∗, d∗∗, 3), either X1 and X2 or X ′1 and X ′2 must be merged.

If X1 and X2 are merged, then we contradict (X1, X2, d2) <F (X1, X2, d1), but if X ′1 and X ′2
are merged, then by outer-consistency we contradict F (X∗, d∗∗, 3) = {X ′1 ∪X ′2, X1, X2}.

Lemma 8. The function `F , for any refinement-preserving function F that satisfies locality,
outer-consistency, and outer richness, satisfies condition 3 of Definition 13.

Proof. Let r be in the range of `F . Then there exist data sets (X3, d3) and (X4, d4), X3∩X4 =
∅, and distance d′ over X3 ∪ X4, such that `F (X3, X4, d

′) ≥ r. Let (X1, d1), (X2, d2) be a
pair of data sets as defined above. If {X1, X2} = {X3, X4} then we are done, so assume that
{X1, X2} 6= {X3, X4}.

By outer richness, there exists a distance function d̂ over X =
⋃
Xi that extends

d1, d2, d3, d4 such that F (X, d̂, 4) = {X1, X2, X3, X4}. We define d̃ to be (F (X, d̂, 4), d̂)-
outer-consistent defined as follows:

d̃(x, y) = max {d̂(x, y), d′(x, y)} when x ∈ X3, y ∈ X4 or x ∈ X4, y ∈ X3 and d̃(x, y) =
d̂(x, y) otherwise.

Notice that d̃|X3 ∪X4 is (F (X3 ∪X4, d
′, 2), d′)-outer-consistent. Thus, `F (X3, X4, d̃|X3 ∪

X4) ≥ r.

29

Also by outer richness, there exists a distance function d̂′ overX that extends d1, d2, d̃|X3∪
X4 such that F (X, d̂′, 3) = {X1, X2, X3 ∪ X4}. Using outer consistency, we can find d̃′

that is (F (X, d̃, 4), d̃)-outer-consistent and F (X, d̂′, 3), d̂′)-outer-consistent by just increas-
ing distances between Xi and Xj, where i 6= j and {i, j} 6= {3, 4}. Thus, F (X, d̃′, 4) =
{X1, X2, X3, X4} and F (X, d̃′, 3) = {X1, X2, X3 ∪X4}. Therefore,

`F (X1, X2, d̃
′) > `F (X3, X4, d̃

′) ≥ r.

Lemma 9. Given a clustering function F that is refinement-preserving and satisfies locality,
outer-consistency, and outer richness, the linkage-based clustering that `F defines agrees with
F on any input data set.

Proof. For every (X, d), the linkage-based clustering that `F defines starts with the clusters
consisting of all singletons, and at each step merges two clusters. Thus, for all 2 ≤ k ≤ |X|,
we have a k-clustering C and the k−1 clustering merges some C1, C2 ∈ C, where C1∪C2 = C
or `F (C1, C2) < `F (C3, C4), for all C3, C4 ∈ C, {C3, C4} 6= {C1, C2}. Therefore, for all
2 ≤ k ≤ |X|, (C1, C2, d|(C1 ∪ C2)) <F (C3, C4, d|(C3 ∪ C4)), for all C3, C4 as described, by
our construction of `F . Therefore, F would merge the same clusters to obtain the k − 1
clustering, and so `F agrees with F for any input (X, d) on all k-clusterings, 2 ≤ k ≤ |X|.
Clearly they also agree when k = 1.

This concludes the proof of Lemma 14.

4.3.2 Every Linkage-Based k-Clustering Function Satisfied the Prop-
erties

If a k-clustering function is linkage-based, then by construction it is refinement-preserving.

Lemma 10. Every linkage-based k-clustering function is refinement-preserving.

Proof. For every 1 ≤ k′ ≤ k ≤ |X|, by definition of linkage-based, F (X, d, k) can be con-
structed from F (X, d, k′) by continually merging clusters until k clusters remain.

Lemma 11. Every linkage-based k-clustering function F is local.

Proof. Let k′-clustering C be a subset of F (X, d, k). Let X ′ =
⋃
Ci∈C

Ci.

We will show that for all k′ ≤ i ≤ |X ′|, F (X ′, d|X ′, i) is a subset of F (X, d, j) for
some j. After, we conclude our proof using the following argument: F (X ′, d|X ′, k′) has k′

clusters, F (X ′, d|X ′, k′) is a subset of F (X, d, j) for some j, and since between F (X, d, j)
and F (X, d, k) in the algorithm we cannot merge clusters in C (as C would no longer be

30

a subset of F (X, d, k)), this gives us that F (X ′, d|X ′, k′) is a subset of F (X, d, k) and it is
equal to C.

We prove the result by induction on i = |X ′| . . . k′. The base case follows from the
observation that F (X ′, d|X ′, |X ′|) and F (X, d, |X|) both consist of singleton clusters.

For some i > k′, assume that there exists a j such that F (X ′, d|X ′, i) is a subset of
F (X, d, j). We need to show that there exists a j′ such that F (X ′, d|X ′, i− 1) is a subset of
F (X, d, j′).

Since F is linkage based, there exists a linkage function ` so that when ` is used in the
algorithm in Definition 14, the algorithm yields the same output as F .

Since F (X ′, d|X ′, i) ⊆ F (X, d, j), and C ⊆ F (X, d, k), there exists a j∗ so that F (X, d, j∗)
can be obtained from F (X, d, j∗ + 1) by merging two clusters in ⊆ X ′. The pair of clusters
⊆ X ′ with minimal ` is the same as the pair of clusters with minimal ` value in F (X ′, d|X ′, i).
Therefore, j′ = j∗.

Lemma 12. Every linkage-based k-clustering function F is outer-consistent.

Proof. By the monotonicity condition in Definition 13, whenever two clusters are pulled
further apart from each other, the corresponding ` value does not decrease. Consider some
data set (X, d) and d′ an (F (X, d, k), d)-outer-consistent distance function. We will show that
F (X, d, k) = F (X, d′, k) by induction on k. Clearly, F (X, d, |X|) = F (X, d′, |X|). Assume
that F (X, d, j) = F (X, d′, j) for some j > k. In order to obtain F (X, d′, j−1), F merges the
pair of clusters C ′1, C

′
2 ∈ F (X, d′, j) with minimal ` value. Similarly, to obtain F (X, d, j−1),

F merges the pair C1, C2 ∈ F (X, d, j).
Suppose that {C1, C2} 6= {C ′1, C ′2}. Then `(C ′1, C

′
2, d) ≤ `(C ′1, C

′
2, d
′) < `(C1, C2, d

′) =
`(C1, C2, d), where the first equality follows by monotonicity and the second inequality follows
by the minimality of `(C ′1, C

′
2, d
′). Note that C1, C2 ⊆ Ck, where Ck ∈ F (X, d, k). That

is, C1 and C2 are part of the same cluster in F (X, d, k), and since d′ is (F (X, d, k), d)-
outer-consistent, the equality follows by representation-independence. But `(C ′1, C

′
2, d) <

`(C1, C2, d) contradicts the minimality of `(C1, C2, d), so {C1, C2} = {C ′1, C ′2}.

Lemma 13. Every linkage-based function is outer rich.

Proof. Let (X1, d1), (X2, d2), . . . , (Xn, dn) be some data sets. We will show that there exists
an extension d of d1, d2, . . . , dn so that F (

⋃n
i=1Xi, d, n) = {X1, X2, . . . , Xn}.

To make F give this output, we design d in such a way that for any i, and A,B ⊆ Xi,
and any C ⊆ Xi, and D ⊆ Xj where i 6= j, `(A,B, d) < `(C,D, d).

Let r = maxXi,i∈{1,2},A,B⊆Xi
`(A,B). Since ` satisfies property 4 of Definition 13, for any

C ⊆ Xi, D ⊆ Xj, for i 6= j, there exists a distance function dCD that extends di|C and
dj|D so that `(C,D) > r. Consider constructing such distance function dCD for every pair
C ⊆ Xi and D ⊆ Xj, where i 6= j. Then, let m = maxi 6=j,C⊆Xi,D⊆Xj

maxx∈C,y∈D dCD(x, y).
We define d as follows: d(x, y) = di(x, y) if x, y ∈ Xi for some i and d(x, y) = m otherwise.

Since ` satisfies property 2 of Definition 13, `(C,D) > r for all C ∈ Xi, D ∈ Xj where i 6= j.
On the other hand, `(A,B) ≤ r for any A,B ⊆ Xi for some i. Therefore, the algorithm will

31

not merge any C ⊆ Xi with D ⊆ Xj where i 6= j, while there are any clusters A,B ⊆ Xi for
some i remaining. This gives that F (

⋃n
i=1Xi, d, n) = {X1, X2, . . . , Xn}.

Finally, we put our results together to conclude the main theorem.

Theorem 9 restated A k-clustering function is linkage based if and only if it is refinement-
preserving and it satisfies: Outer Consistency, Locality and Outer Richness.

Proof. By Lemma 2, if a k-clustering function is outer-consistent, refinement-preserving, and
local, then it is linkage-based. By Lemma 10, every linkage-based k-clustering function is
refinement-preserving. By and Lemma 11 every linkage-based k-clustering function is local.
By Lemma 12, every linkage-based k-clustering function is outer-consistent. Finally, by
Lemma 13, every linkage based function satisfies outer richness.

4.4 Relaxations of a Linkage Function and Correspond-

ing Characterizations

4.4.1 Simplified Linkage Function

Our proof also yields some insights about clustering that are defined by looser notions of
linkage functions. We describe the characterization of the class of k-clustering functions that
are based of linkage functions that are not required to obey the conditions of Definition 13.

Definition 23 (Simplified linkage function). A simplified linkage function ` takes a data set
(X, d) and a partition (X1, X2) of the domain X and outputs a real number.

We then define a simplified linkage-based function as in Definition 14, but with a simplified
linkage function instead of the linkage function in Definition 13. This leads to an interesting
characterization of simplified linkage-based functions that satisfy outer-consistency and outer
richness.

Theorem 10. A k-clustering function that satisfies outer-consistency and outer richness is
simplified linkage-based if and only if it refinement-preserving and local.

Proof. Since a linkage function is a simplified linkage function with additional constraints,
by Theorem 2 we get that an outer-consistent, refinement-preserving and local k-clustering
function is simplified linkage-based. The results and proofs of Lemma 10 and Lemma 11 also
apply for simplified linkage functions, thus showing that simplified linkage-based functions
are refinement-preserving and local.

32

4.4.2 General Linkage Function

Unlike linkage-based k-clustering functions defined in Definition 14 or simplified linkage-
based functions, a general linkage-based k-clustering function might use a different linkage
procedure on every data set.

This results from a modification on the definition of a linkage function, allowing the
function to have access to the entire data set, outside the two clusters under comparison.

Definition 24 (General linkage function). A general linkage function is given a data set
(X, d) and A,B ⊆ X, and outputs a real number.

Note that in the above definition, A and B need not partition X. As such, the function
may use information outside of both A and B to determine what value to assign to this
pair of clusters. We define a general linkage-based k-clustering function as in Definition 14,
except using a general linkage function instead of the linkage function in definition 13.

Definition 25 (general linkage-based k-clustering function). A k-clustering function F is
linkage-based if there exists a general linkage function ` so that

• F (X, d, |X|) = {{x} | x ∈ X}

• For 1 ≤ k < |X|, F (X, d, k) is constructed by merging the two clusters in F (X, d, k+1)
that minimize the value of `. Formally,

F (X, d, k) = {Ci | Ci ∈ F (X, d, k + 1), Ci 6= C1, Ci 6= C2} ∪ {C1 ∪ C2},

such that {C1, C2} = argmin{C1,C2}⊆F (X,d,(k+1))`((X, d), C1, C2).

For example, a k-clustering function that uses single-linkage on data sets with an even
number of points, and maximal linkage on data sets with an odd number of points, is not
linkage-based, but it is a general linkage-based k-clustering function. Many other examples
of general linkage-based functions are artificial, and do not correspond to what is commonly
thought of as linkage-based clustering. Yet general linkage-based functions include linkage-
based functions, and are actually easier to characterize.

Theorem 11. A k-clustering function is refinement-preserving if and only if it is a general
linkage-based k-clustering function.

Proof. For every 1 ≤ k ≤ k′ ≤ |X|, by definition of a general linkage-based k-clustering
function, F (X, d, k) can be constructed from F (X, d, k′) by continually merging clusters until
k clusters remain. Therefore, general linkage-based functions are refinement-preserving.

Assume that F refinement-preserving. Then whenever k′ > k, F (X, d, k) can be obtained
from F (X, d, k′) by merging clusters in F (X, d, k′). In particular, F (X, d, k) can be obtained
from F (X, d, k + 1) by merging a pair of clusters in F (X, d, k + 1). It remains to show that
there exists a general linkage function ` that defines which clusters are merged.

33

We now show how to construct the general linkage function. For every (X, d), and for
every k, if F (X, d, k) can be obtained from F (X, d, k+1) by merging clusters A and B, then
set `((X, d), (A,B)) = |X| − k. For the remaining A,B ⊆ X, set `((X, d)(A,B)) = |X|.

Consider the function F ′ resulting from using the general linkage function ` to determine
which pair of clusters to merge, until k clusters remain. Clearly, F ′(X, d, |X|) = F (X, d, |X|).
Assume that F ′(X, d, k+1) = F (X, d, k+1). We show that F ′(X, d, k) = F (X, d, k). Since F ′

is a general linkage based k-clustering function, it merges some clusters C1, C2 ∈ F ′(X, d, k+
1) to obtain F ′(X, d, k). Since F is refinement-preserving, it merges some clusters C3, C4 ∈
F (X, d, k+1) to obtain F (X, d, k), therefore `((X, d)(C3, C4)) = |X|−k. For any {C5, C6} ∈
F (X, d, k) so that {C5, C6} 6= {C3, C4}, either C5 and C6 are merged to obtain F (X, d, k′)
for some k′ < k and so `((X, d)(C5, C6)) = |X| − k′, or C5 and C6 are never merged directly
(they are first merged with other clusters), and so `((X, d)(C5, C6)) = |X|. In either case,
`((X, d)(C3, C4)) < `((X, d)(C5, C6)). Since ` defines F ′, F ′ merges C1, C2 ∈ F ′(X, d, k+1) =
F (X, d, k + 1) to obtain F ′(X, d, k). Therefore, {C1, C2} = {C3, C4} and so F ′(X, d, k) =
F (X, d, k).

34

Chapter 5

A Classification of Partitional
Clustering Methods

Our vision is that ultimately, there would be a sufficiently rich set of properties that
would provide a detailed, property-based, taxonomy of clustering methods, that could, in
turn, be used as guidelines for a wide variety of clustering applications. This chapter takes
a step towards this goal by using natural properties to examine some popular clustering
techniques.

In this chapter, we present a taxonomy for common deterministic k-clustering functions
with respect to the properties that we propose. We also study relationships between proper-
ties, independent of any particular algorithm. We show positive relationships between some
of the properties. In addition, we strengthen Kleinberg’s impossibility result[31] using a
relaxation of one of the properties that he proposed.

5.1 Properties of Clustering Functions

A key component in our approach are properties of k-clustering functions that address the
input-output behavior of these functions. Several of the properties that we use in this chapter
were defined in Chapter 4, namely, locality, consistency, outer-consistency, inner-consistency,
refinement preserving, outer richness, and representation independence.

