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Abstract

This report shows how to tighten the analysis of global EDF scheduling on multiprocessor platforms, so as to verify the
feasibility of a significantly larger range of task systems than has been possible using the previously known tests, including
those recently by Bertogna, Cirinei, and Lipari. The improved EDF feasibility test for sporadic task systems with arbitrary
deadlines is proven correct, and evaluated in comparison to prior schedulability tests by simulation.

1 Introduction

This report shows how to tighten the analysis of global EDF scheduling on multiprocessor platforms, so as to verify the
feasibility of a significantly larger range of task systems than has been possible using the previously known tests, including
those proposed recently by Bertogna, Cirinei, and Lipari[4] and those proposed earlier by Baker[2, 3] and Goossens, Funk,
and Baruah [5].

2 Definitions

The analysis of EDF scheduling failures in [3] is based on obtaining upper and lower bounds on the computational load
over a time interval preceding a first missed deadline of some taskτk. The computational load is defined in terms of all the
computation done in the interval by tasks that can preemptτk. As pointed out by [4], when doing this sort of analysis one
does not need to consider all the work done by tasks thatcanpreemptτk, but only the time that such tasks that actuallydo
premptτk. That distinction is captured by the following definitions.

Definition 1 Thework Wi(a, b) done by a taskτk over a time interval[a, b) is the sum of the lengths of all the subintervals
in which a job ofτi executes. Thetotal workW (a, b) done in a time interval[a, b) is the sum

W (a, b) =
N∑

i=1

Wi(a, b)



TheinterferenceIk(t−∆, t) of a taskτk over a time interval[t−∆, t) is the sum of the lengths of all the subintervals
during whichτk is backlogged but unable to execute due to preemption. Theinterference contributionIi,k(t − ∆, t) of a
taskτi to Ik(t − ∆, t) is the amount of time during the interval thatτk is backlogged whileτi andm − 1 other tasks are
executing. (Adapted from [4].)

Theblock busy timeB(a, b) of a time interval[a, b) is the sum of the lengths of all the subintervals during which allm
processors are executing. Theblock busy timeBi(a, b) of a taskτi is the amount of time thatτi executes in parallel with
m− 1 other tasks.

A consequence the above definitions is thatIk(a, b) ≤ B(a, b) ≤ W (a, b), andIi,k(a, b) ≤ Bi(a, b) ≤ Wi(a, b)

The following lemma is adapted from [4].

Lemma 1 If [a, b) is an interval in which it is always the case that at least one processor is executing andB(a, b) > x then
one of the following is true

N∑
i=1

min{Bi(a, b), x)} > mx (1)

Bi(a, b) < x ⇐⇒ Bi(a, b) = 0 (2)

proof:

SupposeB(a, b) > x. Let S = { i |Bi(a, b) ≥ x} andξ = |S|. Observe thatξ ≤ m. If ξ < m, then

N∑
i=1

min{Bi(a, b), x} = ξx +
∑

i:Bi<x

Bi(a, b)

= ξx + mB(a, b)−
∑

i:Bi≥x

Bi(a, b)

≥ ξx + mB(a, b)− ξB(a, b)
> ξx + (m− ξ)x = mx

Otherwise, ifξ = m and
∑N

i=1 min{Bi(a, b), x} ≤ mx thenmx ≥ ξx +
∑

i:i 6∈S Bi(a, b).

It follows thatBi(a, b) < x if-and-only-if Bi(a, b) = 0.
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Observe that the lemma is also true if one replacesB(a, b) by Ik(a, b) andBi(a, b) by Bi,k(a, b).

In the next two sections the core results of [3] are refined to make use of block busy time and the above lemma.

3 Lower Bound

Lemma 2 (lower bound) If t is a first missed deadline ofτk and [t−∆, t) is the corresponding maximalτk-busy interval
then

Ik(t−∆, t) > ∆− ck

Tk
(∆ + Tk − dk)
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proof: Wk(t−∆, t) is the amount of timeτk executes in the interval. Sinceτk is continually backlogged over the interval,
the only subintervals in whichτk does not execute are the ones in which allm processors are busy executing jobs that
interfere withτk, so

Ik(t−∆, t) = ∆−Wk(t−∆, t) (3)

Let j ≥ 0 be the number of jobs ofτk that execute in the interval. Consider the casesj = 0 andj > 0 separately.

