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Introduction 

Results 
Air travel has been identified as a leading factor in the spread of several infectious 
diseases. This has motivated calls for limitations on air travel during epidemics, 
such as during the 2014 Ebola outbreak in West Africa. However, such limitations 
carry considerable economic and human costs. We are developing a 
computational framework for public health decision support during infectious 
disease outbreaks that will enable individuals to make informed real-time 
decisions that mitigate the risk of spread without eliminating air travel. This multi-
component platform models elements of human movement with global diffusion 
and molecular evolution of the virus. Our human movement model will estimate 
the number of infected individuals at each airport. We will then use these data in 
our phylogeography models of global spread to empirically evaluate the impact of 
air travel policy options such as changes to enplaning, in-flight movement, and 
deplaning. 
 
Here, we report the initial results of our phylogeography models. We collected full 
genome 2014-15 Ebola Zaire virus sequences from the Virus Pathogen Resource 
database (ViPR) [1]. We recorded temporal and geographical metadata of each 
sequence including the decimal day of year and the location of the virus. We 
aligned 810 sequences using Muscle [2] and selected an HKY + Γ [3] DNA 
substitution model based on prior phylogeography studies of the 2014 strains 
[4-6]. We used BEAUti v1.8.2 [7] to specify different assumptions including codon 
partitions, strict or relaxed molecular clocks, and different tree priors for the 
Bayesian inference.  
 
We report the preliminary phylogeographic results including the Kullback-Leibler 
(KL) divergence test [8] for the most likely origin, and the association index for the 
influence of geography on the genomic evolution of the virus.  

In Figure 1, we show the data and information flow for our two models, fine-scale 
human movement during air travel and global virus phylogeography. The output of 
our human movement model will be an estimate of the number of infected 
individuals at each airport. We will then use these data in our phylogeography 
models of global spread to empirically evaluate the impact of human movement 
given a series of air travel policy options. 
 
As a first step, we analyzed the phylogeography of the 2014 Ebola outbreak in 
West Africa. This work extends prior studies [4-6] by considering additional 
sequences and locations. 

Conclusion 
Our findings that Guinea was the origin of the outbreak are consistent with prior results [4-6]. In addition, statistical phylogenetic 
trait analysis showed that the evolution of the Ebola Zaire viruses was geographically structured while coalescent analysis 
indicated that there was no difference in virus persistence among the African counties.  
 
Our long term goal is to integrate our global models of virus diffusion with fine-scaled models of human movement on airplanes. 
In doing this, we will create a computational infrastructure that will study the impact of different policy options aimed at reducing 
virus spread during air travel. We will adopt a Bayesian phylogeographic generalized linear model (GLM) approach [15] to 
reconstruct spatiotemporal patterns of viral spread while simultaneously assessing the impact of policy decisions related to air 
travel such as enplaning and deplaning, seating arrangements, and changes in gathering areas in airports. Our models will 
enable airlines and transportation agencies to make informed decisions to mitigate the risk of epidemics while minimizing 
morbidity and mortality of infectious diseases. 
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Figure 1. Integration of Models 
for Ebola Virus Transmission. 

Methods 
1. Searched the Virus Pathogen Resource (ViPR) by specifying: 
Species = Ebola Zaire; Minimum genome length = 18,700; Time = 2014-2015; No 
duplicate sequences = True; Host = Human 
 

2. Removed sequences: 
Without a collection day, month, and year (N=15); From the Democratic Republic of 
Congo that were genetically different (N=5); Unverified sequence KP759646 
 

3. Aligned 810 full-genome sequences using Muscle [2] 
 
4. Created different models by molecular clocks, tree priors, and codon partitions 
 
5. Ran Bayesian Markov chain Monte-Carlo simulations 100 million steps in BEAST [7] 
 
6. Evaluated models by computing the log marginal likelihood using Tracer 1.5 [9] 
Best = HKY+Γ substitution, uncorrelated lognormal relaxed clock, constant tree prior 
 
7. Created a Maximum Clade Credibility tree in TreeAnnotator [7] with a 10% burn-in  
 
8. Created a Google Earth file of the MCC tree using SPREAD [10] 
 
9. Calculated the KL divergence test of the root state using R [11] 
 
10. Calculated the association index of the virus location trait using BaTS [12] 
 
11. Calculated coalescent statistics using PACT [13] 

Figure 5. Origin in Guinea.  
Here, we show the MCC Tree in Google Earth.   Figure 6. Spread Throughout W. Africa. Figure 7. Cases in Europe. 

Figure 2. Maximum Clade Credibility (MCC) Tree.   
Guinea had 0.999 posterior probability at the root state (outbreak origin) with a KL of > 5 suggesting 
strong support. The Time of the Most Recent Common Ancestor (TMRCA) was estimated to be 1.99 
years. On the inset, we show the persistence values and 95% credible intervals. This is the average 
time (in years) for a virus to leave its sampled location [14] and is similar for the African countries. 

Figure 4. Association Index of the Virus Location Trait.  
Bars represent 95% highest posterior density. We reject the null hypothesis that no 
single tip with a location trait is any more likely to share that location with adjoining 
taxa than by chance. This suggests that the evolution of Ebola Zaire is structured 
by geography. 

Figure 3. Pairwise Migration Rates between Countries. 
The rates are in terms per lineage per year with thicker lines 
representing greater rates. The high values to Europe (SL à 
Switzerland is 14.6) are impacted by the small amount of sequences. 