Order invariance: Order invariance, proposed by Jardine and Sibson[29], describes
clustering functions that are based on the ordering of pairwise distances. That is, it matters
when a distance between a pair of elements is smaller than or larger than another pairwise
distance, but the precise values are not important. Formally, a distance function d′ of X is
an order invariant modification of d over X if for all x1, x2, x3, x4 ∈ X, d(x1, x2) < d(x3, x4)
if and only if d′(x1, x2) < d′(x3, x4).

Definition 26 (Order invariance). A k-clustering function F is order invariant if whenever a
distance function d′ over X is an order invariant modification of d, F (X, d, k) = F (X, d′, k)
for all k.

35

k-Richness: The k-richness property requires that we be able to obtain any partition
of the domain by modifying the distances between elements. This property is based on
Kleinberg’s [31] richness axiom, requiring that for any sets X1, X2, . . . , Xk, there exists a
distance function d over X ′ =

⋃k
i=1Xi so that F (X ′, d) = {X1, X2, . . . , Xk}.

Definition 27 (K-richness). A k-clustering function F satisfies k-richness if for any sets
X1, X2, . . . , Xk, there exists a distance function d over X ′ =

⋃k
i=1Xi so that F (X ′, d, k) =

{X1, X2, . . . , Xk}.

Threshold-richness: Fundamentally, the goal of clustering is to group points that are
close to each other, and to separate points that are far apart. Axioms of clustering need to
represent these objectives and no set of axioms of clustering can be complete without inte-
grating such requirements. Consistency is the only previous property that aims to formalize
these requirements. However, consistency is not satisfied by many common k-clustering
functions.

Definition 28 (Threshold richness). A k-clustering function F is threshold-rich if for every
clustering C of X, there exist real numbers a < b so that for every distance function d
over X where d(x, y) ≤ a for all x ∼C y, and d(x, y) ≥ b for all x 6∼C y, we have that
F (X, d, |C|) = C.

This property is based on Kleinberg’s [31] Γ-forcing property, and is equivalent to the
requirement that for every partition Γ, there exist a < b so that (a, b) is Γ-forcing.

Inner richness: Complementary to outer richness defined in Chapter 4, inner richness
requires that there be a way of setting distances within sets, without modifying distances
between the sets, so that F outputs each set as a cluster. This corresponds to the intuition
that between-cluster distances cannot eliminate any partition of X.

Definition 29 (Inner richness). A k-clustering function F satisfies inner richness if for every
data set (X, d) and clustering C of X, there exists a d̂ where for all x 6∼C y, d̂(x, y) = d(x, y),
and F (X, d̂, k) = C.

5.2 Property-Based Classification of k-Clustering Func-

tions

In this section we present a taxonomy of common k-clustering functions. The taxonomy is
presented in Figure 5.1.

The taxonomy in Figure 5.1 illustrates how clustering algorithms differ from one another.
For example, order-invariance and inner-consistency can be used to distinguish among the
three common linkage-based algorithms. Min-sum differs from k-means and k-medoids in
that it satisfies inner-consistency. Unlike all the other algorithms discussed, the similarity-
based clustering functions are not local. Note also the same results hold for all distance-based
measures if the triangle inequality is required.

36

Function ou
te

r
co

n
si

st
en

t

in
n
er

co
n
si

st
en

t

lo
ca

l

re
fi

n
em

en
t-

p
re

fe
rr

in
g

or
d
er

in
va

ri
an

t

k
-r

ic
h

ou
te

r
ri

ch

in
n
er

ri
ch

th
re

sh
ol

d
ri

ch

sc
al

e
in

va
ri

an
t

re
p
.

in
d
ep

en
d
en

ce

Single Linkage X X X X X X X X X X X
Average Linkage X X X X X X X X X X X

Complete Linkage X X X X X X X X X X X
k-medoids X X X X X X X X X X X
k-means X X X X X X X X X X X
Min sum X X X X X X X X X X X
Ratio cut X X X X X X X X X X X

Normalized cut X X X X X X X X X X X

Figure 5.1: A taxonomy of k-clustering functions, illustrating what properties are satisfied
by some common k-clustering functions.

5.2.1 Properties that could be used as axioms

In Figure 5.1, we show which properties are satisfied by some common clustering methods.
But could any of these properties be clustering axioms?

First, let’s consider what should a set of axioms for clustering satisfy. Usually, when
a set of axioms is proposed for some semantic notion (or a class of objects, say clustering
functions), the aim is to have both soundness and completeness. Soundness means that
every element of the described class satisfies all axioms (so, in particular, soundness implies
consistency of the axioms), and completeness means that every property shared by all objects
of the class is implied by the axioms. Intuitively, ignoring logic subtleties, a set of axioms
is complete for a class of objects if any element outside that class fails at least one of these
axioms.

In our context, there is a major difficulty - there exist no semantic definition of what
clustering is. We wish to use the axioms as a definition of clustering functions, but then
what is the meaning of soundness and completeness? We have to settle for less. While we do
not have a clear definition of what is clustering and what is not, we do have some examples
of functions that should be considered clustering functions, and we can come up with some
examples of partitionings that are clearly not worthy of being called clustering. We replace
soundness by the requirement that all of our axioms are satisfied by all these examples of
common clustering functions (relaxed soundness), and we want that partitioning functions
that are clearly not clusterings fail at least one of our axioms (relaxed completeness).

Our taxonomy reveals that some intuitive properties, which may have been expected of
all k-clustering functions, are not satisfied by some common k-clustering functions, and so

37

soundness is failed. For example, locality is not satisfied by the similarity-based clustering
functions ratio-cut and normalized-cut. Also, most functions fail inner consistency, and
therefore do not satisfy consistency, even though the latter was previously proposed as an
axiom of clustering functions [31].

On the other hand, representation independence, scale invariance, and all richness prop-
erties (in the setting where the number of clusters, k, is a part of the input), are satisfied
by all the k-clustering functions considered. It seems that representation independence and
scale-invariance make for natural axioms. Threshold richness is the only one that is both
satisfied by all k-clustering functions considered and reflects the main objective of clustering:
to group points that are close together and to separate points that are far apart.

Threshold richness directly implies k-richness. In Section 5.3, we show that when thresh-
old richness is combined with scale invariance, it also implies outer-richness and inner-
richness. Therefore, scale-invariance, representation independence, and threshold richness
are sound and as such, are candidate clustering axioms.

However, we emphasize that the set of axioms consisting of these three properties fails
relaxed completeness. These three properties do not make a complete set of axioms for
clustering, since some functions that satisfy all three properties do not make reasonable
k-clustering functions; a function that satisfies representation independence and scale invari-
ance can also satisfy threshold richness by behaving reasonably only when there are clusters
that are very well separated, while producing poor partitions of other data.

Therefore, we are not proposing here a complete set of axioms of clustering. Instead, we
identified three properties that are both natural, and are satisfied by all clustering functions
that we analysed. It is therefore possible that these properties combined with some other
properties may yield a complete set of axioms of clustering.

5.2.2 Taxonomy Proofs

We now prove the results presented in Table 5.1
We say that a clustering function F depends on within-cluster distances if there exists a

function g : (X, d) → R+ so that for any data set (X, d) and 1 ≤ k ≤ |X|, , F (X, d, k) =
minC of X

∑
Ci∈C g(Ci, d|Ci). Note that k-means, k-median, min-sum, and all centroid-based

clustering functions depends on within-clusters distances.

Theorem 12. If a clustering function F depend on within-cluster distances, then it is local.

Proof. Consider any data set X and 1 ≤ k′ ≤ k ≤ |X|. Let C = F (X, d, k). Let k′-clustering
C ′ be a subset of C. Let S ⊆ X be a union of all the clusters in C ′. Assume by way of
contradiction that there exists a clustering C ′′ of S with lower loss than C ′.

Then we can obtain a k-clustering of X with lower loss than C by clustering X ∩S using
C ′′ instead of C ′. Since F (X, d, k) has minimal loss over all k-clusterings of X, this is a
contradiction.

In the above definition of the function g, we could require the following consider the
following natural monotonicity property: Given any data sets distance function d and d′ over

38

Figure 5.2: A data set used to illustrate that Ratio-Cut does not satisfy locality.

a domain set X, if d′(x, y) ≥ d(x, y) for all x, y ∈ X, then g(X, d′) ≥ g(X, d). This means
that we cannot decrease the cost of a cluster by increasing some of its edges. If F (X, d, k) =
minC of X

∑
Ci∈C g(Ci, d|Ci) for a monotone function g, then we say that F depends on within-

cluster distances monotonically. Note that k-means, k-median, min-sum, and all centroid-
based clustering functions all depend on within-clusters distances monotonically.

Theorem 13. If a clustering function F depend on within-cluster distances monotonically,
then it is outer-consistent.

Proof. By way of contradiction, assume that there exists a data set (X, d), k ∈ Z+ and
d′ a (F (X, d, k), d)-outer-consistent distance function, so that F (X, d, k) 6= F (X, d′, k). Let
C = F (X, d, k) and C ′ = F (X, d′, k). Since d′ is (C, d)-outer-consistent and F depends on
within-cluster distances, C has the same loss on (X, d) and (X, d′). As F (X, d′, k) 6= C,
C ′ has lower loss than C on (X, d′). Now consider clustering (X, d) with C ′. Since d′ is
(C, d)-outer-consistent, for all x, y ∈ X, d(x, y) ≤ d′(x, y). Since F depend on within-cluster
distances monotonically, this implies that the cost of every cluster in C ′ on (X, d) is no larger
than the cost of that cluster in (X, d′). It follows that the loss of C ′ on (X, d) is at most the
loss of C ′ on (X, d′). However, since C = F (X, d), the minimal loss clustering on (X, d) is
C, contradiction.

Kleinberg showed that centroid-based clustering functions are not consistent (Theorem
4.1, [31]). Indeed, his proof shows that centroid-based clustering functions are not inner-
consistent. The same argument also shows that k-means is not inner-consistent.

Theorem 14. Ratio-Cut is not local.

Proof. Figure 5.2 illustrates a data set (with the similarity indicated on the arrows) where
the optimal ratio-cut 3-clustering is {{A}, {B,C}, {D}}. However, on data set {B,C,D}
(with the same pairwise similarities as in Figure 5.2), the clustering {{B}, {C,D}} has lower
ratio-cut than {{B,C}, {D}}.

Theorem 15. Normalized-Cut is not local.

Proof. Figure 5.3 illustrates a data set with the similarities indicated on the arrows - a miss-
ing arrow indicates a similarity of 0. The optimal normalized-cut 3-clustering is

39

Figure 5.3: A data set used to illustrate that Ratio-Cut does not satisfy locality.

{{A,A′}, {B,B′, C, C ′}, {D,D′}}. However, on data set {B,B′, C, C ′, D,D′} (with the same
pairwise similarity as in Figure 5.3), the clustering {{B,B′}, {C,C ′, D,D′}} has lower nor-
malized cut than {{B,B′, C, C ′}, {D,D′}}.

We now prove that inner consistency distinguished between ratio cut and normalized cut.

Theorem 16. Ratio-cut is inner-consistent.

Proof. Let F denote the Ratio-cut clustering function. Assume by way of contradiction that
ratio-cut is not inner-consistent. Then there exist some (X, s), k, and d′ an (F (X, d, k), s)-
inner-consistent distance function so that F (X, s′, k) 6= F (X, s, k). Let C = F (X, s, k) and
C ′ = F (X, d, k).

Then RatioCut(C ′, (X, d′)) < RatioCut(C, (X, d)).
Now consider clustering C ′ on (X, s). The ratio-cut of C ′ on (X, d) is at most the ratio-

cut of C ′ on (X, s′) since going from s′ to s can only decrease similarities, which can only
decrease the ratio-cut. That is, RatioCut(C ′, (X, s)) ≤ RatioCut(C ′, (X, s′)). Therefore,
RatioCut(C ′, (X, s)) ≤ RatioCut(C ′, (X, s′)) < RatioCut(C, (X, s)), which contradicts that
F (X, s, k) = C 6= C ′.

Theorem 17. Normalized-cut is not inner-consistent.

Proof. Let F denote the Normalized-cut clustering function. Consider the data set (X, d)
in Figure 5.4. For k = 3, F (X, d, 3) = {{A,C}, {B,D}, {E,F,G,H}}. Define a distance
function d′ over X so that d′(E,F) = d′(G,H) = 100, and d′(x, y) = d(x, y) for all {x, y} 6=
{E,F}, {x, y} 6= {G,H}. Then d′ is a (F (X, d, 3), d), d)-inner consistent change, however,
F (X, d′, 3) = {{A,B,C,D}}. But then F (X, d′, 3) 6= F (X, d, 3), violating inner-consistency.

Lemma 14. Ratio cut satisfies inner-richness.

Proof. Consider any data set (X, s) and partitioning {C1, C2, . . . , Cn} of s. Let m =
maxi 6=j,a∈Ci,b∈Cj

s(a, b). Construct s′ as follows: for all i 6= j, a ∈ Ci, b ∈ Cj, set s′(a, b) =
s(a, b). Otherwise, set s(a, b) = m|X|3 + 1. The ratio cut loss of {C1, C2, . . . , Cn} on (X, s′)
is less than m|X|2, and any other n-clustering of (X, s′) has loss greater than m|X|2.

40

Figure 5.4: A data set used to illustrate that normalized cut does not satisfy inner-
consistency. The similarities not marked are set to 0.

Lemma 15. Normalized cut satisfies inner-richness.

Proof. We can modify the within edges to make the normalized cut of the clustering
{C1, C2, . . . , Ck} arbitrarily close to 0, making all within edges equal. The cost of any

other clustering would have an edge (x, y) so that x, y ∈ Ci for some i, and so the cost of any
such clustering is arbitrarily greater than the cost of {C1, C2, . . . , Ck} (in particular, great
than 1/m where m is the number of edges).

Lemma 16. Average linkage and complete linkage are not inner consistent.

Proof. We present here a counter example for both. Let X = {A,B,C,D} and define
distance d over X as follows: d(A,B) = 1 + ε, d(A,C) = 1 − 3.5ε, d(A,D) = 1, d(B,C) =
1− 4ε, d(B,D) = 1− ε and d(C,D) = 1− 2ε.

For sufficiently small epsilon, all individual lengths are approximately 1, but the sum
of any path between two points in X is approximately 2 or more. For both average and
complete linkage, B and C are merged first, followed by (B,C) and D. If we make an inner
consistent change, and set d(B,D) = 1− 5ε, then B and D are merged first, followed by A
and C.

Lemma 17. Min-sum is inner consistent.

Proof. Given a data set (X, d), minsum yields a clustering C∗ of X. Assume, by means of
contradiction, that shrinking some within cluster edges yields a different clustering as the
output to minsum, and denote this clustering by C ′. Let the sum of all differences over the
edges we shrunk be denoted by α, and the new distance function be denoted by d′. Define
cost(C, d) =

∑
x∼Cy

d(x, y). The difference between cost(C ′, d′) and cost(C ′, d) is at most α.
So, cost(C ′, d′) >= cost(C ′, d) − α > cost(C∗, d) − alpha = cost(C∗, d′), since C∗ had the
minimum cost with distance function d.

Lemma 18. Normalized cut and ratio cut are not outer consistent.