If j = 0 thenx = 0. Since∆ ≥ dk andTk > 0, it follows that

Ik(t−∆, t) = ∆ > ∆− ck

Tk
(∆ + Tk − dk)

If j > 0 then sinceτk is backlogged over the entire interval,

Wk(t−∆, t) < jck (4)

Sinceτk is not backlogged at the start of the interval, all of thej jobs that execute in the interval are released on or after
t−∆ and not later thant− dk (becauset is a missed deadline), and since the release times are separated by at leastTk,

(j − 1)Tk + dk ≤ ∆ (5)

It follows from (3)-(5) that

Ik(t−∆, t) = ∆−Wk(t−∆, t) > ∆− ∆− dk

Tk
ck − ck = ∆− ck

Tk
(∆ + Tk − dk) (6)
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Note that sinceIk(t − ∆, t) ≤ B(t − ∆, t) ≤ W (t − ∆, t), the lower bound on interference provided by the above
lemma also applies to busy timeB(t−∆, t) and workW (t−∆, t).

4 Upper Bound

The workWi(t−∆, t) done byτi in an interval[t−∆, t) is bounded by the interval length∆ and may include:

1. a portion of the execution times of zero or more jobs that are released beforet−∆ but are unable to complete by that
time, which are calledcarried-in jobs;

2. the full execution timesci of zero or more jobs that are released on or after timet−∆ and complete by timet;

3. a portionε ≤ ci of the execution time of at most one job that is released at some timet− δ, 0 < δ ≤ ∆, but is unable
to complete by timet.

To bound the size of the carried-in contribution ofτi the maximalτk-busy interval will be extended downward as far as
possible while still maintaining a lower bound on block busy time as in Lemma 2.
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Definition 2 An interval[t−∆, t) is τλ
k -busyfor a given constantλ ≥ ck/Tk if

B(t−∆, t) > ∆− λ(∆ + Tk − dk)

It is a maximalτλ
k -busy interval if it isτλ

k -busy and there is no∆′ > ∆ such that[t−∆′, t) is alsoτλ
k -busy.

Lemma 3 If t is a first missed deadline ofτk andλ ≥ ck/Tk then there is a unique maximalτλ
k -busy interval[t − ∆̂, t),

and∆̂ ≥ dk.

proof: Sinceτk misses a deadline at timet, by Lemma 2, the interval[t−dk, t) is τλ
k -busy. Therefore, the set of all starting

pointst′ ≤ t−∆ of τλ
k -busy intervals[t′, t) is non-empty. This set must have a minimal member, since there is a start time

of the system, before which no jobs arrive. Let∆̂ = t− t′ for this minimum valuet′ and the lemma is satisfied.

2

Definition 3 Given a task setS, a release-time assignmentr, a taskτk that has a first missed deadline at timet, and a
valueλ ≥ ck/Tk, the unique interval[t − ∆̂, t) that is guaranteed by Lemma 3 is calledtheτλ

k -busy interval ofτk. From
this point on, let[t− ∆̂, t) denote such an interval.

The next step in the analysis is to find an upper bound on the workWi(t−∆̂, t) done by each taskτi in aτλ
k -busy interval

[t− ∆̂, t).

Lemma 4 (upper bound) If t is a first missed deadline of taskτk, λ ≥ ck/Tk and[t− ∆̂, t) is the correspondingτλ
k -busy

interval, then for any taskτi such thati < k

Wi(t− ∆̂, t)
∆̂

≤ βλ
k (i)

where

βλ
k (i) =


max{ ci

Ti
, ci

Ti
(1− di

dk
) + ci

dk
} if ci

Ti
≤ λ

ck

Tk
if ci

Ti
> λ andλ ≥ ci

di
ci

Ti
+ ci−λdi

dk
if ci

Ti
> λ and ci

di
> λ

proof: The only interesting cases are those whereWi(t− ∆̂, t) is nonzero, which means thatτi executes in the interval.

