DBSCAN: Density-Based Spatial Clustering of Applications with Noise

Presented by Wondong Lee

Written by M.Ester, H.P.Kriegel, J.Sander and Xu.
Why Density-Based Clustering?

- Results of k-means algorithm for $k = 4$

→ The result is not satisfiable!!
DBSCAN

- Relies on a density-based notion of cluster
- Discovers clusters of arbitrary shape in spatial databases with noise

Basic Idea
- Group together points in high-density
- Mark as outliers ➔ points that lie alone in low-density regions
DBSCAN

- Local point density at a point \(p \) defined by two parameters

\begin{align*}
(1) \quad & \varepsilon \rightarrow \text{radius for the neighborhood of point } p:
\varepsilon\text{-Neighborhood: all points within a radius of } \varepsilon \text{ from the point } p \\
& N_\varepsilon(p) := \{q \in \text{data set } D \mid \text{dist}(p, q) \leq \varepsilon\}
\end{align*}

\begin{align*}
(2) \quad & \text{MinPts } \rightarrow \text{minimum number of points in the given neighborhood } N(p)
\end{align*}
High Density?

- ϵ-Neighborhood of an point contains at least MinPts

ϵ-Neighborhood of p
ϵ-Neighborhood of q

Q. When $\text{MinPts} = 4$?

Density of p is “high”

Density of q is “low”
Core, Border & Outlier

- Three category for each point
 - Core point: if its density is high
 - Border point: density is low (but in the neighborhood of a core point)
 - Noise point: any point that is not a core point nor a border point

MinPts = 5
Density-Reachability

• Directly density-reachable
 • A point q is **directly density-reachable** from a point p:
 - If p is a core point and q is in p’s ε-neighborhood

Q. p is directly density-reachable from q?
No, why?

Q. Density-reachability is **asymmetric**

Minpts = 4
Density-Reachability

- Density-reachable
 - A point p is **density-reachable** from a point q if there is a chain of points p_1, \ldots, p_n, with $p_1 = q$, $p_n = p$ such that p_{i+1} is directly density-reachable from p_i

 Q. q is density-reachable from p?
 No, why?

$\text{MinPts} = 7$
Density-Connectivity

- Density-connected
 - A pair of points p and q are density-connected
 - If they are commonly density-reachable from a point o

Q. o is density-reachable from p? Yes, why?

Q. Density-connectivity is symmetric

MinPts = 7
Formal Description of Cluster

- Given a data set D, parameter ε and $MinPts$,

- A cluster C is a subset of D satisfying two criteria:

 - **Maximality**
 - $\forall p, q$ if $p \in C$ and if q is density-reachable from p, then also $q \in C$

 - **Connectivity**
 - $\forall p, q \in C$, p and q are density-connected

- **Note**: cluster contains core points as well as border points
Parameter
 • $\varepsilon = 2$, $MinPts = 3$

```latex
\textbf{if} p \textbf{is not classified} \textbf{then} \\
\quad \textbf{if} p \textbf{is a core-point} \textbf{then} \\
\quad \quad \text{collect all points density-reachable from } p \\
\quad \quad \text{and assign them to a new cluster.} \\
\textbf{else} \\
\quad \text{assign } p \text{ to NOISE} \\
\textbf{else} \\
\quad \text{assign } p \text{ to NOISE}
```

Parameter

- $\varepsilon = 2$, $MinPts = 3$

\[
\begin{align*}
\forall p \in D \text{ do} \\
\quad \text{if } p \text{ is not yet classified then} \\
\quad \quad \text{if } p \text{ is a core-point then} \\
\quad \quad \quad \text{collect all points density-reachable from } p \\
\quad \quad \quad \text{and assign them to a new cluster.} \\
\quad \text{else} \\
\quad \quad \text{assign } p \text{ to NOISE}
\end{align*}
\]
Parameter

- $\varepsilon = 2$, $MinPts = 3$

\[\forall p \in D \text{ do}
\begin{align*}
&\text{if } p \text{ is not yet classified then } \\
&\quad \text{if } p \text{ is a core-point then} \\
&\quad \quad \text{collect all points density-reachable from } p \\
&\quad \quad \text{and assign them to a new cluster.} \\
&\text{else} \\
&\quad \text{assign } p \text{ to NOISE}
\end{align*} \]
Example

Original Points

Point types: core, border and outliers

$\varepsilon = 10$, $\text{MinPts} = 4$
When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes
When DBSCAN Does Not Work Well

- Cannot handle varying densities

Original Points

\((\varepsilon = 9.92, \text{MinPts}=4)\)
When DBSCAN Does Not Work Well

- Sensitive to parameters
K-means VS DBSCAN

(1) When k = 3
MinPts = 4

(2) When k = 2
MinPts = 3

Winner is DBSCAN
K-means VS DBSCAN

(1) When $k = 2$
MinPts = 3

Winner is K-means
Thank you for attention

Any Questions?
Reference

- **Comparing Clustering Algorithm**
 - http://www.cise.ufl.edu/~jmishra/clustering/DataMiningPresentation.ppt

- **Density-Based Clustering**
 - http://www.cse.buffalo.edu/faculty/azhang/cse601/density-based.ppt