Proof. We present a simple counter example. Let X = {a, b, c, d} and define similar-
ity function d over X as follows: d(a, b) = 1, d(a, d) = 0.999, d(b, c) = 1.0015, d(c, d) =
1.001, d(a, c) = 0 and d(b, d) = 0. With this arrangement, using ratio cut we arrive at the
3-clustering a, d, {b, c}. If we change the similarity between a and b to 0.997, which is an
outer consistent change because we are dealing with similarities, then we arrive at the 3-
clustering a, b, {c, d}. Therefore, ratio cut is not outer consistent. The same example works
for normalized cut, except that we create points xa, xb, xc, xd such that d(xi, i) = 100 and
the similarity between xi and every other point is 0.

41

The linkage-based algorithms single-linkage, average-linkage, and complete linkage are
local, outer-consistent, outer-rich, and refinement-preserving as show in Chapter 4. Single
linkage is inner-consistent since by Kleinberg’s Theorem 2.2(a) single-linkage is consistent.
Refinement-preserving is a property specific to linkage-based algorithms, and it is easy to
see that the remaining methods do not satisfy it.

Single linkage and complete linkage are order invariant since the algorithms make use
only of relative distances according to the less-than relation. All other clustering functions
that we classify make use of the exact values in the distance function, and it can be shown
that those functions are not order invariant by demonstrating data sets with order invariant
modifications of those data sets on which the output of the clustering functions differ.

Threshold richness for all clustering functions is achieved by making the ratio of the
maximum between edges and minimum within edges sufficiently large. It follows immediately
that these methods also satisfy k-richness. By Theorem 18 and Theorem 19 it also follows
that the clustering functions satisfy inner-richness and outer-richness.

5.3 Relationships Between Properties

We now present several relationships between the properties discussed above. These relation-
ships help in the analysis of clustering algorithms, in addition to providing a better general
understanding of the properties themselves. Many properties are independent, as shown in
our Taxonomy.

5.3.1 Relationships Between Richness Properties

Richness is the weakest of the richness properties, implied by all the other richness variants.
For functions that satisfy scale-invariance, threshold-richness implies outer-richness.

Theorem 18. If a clustering function F is scale-invariant and threshold-rich then it is also
outer-rich.

Proof. Consider any data sets (X1, d1), . . . , (Xk, dk). LetX = ∪ki=1Xi and C = {X1, . . . , Xk}.
Scale (Xi, di), for every 1 ≤ i ≤ k by the same positive scalar c so that the longest edge
over all the di’s is less than a (from the definition of threshold richness). Formally, let
m = maxi 6=j,x∈Xi,y∈Xj

d(x, y). If m = 0, then C consists of k singletons and so F (X, d, k) = C
for any d. Otherwise, for every 1 ≤ i ≤ k, let d′i be such that d′i(x, y) = a

m
d(x, y). Then,

let d∗ over X be a distance function that extends X ′i for every 1 ≤ i ≤ k, and for every
x ∈ Xi, y ∈ Xj where i 6= j, d∗(x, y) ≥ b (for concreteness, we can set d∗(x, y) = b). Since
F is threshold-rich, F (X, d∗, k) = C. Now, let d∗∗ be a distance function over X so that,
for all x, y ∈ X, d∗∗(x, y) = m

a
d∗(x, y). Then d∗∗ extends Xi for every 1 ≤ i ≤ k. Since F is

scale-invariant, F (X, d∗∗, k) = F (X, d∗, k) = C.

Similarly, we show that scale invariant functions that are threshold-rich also satisfy inner-
richness.

42

Theorem 19. If a clustering function F is scale-invariant and threshold-rich then it is also
inner-rich.

Proof. Given any (X, d), any partition C of X, and any d over X, we need to show that there
exists a d̂ where for all x 6∼C y, d̂(x, y) = d(x, y), and F (X, d̂, k) = C. To do so, we create d′

by setting all within-cluster distances in C to a from the definition from threshold richness,
and for x 6∼C y, set d′(x, y) = c · d(x, y) > b, where b is from the definition of threshold
richness and c is a large enough constant so that cd(x, y) > b for all x 6∼C y. Since F satisfies
threshold richness, it follows that F (X, d′) = C. Next, scale d′ by 1

c
to obtain d̂. Since F is

scale invariant, F (X, d̂) = C, and for all x 6∼C y, d̂(x, y) = d(x, y) by construction.

On the other hand, outer-richness (even with scale-invariance) does not imply threshold-
richness. However, for consistent clustering functions, richness implies threshold-richness,
and therefore outer-richness implies threshold-richness.

Theorem 20. If a clustering function F is rich and consistent, then it is also threshold-rich.

Proof. Let C = {X1, . . . , Xk} be some clustering of data set X = ∪ki=1Xi. Since F is outer-
rich, there exists a distance function d over X that extends Xi for every 1 ≤ i ≤ k, where
F (X, d, k) = C. Let d′ be a (C, d)-outer consistent change so that maxx∼Cy d(x, y) = a <
minx 6∼C

y = b. Since F is consistent, F (X, d′) = C. Let d∗ be any distance function over
X where for all x ∼C y, d∗(x, y) ≤ a for all x 6∼C y, d∗(x, y) ≥ b. Then d∗ is a consistent
change of d′, and since F is consistent, F (d∗, X, k) = C.

5.3.2 Relationships Between Consistency and Richness Properties

Lemma 19. If a clustering function F is scale-invariant, outer-rich and outer-consistent
then it is also inner-rich.

Proof. Consider any data set (X, d) and partition {X1, X2, . . . , Xn} of X. Let di = d|Xi.
Since F is satisfies outer-richness, there exists a distance function d′ that extends d1, d2, . . . , dn
and F (X, d′, n) = {X1, X2, . . . , Xn}. Let m = maxi 6=j,a∈Xi,b∈Xj

d′(a,b)
d(a,b)

.

We now construct a distance function d̂ that is (F (X, d′, n), d′)-outer-consistent such that
d̂(a, b) = m ·d(a, b) ≥ d′(a, b), for all a ∈ Xi, b ∈ Xj, i 6= j. This is possible because d′(a, b) ≤
m · d(a, b) by our definition of m. Therefore, F (X, d̂, n) = F (X, d′, n). Now, by applying

scale invariance we construct d̃ such that d̃(a, b) = d̂(a,b)
m

and we have F (X, d̃, n) = F (X, d′, n)

and for all a ∈ Xi, b ∈ Xj, i 6= j we have d̃(a, b) = d(a, b).

Lemma 20. If a function F is scale-invariant, inner-rich, and inner-consistent then it is
also outer-rich.

Proof. Consider any (X1, d1), . . . , (Xn, dk). By inner richness, there exists some distance
function d so that F (X, d) = {X1, . . . , Xk}, although d does not necessarily extend any of
the dis.

43

Let m be the length of the minimum within-cluster distance in F (X, d). Construct d′

by shrinking all within-cluster distances to be smaller than m, so that for all 1 ≤ i ≤ k,
d′|Xi = c · di for some constant c. Then F (d, 1

c
· d′) = {X1, . . . , Xk} by inner consistency and

scale-invariance, and for all 1 ≤ i ≤ k, d′ extends di.

Corollary 1. A consistent and scale-invariant clustering function F is outer-rich if and
only if it is inner-rich.

5.4 Impossibility Results

We strengthen Kleinberg’s famous impossibility result [31] for clustering functions (which
does not take the number of clusters as part of its input), yielding a substantially simpler
proof of the original result.

Kleinberg impossibility theorem (Theorem 2.1, [31]) was that no clustering function can
simultaneously satisfy scale-invariance, richness, and consistency. As shown in Chapter 3,
consistency has some counter intuitive consequences. In Section 5.1, we showed that many
natural clustering functions fail inner-consistency1, which implies that there are many general
clustering functions that fail consistency.

On the other hand, many natural algorithms satisfy outer-consistency. We strengthen
Kleinberg’s impossibility result by relaxing consistency to outer-consistency.

Theorem 21. No clustering function can simultaneously satisfy outer-consistency, scale-
invariance, and richness.

Proof. Let F be any clustering function that satisfies outer-consistency, scale-invariance and
richness.

Let X be some domain set with two or more elements. By richness, there exist distance
functions d1 and d2 such that F (X, d1) is the clustering where every domain point is a cluster
on its own and F (X, d2) is some different clustering, C = {C1, . . . , Ck} of X.

Let r = max{d1(x, y) : x, y ∈ X} and let c be such that for every x 6= y, cd2(x, y) ≥ r.
Define d̂(x, y) = c · d2(x, y), for every x, y ∈ X. Note that d̂(x, y) ≥ d1(x, y) for all x, y ∈ X.
By outer-consistency, F (X, d̂) = F (X, d1). However, by scale-invariance F (X, d̂) = F (X, d2).
This is a contradiction since F (X, d1) and F (X, d2) are different clusterings.

A similar result is obtained with inner-consistency replacing outer consistency. Namely,

Lemma 21. No clustering function can simultaneously satisfy inner-consistency, scale-
invariance, and richness.

Proof. Let F be any clustering function that satisfies inner-consistency, scale-invariance and
richness.

1Note that a k-clustering function and it’s corresponding clustering function satisfy the same set of
consistency properties.

44

Let X be some domain set with two or more elements. By richness, there exist distance
functions d1 and d2 such that F (X, d1) is the clustering that puts all elements in the same
cluster and F (X, d2) is some different clustering of X.

Let r = min{d1(x, y) : x, y ∈ X} and let c be such that for every x 6= y, c · d2(x, y) ≤ r.
Define d̂(x, y) = c·d2(x, y), for every x, y ∈ X. Then by scale-invariance, F (X, d̂) = F (X, d2).
But by inner-consistency, F (X, d̂) = F (X, d1) 6= F (X, d2).

Since consistency implies both outer-consistency and inner-consistency, Kleinberg’s orig-
inal result follows from Theorem 21.

Kleinberg’s impossibility result illustrates property trade-offs for general clustering func-
tions. The good news is that these results do not apply when the number of clusters is
part of the input, as is illustrated in our taxonomy; single linkage satisfies scale-invariance,
consistency and richness.

45

Chapter 6

Clustering Oligarchies

Can the output of an algorithm be radically altered by the addition of a small, possibly
adversarial, set of points? We use the term oligarchies to describe such sets of “influential”
points. At first glance, it appears that all clustering methods are susceptible to oligarchies.
Even k-means can substantially change its output upon the addition of a small set; if a data
set has multiple structurally distinct solutions with near-optimal loss, then even a single point
can radically alter the resulting partition. However, a more interesting picture emerges when
considering how algorithms behave on well-clusterable data1.

Examining their behavior on data that is well-clusterable, we find that some clustering
methods exhibit a high degree of robustness to oligarchies; even small sets chosen in an adver-
sarial manner have very limited influence on the output of these algorithms. These methods
include k-means, k-medians, and k-medoids, as well the popular Lloyd’s method with ran-
dom center initialization. We perform a quantitative analysis of these techniques, showing
precisely how clusterability effects their robustness to small sets. Our results demonstrate
that the more clusterable a data set, the greater its robustness to the influence of potential
oligarchies.

Other well-known methods admit oligarchies even on data that is highly clusterable. We
prove that common linkage-based algorithms, including the popular average-linkage, exhibit
this behavior. Several well-known objective-function-based methods, as well Lloyd’s method
initialized with pairwise distant centers, also fall within this category. More generality, we
prove that all methods that detect clusterings satisfying a natural separability criteria, admit
oligarchies even when the original data is well-clusterable.

Given the same well-clusterable input, algorithms that admit oligarchies can produce
very different outputs from algorithms that prohibit them. For example, consider the data
set displayed in Figure 6.1(a) and set the number of clusters, k, to 3. All algorithms that
we considered, both those that admit and those that prohibit oligarchies, cluster this data
as shown in Figure 6.1(a). As illustrated in Figure 6.1(b), when a small number of points

1Notice that the behavior of a clustering algorithm is often less important to the user when data is
inherently un-clusterable.

46

is added, algorithms that prohibit oligarchies (eg. k-means) partition the original data in
the same way as they did before the small set was introduced. In contrast, algorithms that
admit oligarchies (eg. average-linkage) yield a radically different partition of the original
data after the small set is added, as shown in Figure 6.1(c).

(a) A clustering produced by
all clustering methods consid-
ered here

(b) A clustering produced
by methods that prohibit
oligarchies after a small number
of points is added.

(c) A clustering produced by
methods that admit oligarchies
after the same small set is
added.

Figure 6.1: An illustration of the contrasting input-output behaviour of algorithms that
prohibit oligarchies with those that admit them.

For some clustering applications, algorithms that prohibit oligarchies are preferred. This
occurs, for example, when some of the data may be faulty. This may be the case in fields
such as cognitive science and psychology, when analyzing subject-reported data. In such
cases, an algorithm that is heavily influenced by a small number of elements is inappropriate
since the resulting clustering may be an artifact of faulty data. Algorithms that prohibit
oligarchies may also be preferable when the data is entirely reliable, but clusters are expected
to be roughly balanced (in terms of the number of points). Consider, for example, the use
of clustering for identifying marketing target groups. Since target groups are typically large,
no small set of individuals should have radical influence on how the data is partitioned.

However, there are applications that call for algorithms that admit oligarchies. Consider
the task of positioning a predetermined number of fire stations within a new district. To
ensure that the stations can quickly reach all households in the district, we may require that
the maximum distance of any household to a station be minimized. If follows that a small
number of houses can significantly effect on the resulting clustering.

The chapter is organized as follows. We begin with a summary of related previous work
followed by an introduction of our formal framework. In Section 6.2, we present a summary
of our main results, contrasting the manner in which different algorithms treat oligarchies.
In Section 6.3 and Section 6.4 we provide a quantitative analysis of the extent to which some
popular clustering methods are robust to potential oligarchies.

6.1 Definitions

The diameter of a set (X, d) is maxx,y∈X d(x, y). Throughout this chapter, we assume the
diameter of a set is at most 1. The diameter of a clustering C is the maximal diameter of a
cluster in C.

47

The Hamming distance between clusterings C and C ′ of the same set X is defined by

∆(C1, C2) = |{{x, y} ⊂ X | (x ∼C y)⊕ (x ∼C′ y)}|/
(
|X|
2

)
,

where ⊕ denotes the logical XOR operation. For sets X,Z such that X ⊆ Z and a clustering
C of Z, C|X denotes the restriction of C to X, thus if C = {C1, . . . , Ck}, then C|X =
{C1 ∩X, . . . , Ck ∩X}.

Algorithms typically accept the number of desired clusters as a parameter. In that case
we denote the output clustering by F (X, k). k is sometimes omitted when it is clear from
context.

In this chapter we consider the robustness of sets to a small number of points. This is
quantified by the following definition. Consider a data set X and a (typically large) subset
Y , where the set O = X \ Y is a potential oligarchy. The set Y is robust to the potential
oligarchy O relative to a clustering function, if Y is clustered similarly with and without the
points in O.

Definition 30 (δ-Robust). Given data sets X, Y and O, where X = Y ∪O, Y is δ-robust
to O with respect to a clustering function F , if

∆(F (Y), F (X)|Y) ≤ δ.