Let t − ∆̂ − φ be the release time of the first job ofτi that is released beforet − ∆̂ and executes in the interval, if such
exists; otherwise, letφ = 0. Observe that the wayφ is chosen guaranteesφ < di.

If φ > 0 the interval[t − ∆̂ − φ, t − ∆̂) is non-empty and must beτi-busy. Call this thepreamblewith respect toti of
[t− ∆̂, t). Reasoning similar to that of Lemma 2 will be used to bound the amount of execution time thatτi may carry from
the preamble into[t− ∆̂, t).

Wi(t− ∆̂−φ, t− ∆̂) is the total amount of time spent executing jobs ofτi in the preamble. Sinceτi is backlogged over
[t− ∆̂− φ, t− ∆̂) the only times in this interval thatτi does not execute are when it is preempted by jobs ofm other tasks.
Therefore,

B(t− ∆̂− φ, t− ∆̂) ≥ φ−Wi(t− ∆̂− φ, t− ∆̂) (7)

Since[t− ∆̂, t) is τλ
k -busy,

B(t− ∆̂, t) > ∆̂− λ(∆̂ + Tk − dk) (8)
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Since[t− ∆̂, t) is maximalτλ
k -busy andφ > 0,

B(t− ∆̂− φ, t) ≤ ∆̂− λ(∆̂ + Tk − dk) (9)

The block busy time of the concatenation of any two contiguous intervals is the sum of the block busy times of the
intervals, so

B(t− ∆̂− φ, t− ∆̂) + B(t− ∆̂, t) = B(t− ∆̂− φ, t) (10)

From (7)-(10) it follows that

φ−Wi(t− ∆̂− φ, t− ∆̂) + ∆̂− λ(∆̂ + Tk − dk) < B(t− ∆̂− φ, t− ∆̂) + B(t− ∆̂, t)
≤ ∆̂ + φ− λ(∆̂ + φ + Tk − dk)

and so,
Wi(t− ∆̂− φ, t− ∆̂) > φλ (11)

Let j > 0 be the number of jobs ofτi that execute in the interval[t− ∆̂− φ, t). An upper bound on the total execution
time of τi in [t− ∆̂− φ, t) is

Wi(t− ∆̂− φ, t) ≤ jci (12)

From (11) and (12),

Wi(t− ∆̂, t) = Wi(t− ∆̂− φ, t)−Wi(t− ∆̂− φ, t− ∆̂) < jci − φλ (13)

By the minimum separation constraintTi,

j − 1 ≤ ∆̂ + φ− di

Ti
(14)

Combining (13) and (14),
Wi(t− ∆̂, t)

∆̂
<

ci(∆̂ + φ− di)
Ti∆̂

+
ci − φλ

∆̂
(15)

Let f(φ, ∆̂) be the function defined by the formula on the right side of inequality (15) above. That is

f(φ, ∆̂) =
ci

Ti
+

ci

Ti

Ti − di

∆̂
+

φ

∆̂
(
ci

Ti
− λ)

The value off(φ, ∆̂) is bounded by consideration of the following cases.

Case 1:Supposeci

Ti
> λ. It follows thatf is increasing with respect toφ, and sinceφ < di,

f(φ, ∆̂) ≤ ci

Ti
+

ci

Ti

Ti − di

∆̂
+

di

∆̂
(
ci

Ti
− λ)

=
ci

Ti
+

ci

∆̂
− di

∆̂
λ
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Case 1.1:Supposeci

di
> λ. It follows thatf is decreasing with respect tô∆, and sincê∆ ≥ dk,

f(φ, ∆̂) ≤ ci

Ti
+

ci − λdi

dk
= βλ

k (i)

Case 1.2:Supposeci

di
≤ λ. It follows thatf is non-decreasing with respect tô∆, and taking the limit aŝ∆ →∞,

f(φ, ∆̂) ≤ ci

Ti
= βλ

k (i)

