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We use Blue Waters to analyze risk of infection spread due to movement 
of passengers during air travel
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INTRODUCTION



MOTIVATION

• Air travel is an important factor in infection 
spread

• There had been calls to ban flights from Ebola 
infected areas
• This can have large human and economic impact

• Fine-tuned policy prescriptions can be as effective

• Reassures the public that action is being taken

• Avoids negative human and economic impacts



PROJECT GOALS

• Analyze the impact of different policies on 
spread of diseases through air-travel

• Example: Different boarding procedures

• Why it matters
• Provides insight to decision makers on policy or 

procedural choices that can reduce risk of infection 
spread without disrupting air travel



CURRENT MODELS

• Typically focused on scientific understanding, 
rather than policy analysis

• Predictions are difficulty due to inherent uncertainties

• Usually at an aggregate level, which makes 
evaluation of impact of new policies difficult

• Example: Inaccurate predictions on Ebola
• Predicted millions infected by early 2015 and 

hundreds of thousands dead



OUR MODELING APPROACH

• Use fine-scale model of human movement in 
planes to determine response to policies

• Parameterize sources of uncertainty
• A parameter sweep over this space generates 

feasible scenarios

• Key challenge
• Large parameter space leads to high computational cost

• Why Blue Waters 
• It provides the computational power to produce solutions in 

a national emergency
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QUESTIONS ANSWERED
• Can simple policies reduce infection risk without 

causing major disruptions?

• Change plane type

• Change boarding and disembarkation procedures

• Change airport layout and procedures

• Broader impacts 



MODELING PASSENGER MOVEMENT



SELF PROPELLED ENTITY DYNAMICS MODEL

• Social	dynamics	 is	motivated	 by	Molecular	
Dynamics,	 and	treats	 entities	 as	particles

• Individuals	 experience	 self	 propulsion	 that	 induces	
them	 to	move	toward	their	 desired	 goal

• They	experience	 repulsive	 forces	 from	other	 persons	
and	surfaces

• We	add	human	behavioral	 characteristics	
to	social	dynamics

• Parameterize	 the	 sources	 of	uncertainty	
and	carry	out	a	parameter	 sweep	 to	
identify	 their	 robustness	 under	 a	variety	 of	
possible	 scenarios

Initialize

Calculate	
Inter-particle
forces

Integrate	for	
motion

Calculate	
contacts

Self	propelling	
desired	velocity	
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BOARDING STRATEGIES



PERFORMANCE OPTIMIZATIONS



CONVENTIONAL OPTIMIZATIONS

• Blue Waters team helped reduce parallel IO 
bottleneck, leading to a factor two performance gain

Parallel parameter sweep with ~68K combinations



TYPES OF PARAMETER SWEEP

2D	Lattice 2D	Random 2D	LDS

Parameter	space	coverage:	
inefficient

Convergence	check:	inefficient
Factor	2d	gap	between	
convergence	checks	

Parameter	space	coverage:	
inefficient

Convergence	check:	efficient
Factor	2	gap	between	
convergence	checks

Parameter	space	coverage:	
efficient

Convergence	check:	efficient
Factor	2	gap	between	
convergence	checks

SPED model in this part of our study uses 5 parameters
• 5-D Lattice and 5-D Scrambled Halton Low Discrepancy Sequence 

(LDS) parameter sweeps used for infection spread analysis



CONVERGENCE FOR LATTICE SWEEP 
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CONVERGENCE FOR LDS SWEEP
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LOAD IMBALANCE IN LATTICE VS. LDS SWEEPS
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Load	imbalance	 for	Lattice	and	LDS	sweep	of	
the	entire	data	set	175	(without	convergence	

checks)	using	cyclic	distribution	

Load	imbalance	across	processes	is	
defined	as	

0	when	load	is	perfectly	balanced

• Lattice	sweep	is	well	balanced
• LDS	has	a	poor	balance	with	1000	and	1024	

processes
• LDS	performs	better	than	Lattice	for	1003	

processes
• 1003	is	divisible	by	17	(parameter	

values)

1000	and	1024	are	products	of	primes	used	in	the	LDS



LOAD BALANCING LDS

4000 16000 64000 256000

Parameter combinations

0.5

1.0

1.5

2.0

L
o
a
d
im

b
a
la
n
c
e
m
e
tr
ic

1000

1003

1024

4000 16000 64000 256000
Parameter combinations

0.0

0.2

0.4

Lo
ad

im
b
al
an

ce
m
et
ri
c

1000-dynamic

1003-dynamic

1024-dynamic

4000 16000 64000 256000
Parameter combinations

1.0

1.5

2.0

2.5

Lo
ad

im
b
al
an

ce
m
et
ri
c

1000-blockmapping

1003-blockmapping

1024-blockmapping

Cyclic	Distribution

Block	Distribution

Dynamic	Load	balancing

• Cyclic:	Load	is	not	well	balanced	in	the	initial	stages	
even	with	1003	processes	

• Block:	Does	not	work	well	for	small	number	of	samples
• Dynamic:	Master-worker	based	dynamic	load	balancing	

works	best	overall	but	is	not	scalable

With convergence checks



MODELING INFECTION SPREAD



INFECTION TRANSMISSION

http://sploid.gizmodo.com/ebola-spreading-rate-compared-to-other-diseases-visuali-1642364575

Since R0 for Ebola is around 2, that means a 
typical infective individual will produce on an 
average two new secondary cases thus, 
replacing him or herself, producing additional 
case, and eventually leading to large 
outbreak in the population. 

• Probability of infection transmission modeled as a function of 
distance to infected person, exposure time, and infectivity



• Boarding Boeing 757-
200
• One passenger at the 

first day of infection
• Infection probability = 

0.06
• Contact radius = 1.2 m

• Strategies that prevent 
clustering in the cabin 
reduce infection 
likelihood

IMPACT OF BOARDING STRATEGIES



LONG VS SHORT  CONTACT RADIUS

• Infection contact radius
• Ebola: 1.2 m
• SARS: 2.1 m

• Model includes airport gates



CONCLUSIONS



COMPUTATIONAL OPTIMIZATIONS

• Parameter sweep with LDS is more efficient than with 
lattice
o Better coverage of parameter sweep and faster 

convergence
o It made feasible analysis that was not feasible earlier

§ Load imbalance is a potential problem with LDS 
and is related to its number-theoretic properties
o Identified techniques, that can lead to good load 

balancing under different applications scenarios
25
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SUMMARY OF APPLICATION RESULTS
• Identified procedures that can lead to decrease in 

contacts
• Random boarding leads to lower risk of infection 

spread
• Boarding has a higher impact than deplaning
• Smaller planes are better than larger ones

• Use of better procedures and smaller planes 
could have reduced Ebola risk by 87% without 
travel restrictions

This material is based upon work supported by the National Science ACI under grants #1525061, #1524972, and #1525012 on 
Simulation-Based Policy Analysis to Reduce Ebola Transmission Risk in Air Travel and PRAC grant on Petascale 
Simulation of Viral Infection Propagation through Air Travel. Any opinion, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.We 
thank NCSA for providing use of the Blue Waters supercomputer.



FUTURE DIRECTIONS
• Extend this approach

• Assimilate data into simulation model
• Use domain adaptation to model related situations
• Consider the consequences of air travel

Zika importation risk prediction
• Identify human mobility from social media 

data and link with metapopulation 
epidemic model

• Fine-grained results predict locations 
within Miami with granularity of the order 
of a square mile

www.cs.fsu.edu/vipra