When the algorithm requires the number of clusters k as part of the input, we say that Y
is δ-robust to O with respect to a clustering function F and k, if ∆(F (Y, k), F (X, k)|Y) ≤ δ.
When k is clear from context, we write that Y is δ-robust to O with respect to a clustering
function F .

A small δ indicates a robust subset, meaning that the data within that subset determines
how it is clustered (to a large extent). For example, if δ = 0, then how the subset is clustered
is entirely determined by the data within that subset. On the other hand, large values of
δ represent a subset that is volatile to oligarchy O, where data outside of this subset have
substantial influence on how data within this subset are partitioned. Note that δ ranges
between 0 and 1.

For a randomized algorithm F we define probabilistic robustness as follows:

Definition 31 (Probabilistically δ-Robust). Let F be a randomized clustering function.
Given data sets X, Y , and O where X = Y ∪O, Y is δ-robust to O with respect to F with
probability 1− ε, if with probability 1− ε over the randomization of F ,

∆(F (Y), F (X)|Y) ≤ δ.

As our results will show, the robustness of a dataset is affected by whether it is well-
clusterable, as captured in the following definition, based on a notion by Epter et al. [21].

Definition 32 (α-Separable). A clustering C of X is α-separable for α ≥ 0 if for any
x1, x2, x3, x4 ∈ X such that x1 ∼C x2 and x3 �C x4, αd(x1, x2) < d(x3, x4).

48

If an algorithm contains an α-separable clustering for some large α (such as α ≥ 1),
then it is well-clusterable. We define a balanced clustering based on the balance of cluster
cardinalities.

Definition 33 (β-Balanced). A clustering C = {C1, . . . , Ck} of X is β-balanced if |Ci| ≤
β|X| for all 1 ≤ i ≤ k.

Note that 1
k
≤ β ≤ 1 and that β = 1

k
for a perfectly balanced clustering.

6.2 Main Results

We demonstrate radical differences in the behaviour of clustering algorithms under the addi-
tion of a small number of elements. Using some clustering methods, clusterable subsets are
robust to the influence of small sets. That is, small sets have little effect on how clusterable
data is partitioned. In contrast, there are common clustering techniques in which arbitrarily
well-clusterable sets admit oligarchies. That is, a small proportion of the data can have a
crucial effect on the resulting clustering.

The k-means, k-medians and k-medoids objective functions fall in the former category.
Our first main result shows that the robustness of a set to potential oligarchies with respect
to these objective functions is proportional to its size and degree of clusterability.

In the following theorem, we consider a data set X, a typically large subset Y ⊂ X, and
O = X \ Y representing a potential oligarchy. The set Y is α-separable and β-balanced –
this quantifies its degree of clusterability. Theorem 22 bounds the robustness of Y in terms
of its degree of clusterability and diameter, and the relationship between its size and the size
of the potential oligarchy. The theorem shows that the larger and more clusterable a subset,
the more robust it is to the influence of small sets.

Theorem 22. Let F be one of k-means, k-medians or k-medoids. Let p = 2 if F is k-means
and p = 1 otherwise. Consider data sets X, Y , and O where X = Y ∪ O and the set Y
has an α-separable, β-balanced k-clustering of diameter s, for some α > 0, β ∈ [1

k
, 1] and

s ∈ (0, 1]. Then Y is δ-robust to O with respect to F for

δ ≤ 4p
αp (1 + |O|

|Y |sp) + 2k · β2.

The proof appears in Section 6.3.
To see the implications of this theorem, suppose β = c/k where c ≥ 1 is a small constant,

so that the cluster sizes are fairly balanced in C. Fix s, d and α, and assume α � 4p. In
that case, if the size of the potential oligarchy is small, |O| � |Y |, then the robustness of Y
is bounded by approximately 2c2/k.

Note that Theorem 22 applies when some of the data in O is located within the convex
hull of Y , which can be thought of as noise within Y . This effectively relaxes the clusterability
condition on the region containing Y , allowing some data to lie between the well-separated
clusters. Finally, note also that even if Y has a very small diameter, if it sufficiently large
and clusterable, then it is robust to the influence of small sets.

49

In contrast to k-means and similar objective functions, we show that many clustering
techniques do not have a property such as Theorem 22 in a strong sense. We show that algo-
rithms that detect α-separable clusterings, for a large enough α, admit oligarchies. Formally,
we define this property of being α-separability detecting as follows.2

Definition 34 (α-Separability Detecting). A clustering function F is α-separability-detecting
for α ≥ 1, if for all X and all 2 ≤ k ≤ |X|, if there exists an α-separable k-clustering C of
X, then F (X, k) = C.

In other words, whenever there is a clustering of the full data that consists of well-
separated clusters, then this clustering is produced by the algorithm.

The above property is satisfied by many well-known clustering methods. In Section 6.4,
we show that the linkage-based algorithms single-linkage, average-linkage, and complete-
linkage, and the min-diameter objective functions, are all 1-separability detecting, and the
k-center objective function is 2-separability-detecting.

The following Theorem demonstrates a sharp contrast between the behaviour of k-means
(and similar objectives) as captured in Theorem 22 and algorithms that are α-separability
detecting. It shows that for any desired level of clusterability, there exists a data set X with
a subset Y ⊂ X and O = X \ Y , such that Y is highly clusterable, the set O representing
an oligarchy contains as little as k − 1 points, and yet Y is poorly robust to O with respect
to these algorithms – thus Y is volatile to the influence of the oligarchy O.

Theorem 23. Let F be an clustering function that is α-separability detecting for some α ≥ 1.
Then for any β ∈ [1/k, 1], s ∈ [0, 1

α+1
) and any integer m ≥ k − 1, there exist data sets X,

Y , and O where X = Y ∪O, the set O contains at most m elements, Y has an α-separable,
β-balanced k-clustering with diameter s, and yet Y is not even β(k − 1)-robust to O with
respect to F .

The proof appears in Section 6.4.
For example, if β = 1

k
, then the robustness of Y to O is at least k−1

k
, which approaches

1 as k grows. Recall that 1 is the worst possible robustness score. We emphasize that the
oligarchy O can contain as few as k − 1 elements, showing that α-separability detecting
algorithms are highly volatile to the influence of constant size sets.

Lastly, the behaviour of Lloyd’s method depends on the method of initialization. The
furthest-centroid initialization method deterministically selects a set of pairwise distant cen-
ters. We show that this algorithm is 1-separability detecting, implying that it admits oli-
garchies (see Section 6.4). In contrast, in Section 6.3 we discuss a result by Sivan Sabato
in a co-authored paper, where it was shown that Lloyd’s method with random initialization
behaves similarly to the k-means objective function, whereby well-clusterable sets are robust
to the influence of a small number of elements.

2Note that for α ≥ 1, the α-separable k-clustering of any given data set is unique, if it exists.

50

6.3 Methods that Prohibit Oligarchies

In this section, we study clustering methods that are robust to the influence of a small number
of elements when the data is well-clusterable. We distinguish between clustering objective
functions and practical clustering algorithms, providing bounds for both popular objective
functions, such as k-means, k-medians and k-medoids, and for Lloyd’s method with random
center initialization, a popular heuristic for finding clusterings with low k-means loss.

For this section we assume that the data lays in a normed space E, with d(x, y) = ‖x−y‖
for any x, y ∈ E.

6.3.1 k-means, k-medians and k-medoids

Recall that k-means and k-medians find the clustering C = {C1, . . . , Ck} that minimizes the
relevant cost denoted by costp(C) =

∑
i∈[k] minci∈E{

∑
x∈Ci
‖x − ci‖p}, where the k-means

cost is cost2 and the k-medians cost is cost1. The k-medoids cost relies on cluster centers
selected from the input set, costm(C) =

∑
i∈[k] minci∈Ci

{
∑

x∈Ci
‖x− ci‖}.

We work towards proving Theorem 22 by first showing that if the optimal clustering
of a subset is relatively stable in terms of cost, then the subset is robust. Some stability
assumption is necessary, since if there are two very different clusterings for the data set which
have very similar costs, then even a single additional point might flip the balance between
the two clusterings. We use the following notion of a cost-optimal clustering (which bears
similarity to a notion by Balcan et al. [8]).

Definition 35 ((δ, c)-cost-optimal). A clustering C of X is (δ, c)-cost-optimal with respect
to a cost function cost if for all clusterings C ′ of X for which cost(C ′) ≤ cost(C) + c,
∆(C,C ′) ≤ δ.

In Lemma 24, we demonstrate the existence of (δ, c)-cost-optimal clustering, see the
discussion below Lemma 24 for details. In addition, Meila [36] shows that clusterings that
are good in terms of their k-means cost are also structurally similar to the optimal solution,
using misclassification error for distance between clusterings.

Lemma 22. Let F be one of k-means, k-medians or k-medoids. Consider data sets X
and Y ⊆ X. If there exists a (δ, |X \ Y |)-cost-optimal clustering of Y relative to the cost
associated with F , then Y is 2δ-robust in X with respect to F .

Proof. Let C = {C1, . . . , Ck} be the assumed cost-optimal clustering of Y . Let cost be
the cost associated with F . Let p = 2 if F is k-means and p = 1 otherwise. For i ∈ [k],
let Ti = E if F is k-means or k-medians, and let Ti = Ci if F is k-medoids. Let c̄i =
argminci∈Ti{

∑
x∈Ci
‖x − ci‖p}. Then, the cost of the clustering F (X) is at most the cost of

the clustering C1, . . . , Ck−1, Ck ∪X \ Y , since this is a possible clustering of X. Thus

cost(F (X)) ≤
∑
i∈[k]

∑
x∈Ci

‖x− c̄i‖p +
∑

z∈X\Y

‖z − c̄k‖p.

51

In all the possibilities for F , c̄i is in the convex hull of X which has a diameter at most 1.
Thus for all z ∈ X \ Y , ‖z − c̄k‖p ≤ 1. Since cost(F (X)|Y) ≤ cost(F (X)), it follows that

cost(F (X)|Y) ≤
∑
i∈[k]

∑
x∈Ci

‖x− c̄i‖p + |X \ Y | = cost(C) + |X \ Y |.

Thus, by the cost-optimality property of C, if c ≥ |X \ Y | then ∆(F (X)|Y,C) ≤ δ. In
addition, cost(F (Y)) ≤ cost(C), thus for any c ≥ 0, ∆(F (Y), C) ≤ δ. It follows that
∆(F (X)|Y, F (Y)) ≤ 2δ, thus the robustness of Y in X with respect to F is at most 2δ.

The next lemma provides a useful connection between the Hamming distance of two
clusterings, and the number of disjoint pairs that belong to the same cluster in one clustering,
but to different clusters in the other.

Lemma 23. Let C1 and C2 be two clusterings of Y , where C1 is β-balanced and has k
clusters. If ∆(C1, C2) ≥ δ, then the number of disjoint pairs {x, y} ⊆ Y such that x �C1 y
and x ∼C2 y is at least 1

2
(δ − k · β2)|Y |.

Proof. Let A = {{x, y} | x �C1 y, x ∼C2 y}, and let B = {{x, y} | x ∼C1 y, x �C2 y}. If
∆(C1, C2) ≥ δ then |A ∪ B| ≥ 1

2
δ|Y |(|Y | − 1). Since every cluster in C1 is of size at most

β|Y |,
|B| ≤ |{{x, y} | x ∼C1 y}| ≤ 1

2
k · β|Y |(β|Y | − 1).

Thus
|A| ≥ 1

2
δ|Y |(|Y | − 1)− 1

2
k · β|Y |(β|Y | − 1) ≥ 1

2
(δ − k · β2)|Y |(|Y | − 1).

Now, for every x such that {x, y} ∈ A, there are at most |Y | − 1 pairs in A that include x.
Thus the number of disjoint pairs in A is at least |A|/(|Y | − 1). Therefore that are at least
1
2
(δ − k · β2)|Y | disjoint pairs in A.

We now show that clusterings that are balanced and well-separable in a geometrical sense
are also cost-optimal.

Lemma 24. Suppose a k-clustering C of Y is α-separable, β-balanced and has diameter
s. Let cost be one of cost1, cost2 or costm. Let p = 2 if cost is cost2 and p = 1

otherwise. Then for any δ ∈ (0, 1), C is (δ, |Y |sp(α
p(δ−k·β2)

2p
− 1))-cost-optimal with respect

to cost.

Proof. Let C ′ be a clustering of Y such that ∆(C,C ′) ≥ δ. For i ∈ [k], let Ti = E if F is k-
means or k-medians, and let Ti = Ci if F is k-medoids. Let ci = argminci∈Ti{

∑
x∈Ci
‖x−ci‖p},

and c′i = argminc′i∈Ti{
∑

x∈C′
i
‖x − c′i‖p}. For every cluster Ci in C, and every x ∈ Ci,

‖x − ci‖p ≤ sp. Thus cost(C) ≤ |Y |sp. On the other hand, for every pair {x, y} ⊆ Y , if
x �C y and x ∼C′ y, then for p = {1, 2}

‖x− c′i‖p + ‖y − c′i‖p ≥ ‖x− y‖p/p ≥ (αs)p/p.

52

The first inequality is the triangle inequality for p = 1. For p = 2 the inequality can be
derived by observing that the left hand side is minimized for c′i = (x + y)/2. The last
inequality follows from the properties of C and the fact that x �C y. By Lemma 23, there
are at least |Y |1

2
(δ − k · β2) such {x, y} pairs. Thus cost(C ′) ≥ |Y | 1

2p
(αs)p(δ − k · β2). It

follows that cost(C ′)− cost(C) ≥ |Y |(1
2p

(αs)p(δ − k · β2)− sp). The lemma follows from
the definition of cost-optimality.

Consider the parameters δ and c from the notion of a (δ, c)-cost-optimal clustering. The
above lemma requires that δ > kβ2, and so δ > 1

k
. Therefore, this lemma holds for small

δ when the number of clusters, k, is large. A small value of c can be obtained by setting
the separability parameter α to the appropriate value. For example, let β = 1/k and let
ε = δ − k · β2. Then set α so that αp·ε

2p
is larger than, but close to 1; The closer is this value

to 1, the smaller the resulting value of c.
We now combine the above lemmas to bound the robustness of a clusterable set Y to a

potential oligarchy, thereby proving Theorem 22.

Theorem 22 (restated): Let F be one of k-means, k-medians or k-medoids. Let p = 2
if F is k-means and p = 1 otherwise. Consider data sets X, Y , and O where X = Y ∪ O
and the set Y has an α-separable, β-balanced k-clustering of diameter s, for some α > 0,
β ∈ [1

k
, 1] and s ∈ (0, 1]. Then Y is δ-robust to O with respect to F for

δ ≤ 4p
αp (1 + |O|

|Y |sp) + 2k · β2.

The proof of this theorem follows by letting δ′ = 2p
αp (1 + |O|

|Y |sp) + k · β2. Then, by Lemma

24, C is (δ′, |O|)-cost-optimal. Thus by Lemma 22, the robustness of Y to O is at most 2δ′.

6.3.2 Lloyd’s Method with Random Initial Centers

The results above pertain to algorithms that find the minimal-cost clustering. In practice,
this task is often not tractable, and algorithms that search for a locally optimal clustering are
used instead. For k-means, a popular algorithm is Lloyd’s method. A common initialization
for Lloyd’s method is to select k random points from the input data set [24]. We call this
algorithm Randomized Lloyd. It is also commonly referred to as “the k-means algorithm.”
In order to find a solution with low k-means loss, it is common practice to run Randomized
Lloyd multiple times and then select the minimal cost clustering. We show that clusterable
data sets are immune to the influence of oligarchies when Randomizes Lloyd is repeated
enough times. Specifically, we show that large clusterable subsets are robust with respect to
this technique.