Case 2:Supposeci

Ti
≤ λ. It follows thatf is non-increasing with respect toφ, and sinceφ > 0,

f(φ, ∆̂) ≤ ci

Ti
+

ci

Ti

Ti − di

∆̂

The expression on the right above is decreasing with respect to∆̂ if-and-only-if Ti > di. Since∆̂ ≥ dk, it follows that

f(φ, ∆̂) ≤ ci

Ti
+ max{0,

ci

Ti

Ti − di

dk
}

= max{ ci

Ti
,
ci

Ti
(1− di

dk
) +

ci

dk
} = βλ

k (i)

The above upper bounds onWi(t − ∆̂, t) and Wi(t−∆̂,t)

∆̂
entirely cover the caseφ > 0. In the remaining case, where

φ = 0, it is clear thatWi(t− ∆̂, t) cannot be any larger, since there is no carried-in execution ofτi.

2

5 Schedulability Condition

Lemmas 1 and 4 can be combined to obtain the following schedulability test.

Theorem 1 (EDF Schedulability Condition) Let S = {τ1, . . . , τN} be a set of sporadic tasks, letβλ
k (i) be as defined as

in Lemma 4 and letλk = λ max{1, Tk

dk
}. The task setS is schedulable onm processors using global preemptive EDF

scheduling if, for every taskτk, k = m+1, . . . , N there existsλ ≥ ck

Tk
such that one or more of the the following numbered

criteria is satisfied

N∑
i=1

max{βλ
k (i), 1− λk} < m(1− λk) (16)

N∑
i=1

min{βλ
k (i), 1− λk} = m(1− λk) and ∃

i

0 < βλ
k (i) < 1− λk (17)

N∑
i=1

min{1, βλ
k (i)} ≤ m(1− λk) + λk (18)
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proof: The proof is by contradiction. Suppose there is a task setS with a release time assignmentr for which some taskτk

has a first missed deadline at timet. Let [t− ∆̂, t) be theτλ
k -busy interval guaranteed by Lemma 3.

By the definition ofτλ
k -busy,

B(t− ∆̂, t)
∆̂

≥ 1− λ + λ
Tk − dk

∆̂
(19)

Case A: If Tk ≤ dk then the value of the expression on the right side of the inequality above is non-decreasing with
respect tô∆, and sincê∆ ≥ dk,

B(t− ∆̂, t)
∆̂

> 1− λ + λ
Tk − dk

dk
= 1− λ

Tk

dk
(20)

Case B:If Tk > dk then the value of the expression on the right side of inequality (19) is decreasing with respect to∆̂,
and so

B(t− ∆̂, t)
∆̂

> 1− λ (21)

Sinceλk = λ max{1, Tk

dk
}, (20) and (21) can be combined into

B(t− ∆̂, t)
∆̂

> 1− λk (22)

Observe thatWi(t− ∆̂, t) ≤ ∆̂ and so by the definition of block busy time

N∑
i=1

min{Wi(t− ∆̂, t), ∆̂} =
N∑

i=1

Wi(t− ∆̂, t) = W (t− ∆̂, t) > (m− 1)B(t− ∆̂, t) + ∆̂ (23)

It follows from Lemma 4 and (22) that

N∑
i=1

min{βλ
k (i), 1} >

(m− 1)B(t− ∆̂, t) + ∆̂
∆̂

> m(1− λk) + λk (24)

Therefore condition (18) of the theorem must be false. It remains to show that conditions (16) and (18) must also be
false.

By Lemma 1 withx = 1− λk and using (22), one of the following two cases must hold:

Case 1:

N∑
i=1

min{Bi(t− ∆̂, t)
∆̂

, 1− λk} > m(1− λk) (25)

Combining Lemma 4 and (25), and usingBi(t− ∆̂, t) ≤ Wi(t− ∆̂, t),

N∑
i=1

min{βλ
k (i), 1− λk} > m(1− λk) (26)

This contradicts conditions (16) and (17) of the theorem.
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Case 2:Bi(t− ∆̂, t) < 1− λk if-and-only-if Bi(t− ∆̂, t) = 0.