The following result is by Sivan Sabato in a co-authored paper and is included here for
completeness.

Theorem 24. Consider data sets X, Y and O where X = Y ∪X such that there exists an
α-separable, β-balanced k-clustering C of Y with diameter s > 0, for some α ≥ 3. Let m be

53

the size of the smallest cluster in C, and assume m ≥ 2|O|
(α−1)s . Then with probability at least

1− ε, Y is δ-robust to O with respect to n runs of Randomized Lloyd, for

n ≥
(
e|X|
km

)k
log(2/ε),

and

δ ≤ 8

α2

(
1 +

|O|
|Y |s2

)
+ 2β2k.

6.4 Methods that Admit Oligarchies

We now turn to algorithms that admit oligarchies. We prove that all algorithms that detect
α-separable clusterings admit oligarchies even on data that is highly clusterable. In this
section, we prove Theorem 23 from Section 6.2, demonstrating a sharp contrast between the
behaviour of α-separability detecting algorithms and the behaviour captured in Theorem 22
for k-means and similar objective functions. Next, we will show that many well-known
clustering methods are α-separability-detecting.

Theorem 23 (restated): Let F be a clustering function that is α-separability detecting
for some α ≥ 1. Then for any β ∈ [1/k, 1], s ∈ [0, 1

α+1
) and any integer m ≥ k−1, there exist

data sets X, Y , and O where X = Y ∪O, the set O consists of at most m elements, Y has an
α-separable, β-balanced k-clustering with diameter s, and yet Y is not even β(k − 1)-robust
to O with respect to F .

Proof. Let Y be a set of points with diameter s that contains most of the elements in X,
and make it so that Y has an α-separable, β-balanced k-clustering. The data set O contains
k−1 points at distance αs+ε from each other and from any point in Y . Then F (X, k) places
all elements in Y within the same cluster, while F (Y, k) produces a β-balanced clustering of
Y .

Theorem 23 shows that even when Y is very large (|Y ||X| can be arbitrarily close to 1) and

has an arbitrarily well-separable (α can be arbitrary large) and balanced partition (β = 1
k
),

the robustness score of Y to the oligarchy O can be bounded from below by β(k − 1),
which approaches the worst possible score of robustness 1 as k grows. This shows that α-
separability detecting algorithms admit oligarchies of constant size (in particular, size k−1),
even on data that is highly clusterable.

We now continue to show that several well-known algorithms are separability-detecting,
resulting in the immediate conclusion that Theorem 23 holds for them.

6.4.1 Separability-Detecting Algorithms

In this section, we show that several common algorithms are α-seperability detecting. First,
we consider linkage-based clustering, one of the most commonly-used clustering paradigms.

54

Linkage-based algorithms use a greedy approach; at first every element is in its own cluster.
Then the algorithm repeatedly merges the “closest” pair of clusters until some stopping
criterion is met. To identify the closest clusters, these algorithms use a linkage function,
which maps each pair of clusters to a real number representing their proximity. See Chapter 4
for more detail.

Consider the following condition.

∀(A ∪B, d) min
a∈A,b∈B

d(a, b) ≤ `(A,B, d) ≤ max
a∈A,b∈B

d(a, b). (6.1)

Observe that the linkage functions of the most common linkage-based algorithms, single-
linkage, average-linkage, and complete-linkage, all satisfy the above condition.

We consider linkage-based algorithms with the well-known k-stopping criterion, which
terminates a linkage-based algorithm when the data is merged into k clusters, and returns
the resulting clustering.

Theorem 25. Let F be a clustering function that uses a linkage-based function ` to merge
clusters, and stops when there are k clusters. If Eq. 6.1 holds for `, then F is 1-separability-
detecting.

Proof. By way of contradiction, assume that there exists a data set (X, d) with a 1-separable
k-clustering C, but F (X, k) 6= C. Consider the first iteration of the algorithm in which
the clustering stops being a refinement of C. Let C ′ be the clustering before this itera-
tion. There are clusters C ′1, C

′
2, C

′
3 ∈ C ′ such that C ′1, C

′
2 ∈ Ci for some i, C ′3 ∈ Cj for

j 6= i, and the algorithm merges C ′1 and C ′3. Thus `(C ′1, C
′
2, d) ≥ `(C ′1, C

′
3, d). By Eq.

6.1, `(C ′1, C
′
2, d) ≤ maxa∈C′

1,b∈C′
2
d(a, b), and mina∈C′

1,b∈C′
3
d(a, b) ≤ `(C ′1, C

′
3, d). Since C is

1-separable, maxa∈C′
1,b∈C′

2
d(a, b) < mina∈C′

1,b∈C′
3
d(a, b), so `(C ′1, C

′
2, d) < `(C ′1, C

′
3, d), contra-

dicting the assumption.

There are also clustering objective functions that are α-separability-detecting. Thus
clustering algorithms that minimize them satisfy Theorem 23. The min-diameter objective
function [5] is simply the diameter of the clustering. We show that it is 1-separability-
detecting.

Theorem 26. Min-diameter is 1-separability-detecting.

Proof. For a set X, assume that there exists a 1-separable k-clustering C with diameter
s. For any k-clustering C ′ 6= C there are points x, y such that x ∼C′ y while x �C y.
d(x, y) > s, thus the diameter of C ′ is larger than s. Thus C ′ is not the optimal clustering
for X.

The k-center [4] objective functions finds a clustering that minimizes the maximum ra-
dius of any cluster in the clustering. In k-center the centers are arbitrary points in the
underlying space, and in discrete k-center they are a subset of the input points. We show
that if d satisfies the triangle inequality then k-center and discrete k-center are 2-separability
detecting.

55

Theorem 27. If d satisfies the triangle inequality then k-center and discrete k-center are
2-separability detecting.

Proof. Assume that there exists a 2-separable k-clustering C of a set X. Then the k-center
cost is at most the diameter of C. For any k-clustering C ′ 6= C there are points x, y such
that x �C y while x ∼C′ y. Hence the radius of C ′ is at least than 1

2
· minx 6∼Cy d(x, y) >

maxx∼Cy d(x, y), and thus it is larger than the cost of C. The proof for discrete k-center is
similar.

6.4.2 Lloyd’s Method with Furthest Centroids Initialization

Large clusterable sets are robust with respect to Randomized Lloyd. This does not hold
for the furthest-centroid initialization method [30], which admits oligarchies. The method is
described in detail in Section 2.1.

Lemma 25. Lloyd’s method with furthest centroid initialization is 1-separability detecting.

Proof. If Z has a 1-separable k-clustering C, then between-cluster distances are larger than
within-cluster distances. Thus, for every i ≥ 2, the cluster of C that includes ci is different
from the clusters that include c1, . . . , ci−1. Thus the clustering induced by the initial points
is C. In the next iteration the centers remain unchanged, thus the clustering remains C.

6.5 Related work

Hennig [26] performed a similar analysis of how algorithms respond to the addition of small
sets, with one important difference: the diameter of data sets was not bounded. As a result,
all algorithms considered, including k-means, were sensitive to oligarchies. That is, outliers
that are placed sufficiently far are assigned their own clusters, even when k-means is used. If
the number of clusters is fixed, and the diameter of the data is not fixed, then even k-means is
not robust to oligrachies. By restricting the diameter of data sets, we are able to differentiate
between the behaviour of k-means and that of common linkage-based algorithms based on
their robustness to small sets.

There is also a related line of work in the planted partition model. In this model, given
a clustering C of X, a random graph G = (X,E) is constructed by placing an edge be-
tween nodes x and y with probability p whenever x ∼C y, and probability q < p whenever
x 6∼C y. The objective is then to recover the partition C given the random graph G, with
high probability. Several algorithms for this problem have been proposed ([11], [17],[33]).
These algorithms uncover C when a large number of outliers are added. Therefore, they are
both able to detect well separable clusters and are robust to oligarchies. There are several
important differences from our setting that make this possible. Primarily, the number of
clusters that algorithms should output is not restricted in the planted partition model. Note
that our proof showing that α-separable algorithms are susceptible to oligarchies relies on
there being a fixed number of clusters. In addition, the planted partition model is concerned
with the case where data has only two similarity values.

56

Chapter 7

A Characterization of Hierarchical
Linkage-Based Algorithms

In this chapter, we extend our characterization of linkage-based algorithms into the hierar-
chical setting. Hierarchical algorithms output dendrograms, which users can then traverse
to obtain a desired clustering. Dendrograms provide a convenient method for exploring mul-
tiple clusterings of the data. Notably, for some applications the dendrogram itself, not any
clustering found in it, is the desired final outcome. One such application is found in the field
of phylogeny, which aims to reconstruct the tree of life.

We provide a property-based characterization of hierarchical linkage-based algorithms,
identifying two properties of hierarchical algorithms that are satisfied by all linkage-based
algorithms, and prove that at the same time no algorithm that is not linkage-based can
satisfy both of these properties.

The popularity of linkage-based algorithms lead to a common misconception that linkage-
based algorithms are synonymous with hierarchical algorithms. We show that even when
the internal workings of algorithms are ignored, and the focus is placed solely on their input-
output behaviour, there are natural hierarchical algorithms that are not linkage-based. We
define a large class of divisive algorithms that includes the popular bisecting k-means algo-
rithm, and show that no linkage-based algorithm can simulate the input-output behaviour
of any algorithm in this class.

7.1 Definitions

We introduce several definitions specific to the hierarchical clustering setting.
Given a rooted tree T where the edges are oriented away from the root, let V (T) denote

the set of vertices in T , and E(T) denote the set of edges in T . We use the standard
interpretation of the terms leaf, descendent, parent, and child.

A dendrogram over a data set X is a binary rooted tree where the leaves correspond to
elements of X. In addition, every node is assigned a level, using a level function (η); leaves
are placed at level 0, parents have higher levels than their children, and no level is empty.

57

Figure 7.1: A dendrogram of domain set {x1, . . . , x8}. The horizontal lines represent levels
and every leaf is associated with an element of the domain.

See Figure 7.1 for an illustration. Formally,

Definition 36 (dendrogram). A dendrogram over (X, d) is a triple (T,M, η) where T is a
binary rooted tree, M : leaves(T)→ X is a bijection, and η : V (T)→ {0, . . . , h} is onto (for
some h ∈ Z+ ∪ {0}) such that

1. For every leaf node x ∈ V (T), η(x) = 0.

2. If (x, y) ∈ E(T), then η(x) > η(y).

Given a dendrogram D = (T,M, η) of X, we define a mapping from nodes to clusters
C : V (T)→ 2X by C(x) = {M(y) | y is a leaf and a descendent of x}. If C(x) = A, then we
write v(A) = x. We think of v(A) as the vertex (or node) in the tree that represents cluster
A.

We say that A ⊆ X is a cluster in D if there exists a node x ∈ V (T) so that C(x) = A.
We say that a clustering C = {C1, . . . , Ck} of X ′ ⊆ X is in D if Ci is in D for all 1 ≤ i ≤ k.
Note that a dendrogram may contain clusterings that do not partition the entire domain,
and ∀i 6= j, v(Ci) is not a descendent of v(Cj), since Ci ∩ Cj = ∅.

Definition 37 (sub-dendrogram). A sub-dendrogram of (T,M, η) rooted at x ∈ V (T) is a
dendrogram (T ′,M ′, η′) where

1. T ′ is the subtree of T rooted at x,

2. For every y ∈ leaves(T ′), M ′(y) = M(y), and

3. For all y, z ∈ V (T ′), η′(y) < η′(z) if and only if η(y) < η(z).

Definition 38 (Isomorphisms). A few notions of isomorphisms of structures are relevant to
our discussion.

58

1. We say that (T1, η1) and (T2, η2) are isomorphic trees, denoted (T1, η1) ∼=T (T1, η1), if
there exists a bijection H : V (T1)→ V (T2) so that

(a) for all x, y ∈ V (T1), (x, y) ∈ E(T1) if and only if (H(x), H(y)) ∈ E(T2), and

(b) for all x ∈ V (T1), η1(x) = η2(H(x)).

2. We say that D1 = (T1,M1, η1) of (X, d) and D2 = (T2,M2, η2) of (X ′, d′) are isomorphic
dendrograms, denoted D1

∼=D D2, if there exists a domain isomorphism φ : X →
X ′ and a tree isomorphism H : (T1, η1) → (T2, η2) so that for all x ∈ leaves(T1),
φ(M1(x)) = M2(H(x)).

7.2 Hierarchical and Linkage-Based Algorithms

In the hierarchical setting, linkage-based algorithms are hierarchical algorithms that can be
simulated by repeatedly merging close clusters. In this section, we formally define hierarchical
algorithms and linkage-based hierarchical algorithms.

7.2.1 Hierarchical Algorithms

In addition to outputing a dendrogram, we require that hierarchical clustering functions
satisfy a few natural properties.

Definition 39 (Hierarchical clustering function). A hierarchical clustering function F is a
function that takes as input a pair (X, d) and outputs a dendrogram (T,M, η). We require
such a function, F , to satisfy the following:

1. Representation Independence: Whenever (X, d) ∼=X (X ′, d′), then F (X, d) ∼=D F (X ′, d′).

2. Scale Invariance: For any domain set X and any pair of distance functions d, d′ over
X, if there exists c ∈ R+ such that d(a, b) = c · d′(a, b) for all a, b ∈ X, then F (X, d) =
F (X, d′).

3. Richness: For all data sets {(X1, d1), . . . , (Xk, dk)} where Xi ∩ Xj = ∅ for all i 6= j,

there exists a distance function d̂ over
⋃k
i=1Xi that extends each of the di’s (for i ≤ k),

so that the clustering {C1, . . . , Ck} is in F (
⋃k
i=1Xi, d̂).

The last condition, richness, requires that by manipulating between-cluster distances
every clustering can be produced by the algorithm. Intuitively, if we place the clusters
sufficiently far apart, then the resulting clustering should be in the dendrogram.

In this work we focus on distinguishing linkage-based algorithms from among hierarchical
algorithms.

59

7.2.2 Linkage-Based Algorithms

We defined linkage functions in Chapter 4. For the current characterization, it suffices to
use a relaxation of that definition, by omitting the last condition.

Definition 40 (Linkage Function). A linkage function is a function

` : {(X1, X2, d) | d over X1 ∪X2} → R+

such that,

1. ` is representation independent: For all (X1, X2) and (X ′1, X
′
2), if ({X1, X2}, d) ∼=C

({X ′1, X ′2}, d′) then `(X1, X2, d) = `(X ′1, X
′
2, d
′).

2. ` is monotonic: For all (X1, X2, d) if d′ is a distance function over X1 ∪X2 such that
for all x ∼{X1,X2} y, d(x, y) = d′(x, y) and for all x 6∼{X1,X2} y, d(x, y) ≤ d′(x, y) then
`(X1, X2, d

′) ≥ `(X1, X2, d).

As in our characterization of partitional linkage-based algorithms, we assume that a
linkage function has a countable range. Say, the set of non-negative algebraic real numbers.

For a dendrogram D and clusters A and B in D, if there exists x so that parent(v(A)) =
parent(v(B)) = x, then let parent(A,B) = x, otherwise parent(A,B) = ∅.

We now define hierarchical linkage-based functions.

Definition 41 (Linkage-Based Function). A hierarchical clustering function F is linkage-
based if there exists a linkage function ` so that for all (X, d), F (X, d) = (T,M, η) where
η(parent(A,B)) = m if and only if `(A,B) is minimal in {`(S, T) : S ∩ T = ∅, η(S) <
m, η(T) < m, η(parent(S)) ≥ m, η(parent(T)) ≥ m}.

Note that the above definition implies that there exists a linkage function that can be
used to simulate the output of F . We start by assigning every element of the domain to a
leaf node. We then use the linkage function to identify the closest pair of nodes (wrt the
clusters that they represent), and repeatedly merge the closest pairs of nodes that do yet
have parents, until only one such node remains.

7.2.3 Locality

We formulate the locality property from Chapter 4 in the hierarchical setting. Locality states
that if we select a clustering from a dendrogram (a union of disjoint clusters that appear in
the dendrogram), and run the hierarchical algorithm on the data underlying this clustering,
we obtain a result that is consistent with the original dendrogram.

Definition 42 (Locality). A hierarchical function F is local if for all X, d, and X ′ ⊆ X,
whenever clustering C = {C1, C2, . . . , Ck} of X ′ is in F (X, d) = (T,M, η), then for all
1 ≤ i ≤ k

60

Figure 7.2: An example of an A-cut.

1. Cluster Ci is in F (X ′, d|X ′) = (T ′,M ′, η′), and the sub-dendrogram of F (X, d) rooted
at v(Ci) is also a sub-dendrogram of F (X ′, d|X ′) rooted at v(Ci).

2. For all x, y ∈ X ′, η′(x) < η′(y) if and only if η(x) < η(y).

Locality is often a desirable property. Consider for example the field of phylogeny, which
aims to reconstruct the tree of life. If an algorithm clusters phylogenetic data correctly,
then if we cluster any subset of the data, we should get results that are consistent with the
original dendrogram.

7.2.4 Outer Consistency

A basic requirement from a good clustering is that it separate dissimilar elements. Given
successfully clustered data, if points that are already assigned to different clusters are drawn
even further apart, then it is natural to expect that, when clustering the resulting new data
set, such points will not share the same cluster. We now formulate the outer-consistency
property from Chapter 4 in the hierarchical setting.

Given a dendrogram produced by a hierarchical algorithm, we select a clustering C
from a dendrogram and pull apart the clusters in C (thus making the clustering C more
pronounced). If we then run the algorithm on the resulting data, we can expect that the
clustering C will occur in the new dendrogram. Outer consistency is a relaxation of the
above property, making this requirement only on a subset of clusterings.

For a cluster A in a dendrogram D, the A-cut of D is a clustering in D represented by
nodes on the same level as v(A) or directly below v(A). Formally,

Definition 43 (A-cut). Given a cluster A in a dendrogram D = (T,M, η), the A-cut of D
is cutA(D) = {C(u) | u ∈ V (T), η(parent(u)) > η(v(A)) and η(u) ≤ η(v(A)).}.

Note that for any cluster A in D of (X, d), the A-cut is a clustering of X, and A is one
of the clusters in that clustering.

For example, consider the diagram in Figure 7.2. Let A = {x3, x4}. The horizontal
line on level 4 of the dendrogram represents the intuitive notion of a cut. To obtain the

61

corresponding clustering, we select all clusters represented by nodes on the line, and for
the remaining clusters, we choose clusters represented by nodes that lay directly below the
horizontal cut. In this example, clusters {x3, x4} and {x5, x6, x7, x8} are represented by nodes
directly on the line, and {x1, x2} is a cluster represented by a node directly below the marked
horizontal line.

Recall that a distance function d′ over X is (C, d)-outer-consistent if d′(x, y) = d(x, y)
whenever x ∼C y, and d′(x, y) ≥ d(x, y) whenever x 6∼C y.

Definition 44 (Outer-Consistency). A hierarchical function F is outer consistent if for
all (X, d) and any cluster A in F (X, d), if d′ is (cutA(F (X, d)), d)-outer-consistent then
cutA(F (X, d)) = cutA(F (X, d′)).

7.3 Main Result

The following is our characterization of linkage-based hierarchical algorithms.

Theorem 28. A hierarchical function F is linkage-based if and only if F is outer consistent
and local.

We prove the result in the following subsections (one for each direction of the iff). In the
last part of this section, we demonstrate the necessity of both properties.

7.3.1 All Local, Outer-Consistent Hierarchical Functions are
Linkage-Based

Lemma 26. If a hierarchical function F is outer-consistent and local, then F is linkage-
based.

The proof comprises the rest of this section.

Proof. We begin by showing that every local, outer-consistent hierarchical function F is
linkage-based. To prove this direction, we show that there exists a linkage function ` so
that when ` is used in Definition 41 then for all (X, d) the output is F (X, d). Due to the
representation independence of F , one can assume w.l.o.g., that the domain sets over which
F is defined are (finite) subsets of the set of natural numbers, N .

Definition 45 (The (pseudo-) partial ordering<F). We consider triples of the form (A,B, d),
where A∩B = ∅ and d is a distance function over A∪B. Two triples, (A,B, d) and (A′, B′, d′)
are equivalent, denoted (A,B, d) ∼= (A′, B′, d′) if they are isomorphic as clusterings, namely,
if ({A,B}, d) ∼=C ({A′, B′}, d′).

<F is a binary relation over equivalence classes of such triples, indicating that F merges
a pair of clusters earlier than another pair of clusters. Formally, denoting ∼=-equivalence
classes by square brackets, we define it by: [(A,B, d)] <F [(A′, B′, d′)] if

1. At most two sets in {A,B,A′, B′} are equal and no set is a strict subset of another.

62

2. The distance functions d and d′ agree on (A ∪B) ∩ (A′ ∪B′).

3. There exists a distance function d∗ over X = A∪B∪A′∪B′ so that F (X, d∗) = (T,M, η)
such that

(a) d∗ extends both d and d′ (namely, d ⊆ d∗ and d′ ⊆ d∗),

(b) There exist (x, y), (x, z) ∈ E(T) such that C(x) = A∪B, C(y) = A, and C(z) = B

(c) For all D ∈ {A′, B′}, either D ⊆ A ∪B, or D ∈ cutA∪BF (X, d∗).

(d) η(v(A′)) < η(v(A ∪B)) and η(v(B′)) < η(v(A ∪B)).

Since we assume that hierarchical algorithms are representation independent, we can just
discuss triples, instead of their equivalence classes. For the sake of simplifying notation, we
will omit the square brackets in the following discussion.

In the following lemma we show that if (A,B, d) <F (A′, B′, d′), then A′∪B′ cannot have
a lower level than A ∪B.

Lemma 27. Given a local and outer-consistent hierarchical function F , whenever
(A1, B1, d1) <F (A2, B2, d2), there is no data set (X, d) such that A1, B1, A2, B2 ⊆ X and

η(v(A2 ∪B2)) ≤ η(v(A1 ∪B1)), where F (X, d) = (T,M, η).

Proof. By way of contradiction, assume that such (X, d) exists. Let X ′ = A1∪B1∪A2∪B2.
Since (A1, B1, d1) <F (A2, B2, d2), there exists d′ that satisfies the conditions of Definition 45.

Consider F (X ′, d|X ′). By locality, the sub-dendrogram rooted at v(A1∪B1) contains the
same nodes in both F (X ′, d|X ′) and F (X, d), and similarly for the sub-dendrogram rooted
at v(A2 ∪B2). In addition, the relative level of nodes in these subtrees is the same.

Construct a distance function d∗ over X ′ that is both ({A1 ∪ B1, A2 ∪ B2}, d|X ′)-outer
consistent and ({A1 ∪B2, A2, B2}, d′′)-outer consistent as follows:

• d∗(x, y) = max(d(x, y), d′(x, y)) whenever x ∈ A1 ∪B1 and y ∈ A2 ∪B2

• d∗(x, y) = d1(x, y) whenever x, y ∈ A ∪B

• d∗(x, y) = d2(x, y) whenever x, y ∈ A′ ∪B′

Note that {A1 ∪ B1, A2 ∪ B2} is an (A1 ∪ B1)-cut of F (X ′, d|X ′). Therefore, by outer-
consistency, cutA1∪B1(F (X ′, d∗)) = {A2 ∪B2, A1 ∪B1}.

Since d′ satisfies the conditions in Definition 45, cutA1∪B1F (X, d′) = {A1 ∪ B1, A2, B2}.
By outer-consistency we get that cutA1∪B1(F (X ′, d∗)) = {A2 ∪ B2, A1, B1}. Since these sets
are all non-empty, this is a contradiction.

We now define equivalence with respect to <F .

Definition 46 (∼=F). [(A,B, d)] and [(A′, B′, d′)] are F -equivalent, denoted [(A,B, d)] ∼=F

[(A′, B′, d′)], if

1. At most two sets in {A,B,A′, B′} are equal and no set is a strict subset of another.

63

2. The distance function d and d′ agree on (A ∪B) ∩ (A′ ∪B′).

3. There exists a distance functions d∗ over X = A∪B ∪A′ ∪B′ so that F (A∪B ∪A′ ∪
B′, d∗) = (T, η) where

(a) d∗ extends both d and d′,

(b) There exist (x, y), (x, z) ∈ E(T) such that C(x) = A ∪ B, and C(y) = A, and
C(z) = B,

(c) There exist (x′, y′), (x′, z′) ∈ E(T) such that C(x′) = A′ ∪B′, and C(y′) = A′, and
C(z′) = B′, and

(d) η(x) = η(x′)

(A,B, d) is comparable with (C,D, d′) if they are<F comparable or (A,B, d) ∼=F (C,D, d′).
Whenever two triples are F -equivalent, then they have the same <F or ∼=F relationship

with all other triples.

Lemma 28. Given a local, outer-consistent hierarchical function F , if (A,B, d1) ∼=F (C,D, d2),
then for any (E,F, d3), if (E,F, d3) is comparable with both (A,B, d1) and (C,D, d2) then

• if (A,B, d1) ∼=F (E,F, d3) then (C,D, d2) ∼=F (E,F, d3)

• if (A,B, d1) <F (E,F, d3) then (C,D, d2) <F (E,F, d3)

Proof. Let X = A∪B∪C∪D∪E∪F . By richness (condition 3 of Definition 39), there exists a
distance function d that extends di for i ∈ {1, 2, 3} so that {A∪B,C∪D,E∪F} is a clustering
in F (X, d). Assume that (E,F, d3) is comparable with both (A,B, d1) and (C,D, d2). By
way of contradiction, assume that (A,B, d1) ∼=F (E,F, d3) and (C,D, 21) <F (E,F, d3).
Then by locality, in F (X, d), η(v(A ∪B)) = η(v(E ∪ F)).

Observe that by locality, since (C,D, d1) <F (E,F, d3), then η(v(C ∪D)) < η(v(E ∪F))
in F (X, d). Therefore (again by locality) η(v(A ∪ B)) 6= η(v(C ∪ D)) in any data set that
extends d1 and d2, contradicting that (A,B, d1) ∼=F (C,D, d2).

Note that <F is not transitive. In particular, if (A,B, d1) <F (C,D, d2) and (C,D, d2) <F

(E,F, d3), it may be that (A,B, d1) and (E,F, d3) are incomparable. To show that <F can
be extended to a partial ordering, we first prove the following “anti-cycle” property.

Lemma 29. Given a hierarchical function F that is local and outer-consistent, there exists
no finite sequence (A1, B1, d1) <F · · · <F (An, Bn, dn) <F (A1, B1, d1).

Proof. Without loss of generality, assume that such a sequence exists. By richness, there
exists a distance function d that extends each of the di where {A1∪B1, A1∪B2, . . . , An∪Bn}
is a clustering in F (

⋃
iAi ∪Bi, d) = (T,M, η).

Let i0 be so that η(v(Ai0 ∪Bi0) ≤ η(v(Aj ∪Bj)) for all j 6= i0. By the circular structure
with respect to <F , there exists j0 so that (Aj0 , Bj0 , dj0) <F (Ai0 , Bi0 , di0). This contradicts
Lemma 27.

64

We make use of the following general result, proved in Chapter 4.

Lemma 30. For any cycle-free, anti-symmetric relation P (,) over a finite or countable
domain D there exists an embedding h into R+ so that for all x, y ∈ D, if P (x, y) then
h(x) < h(y).

Finally, we define our linkage function by embedding the ∼=F -equivalence classes into the
positive real numbers in an order preserving way, as implied by applying Lemma 30 to <F .
Namely, `F : {[(A,B, d)] : A ⊆ N , B ⊆ N , A ∩ B = ∅ and d is a distance function over A ∪
B} → R+ so that [(A,B, d)] <F [(A′, B′, d′)] implies `F [(A,B, d)] < `F [(A,B, d)].

Lemma 31. The function `F is a linkage function for any hierarchical function F that
satisfies locality and outer-consistency.

Proof. Since `F is defined on ∼=F -equivalence classes, representation independence of hier-
archical functions implies that `F satisfies condition 1 of Definition 40. The function `F
satisfies condition 2 of Definition 40 by Lemma 32.

Lemma 32. Consider d1 over X1 ∪X2 and d2 that is ({X1, X2}, d1)-outer-consistent, then
(X1, X2, d2) 6<F (X1, X2, d1), whenever F is local and outer-consistent.

Proof. Assume that there exist such d1 and d2 where (X1, X2, d2) <F (X1, X2, d1). Let d3
over X1 ∪X2 be a distance function such that d3 is ({X1, X2}, d1)-outer-consistent and d2 is
({X1, X2}, d3)-outer-consistent. In particular, d3 can be constructed as follows:

• d3(x, y) = d1(x,y)+d2(x,y)
2

whenever x ∈ X1 and y ∈ X2

• d3(x, y) = d1(x, y) whenever x, y ∈ X1 or x, y ∈ X2

Set (X ′1, X
′
2, d2) = (X1, X2, d2) and (X ′′1 , X

′′
2 , d3) = (X1, X2, d3).

Let X = X1 ∪ X2 ∪ X ′1 ∪ X ′2 ∪ X ′′1 ∪ X ′′2 . By richness, there exists a distance function
d∗ that extends di for all 1 ≤ i ≤ 3 so that {X1 ∪X2, X

′
1 ∪X ′2, X ′′1 ∪X ′′2 } is a clustering in

F (X, d∗).
Let F (X, d∗) = (T,M, η). Since (X ′1, X

′
2, d2) <F (X1, X2, d1), by locality and outer-

consistency, we get that η(v(X ′1 ∪X ′2)) < η(v(X1 ∪X2)). We consider the level (η value) of
v(X ′′1 ∪X ′′2) with respect to the levels of v(X ′1 ∪X ′2) and v(X1 ∪X2) in F (X, d∗).

We now consider a few cases.
Case 1: η(v(X ′′1 ∪ X ′′2)) ≤ η(v(X ′1 ∪ X ′2)). Then there exists an outer-consistent change

moving X1 and X2 further away from each other until (X1, X2, d1) = (X ′′1 , X
′′
2 , d3). Let d̂ be

the distance function that extends d1 and d2 which shows that (X ′1, X
′
2, d2) <F (X1, X2, d1).

cutX′
1∪X′

2
F (X1 ∪X2 ∪X ′1 ∪X ′2, d̂) = {X ′1 ∪X ′2, X1, X2}. We can apply outer consistency on

{X ′1 ∪X ′2, X1, X2} and move X1 and X2 away from each other until {X1, X2} is isomorphic
to {X ′′1 , X ′′2 }. By outer consistency, this modification should not effect the (X1 ∪ X2)-cut.
Applying locality, we have two isomorphic data sets that produce different dendrogram, one
in which the further pair (d2) not below the medium pair (d3), and the other in which the
medium pair (turning d3 into d2) is above the furthest pair.

65

Case 2: η(v(X ′′1 ∪X ′′2)) ≥ η(v(X1 ∪X2)). Since X ′′i is isomorphic to Xi for all i ∈ {1, 2},
η(v(Xi)) = η(v(X ′′i)) for all i ∈ {1, 2}. This gives us that in this case, cutX1∪X2F (X1 ∪X2 ∪
X ′′1 ∪X ′′2 , d∗) = {X1 ∪X2, X

′′
1 , X

′′
2 }. We can therefore apply outer consistency and separate

X ′′1 and X ′′2 until {X ′′1 , X ′′2 } is isomorphic to {X ′1∪X ′2}. So this gives us two isomorphic data
sets, one which the further pair is not below the closest pair, and the other in which the
further pair is below the closest pair.

Case 3: η(X1∪X2) < η(X ′′1 ∪X ′′2) < η(X ′1∪X ′2). Notice that cutX′′
1 ∪X′′

2
F (X1∪X2∪X ′′1 ∪

X ′′2 , d
∗) = {X ′′1 ∪ X ′′2 , X1, X2}. So outer-consistency applies when we increase the distance

between X1 and X2 until {X1, X2} is isomorphic to {X ′1∪X ′2}. This gives us two isomorphic
sets, one in which the medium pair is below the further pair, and another in which the
medium pair is above the furthest pair.

The following Lemma concludes the proof that every local, outer-consistent hierarchical
algorithm is linkage-based.

Lemma 33. Given any hierarchical function F that satisfies locality and outer-consistency,
let `F be the linkage function defined above. Let L`F denote the linkage-based algorithm that
`F defines. Then L`F agrees with F on every input data set.

Proof. Let (X, d) be any data set. We prove that at every level s, the nodes at level s in
F (X, d) represent the same clusters as the nodes at level s in L`F (X, d). In both F (X, d) =
(T,M, η) and L`F (X, d) = (T ′,M ′, η′), level 0 consists of |X| nodes each representing a
unique elements of X.

Assume the result holds below level k. We show that pairs of nodes that do not have
parents below level k have minimal `F value only if they are merged at level k in F (X, d).

Consider F (X, d) at level k. Since the dendrogram has no empty levels, let x ∈ V (T)
where η(x) = k. Let x1 and x2 be the children of x in F (X, d). Since η(x1), η(x2) < k, these
nodes also appear in L`F (X, d) below level k, and neither node has a parent below level k.

If x is the only node in F (X, d) above level k − 1, then it must also occur in L`F (X, d).
Otherwise, there exists a node y1 ∈ V (T), y1 6∈ {x1, x2} so that η(y1) < k and η(parent(y1)) ≥
k. Let X ′ = C(x) ∪ C(y1). By locality, cutC(x)F (X ′, d|X ′) = {C(x), C(y1)}, y1 is below x,
and x1 and x2 are the children of x. Therefore, (C(x1), C(x2), d) <F (C(x1), C(y1), d) and
`F (C(x1), C(x2), d) < `F (C(x1), C(y1), d).

Assume that there exists y2 ∈ V (T), y2 6∈ {x1, x2, y1} so that η(y2) < k and η(parent(y2)) ≥
k. If parent(y1) = parent(y2) and η(parent(y1)) = k, then (C(x1), C(x2), d) ∼=F (C(y1), C(y2), d)
and so `F (C(x1), C(x2), d) = `F (C(y1), C(y2), d).

Otherwise, let X ′ = C(x)∪C(y1)∪C(y2). By richness, there exists a distance function d∗

that extends d|C(x) and d|(C(y1)∪C(y1)), so that {C(x), C(y1)∪C(y2)} is in F (X ′, d∗). Note
that by locality, the node v(C(y1)∪C(y2)) has children v(C(y1)) and v(C(y2)) in F (X ′, d∗). We
can separate C(x) from C(y1)∪C(y2) in both F (X ′, d∗) and F (X ′, d|X ′) until both are equal.
Then by outer-consistency, cutC(x)F (X ′, d|X ′) = {C(x), C(y1), C(y2)} and by locality y1 and
y2 are below x. Therefore, (C(x1), C(x2), d) <F (C(y1), C(y2), d) and so `F (C(x1), C(x2), d) <
`F (C(y1), C(y2), d).

66

7.3.2 All Linkage-Based Functions are Local and Outer-Consistent

Lemma 34. Every linkage-based hierarchical clustering function is local.

Proof. Let C = {C1, C2, . . . , Ck} be a clustering in F (X, d) = (T,M, η). Let X ′ = ∪iCi.
For all X1, X2 ∈ X ′, `(X1, X2, d) = `(X1, X2, d|X ′). Therefore, for all 1 ≤ i ≤ k, the
sub-dendrogram rooted at v(Ci) in F (X, d) also appears in F (X, d′), with the same relative
levels.

Lemma 35. Every linkage-based hierarchical clustering function is outer-consistent.

Proof. Let C = {C1, C2, . . . , Ck} be a Ci-cut in F (X, d) for some 1 ≤ i ≤ k. Let d′ be (C, d)-
outer-consistent. Then for all 1 ≤ i ≤ k, and all X1, X2 ⊆ Ci, `(X1, X2, d) = `(X1, X2, d

′),
while for all X1 ⊆ Ci, X2 ⊆ Cj, for any i 6= j, `(X1, X2, d) ≤ `(X1, X2, d

′) by monotonicity.
Therefore, for all 1 ≤ j ≤ k, the sub-dendrogram rooted at v(Cj) in F (X, d) also appears in
F (X, d′). All nodes added after these sub-dendrograms are at a higher level than the level
of v(Ci). And since the Ci-cut is represented by nodes that occur on levels no higher than
the level of v(Ci), the Ci-cut in F (X, d′) is the same as the Ci-cut in F (X, d).

7.3.3 Necessity of Both Properties

We now show that both the locality and outer-consistency properties are necessary for defin-
ing linkage-based algorithms. Neither property individually is sufficient for defining this
family of algorithms. Our results above showing that all linkage-based algorithms are both
local and outer-consistent already imply that a clustering function that satisfies one, but not
both, of these requirements is not linkage-based. It remains to show that neither of these two
properties implies the other. We do so by demonstrating the existence of a hierarchical func-
tion that satisfies locality but not outer-consistency, and one that satisfy outer-consistency
but not locality.

Consider a hierarchical clustering function F that applies average-linkage on data sets
with an even number of elements, and single-linkage on data sets consisting of an odd number
of elements. Since both average-linkage and single-linkage are linkage-based algorithms, they
are both outer-consistent. It follows that F is outer-consistent. However, this hierarchical
clustering function fails locality, as it is easy to construct a data set with an even number of
elements where average-linkage detects an odd-sized cluster, for which single-linkage would
produce a different dendrogram.

Now, consider the following function

`(X1, X2, d) =
1

maxx∈X1,y∈X2 d(x, y)
.

The function ` is not a linkage-function since it fails the monotonicity condition. The function
` also does not conform with the intended meaning of a linkage-function. For instance,
`(X1, X2, d) is smaller than `(X ′1, X

′
2, d
′) when all the distances between X1 and X2 are

(arbitrarily) larger than any distance between X ′1 and X ′2. If we then consider the hierarchical

67

clustering function F that results by utilizing ` in a greedy fashion to construct a dendrogram
(by repeatedly merging the closest clusters according to `), then the function F is local by
the same argument as the proof of Lemma 34. We now demonstrate that F is not outer-
consistent. Consider a data set (X, d) such that for some A ⊂ X, the A-cut of F (X, d)
is a clustering with a least 3 clusters where every cluster consists of a least 2 elements.
Then if we move two clusters sufficiently far away from each other and all other data, they
will be merged by the algorithm before any of the other clusters are formed, and so the
A-cut on the resulting data changes following an outer-consistent change. As such, F is not
outer-consistent.

7.4 Divisive Algorithms

Our formalism provides a precise sense in which linkage-based algorithms make only local
considerations, while many divisive algorithms inevitably take more global considerations
into account. This fundamental distinction between these paradigms can be used to help
select a suitable hierarchical algorithm for specific applications.

This distinction also implies that many divisive algorithms cannot be simulated by any
linkage-based algorithm, showing that the class of hierarchical algorithms is strictly richer
than the class of linkage-based algorithm (even when focusing only on the input-output
behaviour of algorithms).

A 2-clustering function F maps a data set (X, d) to a 2-partition of X. An F -Divisive
algorithm is a divisive algorithm that uses a 2-clustering function F to decide how to split
nodes. Formally,

Definition 47 (F -Divisive). A hierarchical clustering function is F-Divisive wrt a 2-clustering
function F , if for all (X, d), F(X, d) = (T,M, η) such that for all x ∈ V (T)/leaves(T) with
children x1 and x2, F(C(x)) = {C(x1), C(x2)}.

Note that Definition 47 does not place restrictions on the level function. This allows for
some flexibility in the levels. Intuitively, it doesn’t force an order on splitting nodes.

The following property represents clustering functions that utilize contextual information
found in the remainder of the data set when partitioning a subset of the domain.

Definition 48 (Context sensitive). F is context-sensitive if there exist distance functions
d ⊂ d′ such that F({x, y, z}, d) = {{x}, {y, z}} and F({x, y, z, w}, d′) = {{x, y}, {z, w}}.

Many 2-clustering functions, including k-means, min-sum, and min-diameter are context-
sensitive (see Corollary 3). Natural divisive algorithms, such as bisecting k-means (k-means-
Divisive), rely on context-sensitive 2-clustering functions.

Whenever a 2-clustering algorithm is context-sensitive, then the F -divisive function is
not local.

Theorem 29. If F is context-sensitive then the F-divisive function is not local.

68

Proof. Since F is context-sensitive, there exists a distance functions d ⊂ d′ so that {x}
and {y, z} are the children of the root in F({x, y, z}, d), while in F({x, y, z, w}, d′), {x, y}
and {z, w} are the children of the root and z and w are the children of {z, w}. Therefore,
{{x, y}, {z}} is clustering in F({x, y, z, w}, d′). But cluster {x, y} is not in F({x, y, z}, d),
so the clustering {{x, y}, {z}} is not in F({x, y, z}, d), and so F -divisive is not local.

Applying Theorem 28, we get:

Corollary 2. If F is context-sensitive, then the F-divisive function is not linkage-based.

We say that two hierarchical algorithms strongly disagree if they may output dendrograms
with different clusterings. Formally,

Definition 49. Two hierarchical functions F0 and F1 strongly disagree if there exists a data
set (X, d) and a clustering C of X so that C is in Fi(X, d) but not in F1−i(X, d), for some
i ∈ {0, 1}.

Theorem 30. If F is context-sensitive, then the F-divisive function strongly disagrees with
every linkage-based function.

Proof. Let L be any linkage-based function. Since F is context-sensitive, there exists dis-
tance functions d ⊂ d′ so that F({x, y, z}, d) = {{x}, {y, z}} and F({x, y, z, w}, d′) =
{{x, y}, {z, w}}.

Assume that L and F -divisive produce the same output on ({x, y, z, w}, d′). There-
fore, since {{x, y}, {z}} is a clustering in F -divisive({x, y, z, w}, d′), it is also a cluster-
ing in L({x, y, z, w}, d′). Since L is linkage-based, by Theorem 28, L is local. Therefore,
{{x, y}, {z}} is a clustering in L({x, y, z}, d′). But it is not a clustering in
F -divisive({x, y, z}, d).

Corollary 3. The divisive algorithms that are based on the following 2-clustering functions
strongly disagree with every linkage-based function: k-means, min-sum, min-diameter.

Proof. Set x = 1, y = 3, z = 4, and w = 6 to show that these 2-clustering functions are
context-sensitive. The result follows by Theorem 30.

69

Chapter 8

Conclusions and Future Work

8.1 Summary

Due to the ambiguous nature of clustering, its users have varied needs. No one algorithm
fits all clustering applications. In this thesis, we develop a theoretically founded approach
for selecting clustering algorithms based on differences in their input-output behaviour. To
this end, we strive for a better understanding of how clustering algorithms differ. An un-
derstanding into core differences in the input-output behaviour of common clustering tech-
niques makes it possible to make an informed choice when selecting an algorithm. In order
to make the theory usable in practice, we formulate these difference in terms of concise, and
mathematically precise, properties. A classification of clustering algorithms based on these
properties can then be utilized by any clustering user to assist in the algorithm selection
process.

By proposing new properties and using those proposed in previous work, we present a
property-based classification of some common clustering methods. While this initial classi-
fication highlights differences among different clustering paradigms, it does not explain the
popularity of the k-means method. To this end, we study the behaviour of clustering algo-
rithms under the addition of small sets to the original data. We show that k-means is robust
to the addition of a small number of elements, even when those are chosen in adversarial
manner. On the other hand, the output of many other common clustering methods is highly
volatile to the addition of few data points.

Our study of clustering properties leads to the first property-based characterization of
linkage-based clustering. This characterization can be viewed as an alternative definition of
this family of algorithms to the typical definition that relies on pseudo-code. By defining
linkage-based algorithms based on their input-output behaviour, our definition enables a
direct comparison with the behaviour of other clustering methods. We provide a property-
based characterization of this family of algorithms in both the partitional and hierarchical
settings.

In this thesis, we provide a foundation for an approach to selecting clustering algorithms

70

based on differences in their input-output behaviour. It is not meant as a deliverable tool.
Yet by continuing to improve our understanding of significant differences between clustering
methods, we become better equipped to assist users in selecting an algorithm for a wider
range of applications.

8.2 Previous work revisited

Before we wrap up, let us revisit previous work, and discuss how it connects with our results.
In Figure 8.1, we present a diagram that illustrates how our work fits within the clustering
literature. Namely, we display various branches of research on clustering properties. It is
not exhaustive, and we have expanded only those branches that are most relevant to our
contributions. We also note that, since there are many difference levels on which research
papers related to one another, this diagram could have been structured in several other
meaningful ways. This diagram helps illustrate only of the some ways that the contributions
in the current thesis fit into clustering as a field. Lastly, for completeness, we also include
in this diagram some of our own work that has not been included in this thesis.

This diagram partitions research on clustering properties based on the objects studied.
Many different clustering objects have been considered, but with the exception of Chap-
ter 3.2.2 that also clustering quality measures, this thesis is primary concerned with clus-
tering functions. Another interesting object, on which we did not focus on in this thesis, is
that of clustering distance functions, studied by Meila [35]. In addition, the study of data
set clusterability, the degree of clustered structure inherent in data, has been explored by
Balcan and Blum ([8], [7], and [9]) in the context of computational complexity, addressing
the question: “If there is a unique desired clustering, what do we need to know about it so
that clustering becomes computationally efficient?” There is also work on clusterability by
Ackerman and Ben-David [1] not included in this thesis, where we compare different notions
of clusterability proposed in the literature, and show that although all of these notions aim
to evaluate the same intuitive property, they are provably pairwise distinct; for every pair of
these notions, there is a data set that is arbitrarily well clusterable according to one of the
notions, and arbitrarily poorly clusterable according to the other.

Properties of clustering objects can sometimes be converted from one context to another
making it so that research on different clustering objects is often closely related. For instance,
Puzicha, Hofmann, and Buhmann [39], propose several properties of clustering functions in
the setting where the number of clusters, k, is fixed. In particular, they introduce several
properties including scale-invariance, representation independence (called “permutation in-
variance” in their paper), and consistency (referred to as “monotonicity”). They then focus
on functions that can be decomposed into a specific additive form. There are interesting
connections between the work of Puzhica et al. and Kleinberg’s impossibility result. Klein-
berg [31] considers a slightly different setting, where the algorithm has to decide into how
many clusters to partition the data. He then converts scale-invariance and consistency into
the framework where the number of clusters is not fixed, and adds the richness property,
which relies on k not being fixed. He shows that the three properties cannot be simultane-

71

Figure 8.1: Research on clustering properties, organized by object studied.

72

ously satisfied by the same clustering function. In Chapter 3.2.2, we translate Kleinberg’s
axioms to the setting of clustering quality measures, where the three properties become con-
sistent. Translating Kleinberg’s axioms into the setting of clustering functions where the
number of clusters is fixed also leads to consistency of the three axioms. This illustrates
that different clustering settings are related to each other, but also, that representing our
intuition about clustering in different settings can lead to vastly different results.

If we focus on clustering functions, one basic differentiation is between the weighted and
unweighted settings. This thesis is concerned with the unweighted paradigm. In the weighted
clustering setting, we have an additional source of information; every point is assigned a real
valued weight. The weighted model was used to study clustering since the early work of
Wright [43] in 1973. Very recently, Ackerman, Ben-David, Branzei, and Loker [2] revisited
this model and proposed properties within it that can be used to differential between the
behaviour of clustering algorithms.

When considering the unweighted clustering functions, we study three frameworks; (1)
partitional clustering functions where the input includes the number of clusters, k, as well
as a domain with a distance function over it, (2) partitional clustering functions whose only
input is a domain endowed with a disatnce function, and (3) a hierarchical clustering setting.

Kleinberg’s impossibility result [31] was proved for partitional clustering functions where
the number of clusters is not specified. Our only results in this setting are extensions of
his impossibility result obtained by relaxing one the original properties (consistency), these
results appear in Chapter 5.2.

It appears that the framework in which the number of clusters is specified is richer and
more flexible. When translated into this setting, the properties in Kleinberg’s impossibility
result become consistent. We provide a property-based classification of such algorithms in
Chapter 5.2.

A property-based classification of some common clustering methods was also presented
in a 1971 paper by Fisher and Van Ness [23]. Although we classify their work under the
partitional clustering functions with a fixed number of clusters, they actually consider sev-
eral clustering objects within the same taxonomy. In particular, their taxonomy addressed
both partitional and hierarchical methods, and one of the properties falls under weighted
clustering. Just like in our taxonomy, the purpose of their property-based classification is
to aid users in selecting a clustering algorithm. In their paper, they survey properties of
clustering algorithms and for each algorithm considered, they prove whether each property
is satisfied. They consider five algorithms, including single-linkage, complete-linkage, and
k-means. A total of nine properties are used to evaluate the algorithms, two of which only
apply in Euclidean space. The property that falls under the weighted clustering setting re-
quires that the clustering function output not change if data weights are modified. Several
of their other properties are variations on the α-separability-detecting condition, discussed
in Chapter 6.

The only follow up work that we are aware of to the 1971 paper of Fisher and Van Ness [23]
is by Chen and Van Ness ([15, 14, 16]), which focuses on properties of linkage functions (used
to drive linkage-based algorithms) instead of properties of clustering functions. In Figure 8.1,

73

which is organized by object studied, the work of Chen and Van Ness falls under the linkage-
functions category. However, since linkage-functions are used to formulate linkage-based
clustering functions, the work of Fisher and Van Ness can help differentiate between different
linkage-based algorithms. Note that in our work on linkage-based algorithms, in particular
our characterization of this class, we rely on properties of clustering functions.

In additional to our characterization of linkage-based algorithms, there is a character-
ization of a specific linkage-based algorithm, namely, single-linkage, in terms of properties
of clustering functions. That result by Bosagh Zadeh and Ben-David [44] uses consistency,
richness, order invariance, and another property by the name of MST coherence to charac-
terize the single-linkage algorithm. MST coherence requires that the output of an algorithm
should be the same whenever the graphs corresponding to the input distance functions have
identical minimum spanning trees.

Under partitional clustering methods with a fixed number of clusters, we also display our
work on clustering oligarchies, where we study how algorithms respond to the addition of
a small number of points. There we also include previous work by Hennig [26], where the
diameter of the data is not bounded, and so different results are obtained. At the end of
Chapter 6, we also discuss how work on planted partitions on random graphs is related to
our work on clustering oligarchies.

Finally, looking at the hierarchical clustering setting, there we also provide a characteri-
zation of linkage-based clustering. In addition, Carlsson and Memoli [13] provide a charac-
terization of single-linkage in this setting. It is interesting to note that while our characteri-
zations of the linkage-based family of algorithms are fundamentally similar to each other, the
characterizations of the single-linkage in the partitional clustering setting by Bosagh Zadeh
and Ben-David [44] is substantially different from that of Carlsson and Memoli [13] in the
hierarchical setting. Finally, it is curious why of all algorithms, the family of linkage-based
algorithms has been the focus of property-base characterizations.

Now that we have discussed how our work connects with current literature, we will
conclude by proposing avenues of investigation for future work.

8.3 Future Directions

There are many interesting avenues for future investigation. Since our framework for selecting
a clustering algorithm is compatible with any clustering application, it would be interesting
to explore what properties are desirable for specific applications. One common application
of hierarchical clustering is Phylogeny, which aims to reconstruct the tree of life. We began
exploring some properties that are prevalent in this field[3], and showed which algorithms
satisfy, and which fail these properties. In addition to continuing exploration within the field
of Phylogeny, it would interesting to explore other applications, such as document clustering,
marketing, and city planing. Applications will differ on their desirable properties, and we
could then go ever further. We could classify clustering applications based on their clustering
needs, which could act as a short-cut for new clustering users. But also, this could be used for
focusing research efforts on developing algorithms that possess properties that are desirable

74

across many common applications.
In addition, it would be interesting to continue exploring the advantages of common

clustering methods, such as k-means and corresponding heuristics. Studying properties of
algorithms that prove to be successful in some domain can lead to the discovery of other
important properties. Further, we could focus on a group of similar algorithms, such as
k-means, k-median, and k-medoids, and study differences among them.

It is also important to explore additional clustering frameworks. In this thesis, we have
looked at a general partitional clustering setting, as well as a hierarchical one. As clustering
is a highly versatile domain, there are many interesting and useful clustering settings where
our framework for selecting clustering algorithms can be used. In particular, it would be
interesting to investigate properties of clustering algorithms in the setting where a noise
bucket is allowed; namely, one of the clusters is reserved for collecting points that do not
fit well into any other cluster. Another interesting framework is that of fuzzy clustering,
where every elements is assigned values indicating how well it fits within every cluster.
Lastly, since data is often categorical, it is also worth investigating properties of clustering
algorithms designed for categorical data.

One of the most fundamental open problems is that of axioms of clustering functions. We
touch on this subject in Chapter 5, where we provide three potential axioms of clustering,
which may be necessary, but are not sufficient to define clustering. In Chapter 3, we also
proposed a set of consistent axioms of a similar object, clustering quality measures. But
when converted to the setting of clustering functions, these axioms become inconsistent, as
shown by Kleinberg [31]. Much of the ground work for finding axioms of clustering functions
has already been laid, by Wright[43], Fischer and Van Ness [23], Jardine and Sibson[29],
Puzicha [39], Kleinberg [31], Meila [35], Blum and Balcan [8], and the work contributed in
this thesis. By investigating many different clustering objectives, we as a community have
already identified many of the important facets of what clustering is. Perhaps all that is left
is to synthesize our collective insights into a set of axioms. A consistent set of axioms of
clustering functions would be great step forward in the theory of clustering, and it may be
within our grasp.

75

Bibliography

[1] M. Ackerman and S. Ben-David. Clusterability: A theoretical study. Proceedings of
AISTATS-09, JMLR: W&CP, 5(1-8):53, 2009.

[2] M. Ackerman, S. Ben-David, S. Branzei, and D. Loker. Weighted clustering. Proc. 26th
AAAI Conference on Artificial Intelligence, 2012.

[3] M. Ackerman, D. Brown, and D. Loker. Effects of rooting via outgroups on ingroup
topology in phylogeny. 2012.

[4] P.K. Agarwal and C.M. Procopiuc. Exact and approximation algorithms for clustering.
Algorithmica, 33(2):201–226, 2002.

[5] A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding k points with minimum diameter
and related problems. Journal of algorithms, 12(1):38–56, 1991.

[6] F.B. Baker and L.J. Hubert. Measuring the power of hierarchical cluster analysis.
Journal of the American Statistical Association, pages 31–38, 1975.

[7] M.F. Balcan, A. Blum, and A. Gupta. Approximate clustering without the approxi-
mation. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1068–1077. Society for Industrial and Applied Mathematics, 2009.

[8] M.F. Balcan, A. Blum, and S. Vempala. A discriminative framework for clustering via
similarity functions. In Proceedings of the 40th annual ACM symposium on Theory of
Computing, pages 671–680. ACM, 2008.

[9] M.F. Balcan and P. Gupta. Robust hierarchical clustering. In Proceedings of the Con-
ference on Learning Theory (COLT), 2010.

[10] S. Ben-David. A framework for statistical clustering with a constant time approximation
algorithms for k-median clustering. Learning Theory, pages 415–426, 2004.

[11] N.H. Bshouty and P.M. Long. Finding planted partitions in nearly linear time using
arrested spectral clustering. 2010.

[12] S. Bubeck, M. Meila, and U. Von Luxburg. How the initialization affects the stability
of the k-means algorithm. Arxiv preprint arXiv:0907.5494, 2009.

76

[13] G. Carlsson and F. Mémoli. Characterization, stability and convergence of hierarchical
clustering methods. The Journal of Machine Learning Research, 11:1425–1470, 2010.

[14] Z. Chen and J. Van Ness. Characterizations of nearest and farthest neighbor algorithms
by clustering admissibility conditions. Pattern recognition, 31(10):1573–1578, 1998.

[15] Z. Chen and J.W. Van Ness. Metric admissibility and agglomerative clustering. Com-
munications in Statistics-Simulation and Computation, 23(3):833–845, 1994.

[16] Z. Chen and J.W. Van Ness. Space-contracting, space-dilating, and positive admissible
clustering algorithms. Pattern recognition, 27(6):853–857, 1994.

[17] A. Condon and R.M. Karp. Algorithms for graph partitioning on the planted partition
model. Random Structures and Algorithms, 18(2):116–140, 2001.

[18] S. Dasgupta and L. Schulman. A probabilistic analysis of em for mixtures of separated,
spherical gaussians. The Journal of Machine Learning Research, 8:203–226, 2007.

[19] C. Ding and X. He. Cluster aggregate inequality and multi-level hierarchical clustering.
Knowledge Discovery in Databases: PKDD 2005, pages 71–83, 2005.

[20] J.C. Dunn. Well-separated clusters and optimal fuzzy partitions. Journal of cybernetics,
4(1):95–104, 1974.

[21] S. Epter, M. Krishnamoorthy, and M. Zaki. Clusterability detection and initial seed
selection in large datasets. In The International Conference on Knowledge Discovery in
Databases, volume 7, 1999.

[22] BS Everitt, S. Landau, and M. Leese. Cluster analysis. Arnold, London, 2001.

[23] L. Fisher and J.W. Van Ness. Admissible clustering procedures. Biometrika, 58(1):91–
104, 1971.

[24] E.W. Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of
classifications. Biometrics, 21:768–769, 1965.

[25] D. Greene, G. Cagney, N. Krogan, and P. Cunningham. Ensemble non-negative ma-
trix factorization methods for clustering protein–protein interactions. Bioinformatics,
24(15):1722–1728, 2008.

[26] C. Hennig. Dissolution point and isolation robustness: robustness criteria for general
cluster analysis methods. Journal of Multivariate Analysis, 99(6):1154–1176, 2008.

[27] D.S. Hochbaum and D.B. Shmoys. A best possible heuristic for the k-center problem.
Mathematics of operations research, pages 180–184, 1985.

[28] L.J. Hubert and J.R. Levin. A general statistical framework for assessing categorical
clustering in free recall. Psychological Bulletin, 83(6):1072, 1976.

77

[29] N. Jardine and R. Sibson. Mathematical taxonomy. London etc.: John Wiley, 1971.

[30] I. Katsavounidis, C.C. Jay Kuo, and Z. Zhang. A new initialization technique for
generalized lloyd iteration. Signal Processing Letters, IEEE, 1(10):144–146, 1994.

[31] J. Kleinberg. An impossibility theorem for clustering. Advances in Neural Information
Processing Systems, pages 463–470, 2003.

[32] M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means problem is
np-hard. WALCOM: Algorithms and Computation, pages 274–285, 2009.

[33] F. McSherry. Spectral partitioning of random graphs. In Foundations of Computer
Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 529–537. IEEE, 2001.

[34] N. Megiddo and K.J. Supowit. On the complexity of some common geometric location
problems. SIAM J. Comput., 13(1):182–196, 1984.

[35] M. Meila. Comparing clusterings: an axiomatic view. In Proceedings of the 22nd
international conference on Machine learning, pages 577–584. ACM, 2005.

[36] M. Meila. The uniqueness of a good optimum for k-means. In Proceedings of the 23rd
international conference on Machine learning, pages 625–632. ACM, 2006.

[37] G.W. Milligan. A monte carlo study of thirty internal criterion measures for cluster
analysis. Psychometrika, 46(2):187–199, 1981.

[38] R. Ostrovsky, Y. Rabani, L.J. Schulman, and C. Swamy. The effectiveness of lloyd-
type methods for the k-means problem. In Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on, pages 165–176. IEEE, 2006.

[39] J. Puzicha, T. Hofmann, and J.M. Buhmann. A theory of proximity based clustering:
Structure detection by optimization. Pattern Recognition, 33(4):617–634, 2000.

[40] L. Vendramin, R. Campello, and E.R. Hruschka. On the comparison of relative clus-
tering validity criteria. In Proceedings of the SIAM International Conference on Data
Mining, SIAM, pages 733–744, 2009.

[41] U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–
416, 2007.

[42] U. Von Luxburg and S. Ben-David. Towards a statistical theory of clustering. In
PASCAL workshop on Statistics and Optimization of Clustering. Citeseer, 2005.

[43] W.E. Wright. A formalization of cluster analysis. Pattern Recognition, 5(3):273–282,
1973.

[44] R.B. Zadeh and S. Ben-David. A uniqueness theorem for clustering. UAI, 2009.

78