This case directly contradicts condition (17). To see that it also contradicts condition (16), observe that

N∑
i=1

min{Bi(t− ∆̂, t)
∆̂

, 1− λk} = m(1− λk) (27)

SinceWi(t− ∆̂, t) ≥ Bi(t− ∆̂, t), by Lemma 4 and (27),

N∑
i=1

min{βλ
k (i), 1− λk} ≥ m(1− λk) (28)

2

The above theorem can be used as a schedulability test by testing the three conditions for each value ofk. The test is
of complexityO(N3) since the only values ofλ that need be considered are the minimum and the points whereβλ

k (i) is
discontinuous, i.e.,

• λ = ci/T i, i = 1, . . . , N

• λ = ci/di, if di > Ti

6 Prior Work

The theoretical worst-case achievable processor utilizations of the global and partitioned scheduling approaches have
been shown to be very similar, for sporadic or aperiodic task sets with deadline equal to period. Andersson, Baruah, and
Jonsson[1] showed that the utilization guarantee for EDF or any other static-priority multiprocessor scheduling algorithm –
partitioned or global – cannot be higher than(m + 1)/2 for anm-processor platform.

Goossens, Funk, and Baruah [5] showed that a system of independent periodic tasks can be scheduled successfully onm
processors by EDF scheduling if the total utilization is at mostm(1−umax)+umax, whereumax is the maximum utilization
of any individual task. They also showed that this utilization bound is tight, in the sense that there is no utilization bound
Û > m(1− umax) + umax + ε, whereε > 0, for whichU ≤ Û guarantees EDF schedulability.

Srinivasan and Baruah[6] also examined the global EDF scheduling of periodic tasks on multiprocessors, and showed
that any system of independent periodic tasks for which the utilization of every individual task is at mostm/(2m− 1) can
be scheduled successfully onm processors if the total utilization is at mostm2/(2m− 1).

In 2002, Srinivasan and Baruah[6] proposed a method for dealing with a few heavy tasks, using ahybrid scheduling
policy. Their idea is to give highest (fixed) priority to to tasks of utilization greater than some constantζ, and schedule the
other tasks according to the basic EDF algorithm. This algorithm is called EDF-US[ζ]. Algorithm EDF-US[m/(2m− 2)]
was shown to correctly schedule onm processors any periodic task system with total utilizationU ≤ m2/(2m− 2).

Baker[2, 3] derived several sufficient feasibility tests form-processor preemptive EDF scheduling of sets of periodic and
sporadic tasks with arbitrary deadlines, and showed that the optimal value ofζ in EDF-US[ζ] with respect to maximizing
the worst-case guaranteed schedulable utilization isζ = 1/2, for which the utilization bound is(m + 1)/2. It follows from
the argument in [1] that this bound is tight, and it is identical to the worst-case utilization bound for EDF-based first-fit-
decreasing (FFD) partitioned scheduling. Baker also proposed extending the EDF-US[ζ] hybrid scheduling model, to define
“heaviness” in terms ofλi = ci/ min{Di, Ti} rather thanui and to not use a fixed cut-off value.
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Bertogna, Cirinei and Lipari[4] made further improvements in global EDF schedulability tests. First, they observed that
the proof of the utilization bound test of [5] extends naturally to cover pre-period deadlines if the utilizationui is replaced
by ci/Di. As observed by Sanjoy Baruah1, the same proof extends to the case of post-period deadlines ifci/Di is replaced
by λi = ci/ min{Di, Ti}.

Theorem 2 (GFB) A set of sporadic tasksτ1,. . . ,τN is EDF schedulable onm identical processors if

N∑
i=1

λi ≤ m− λmax(m− 1)

whereλmax = max{λi|i = 1, . . . , N}.

Bertognaet al. also developed the following new schedulability test.

Theorem 3 (BCL) A set of sporadic tasksτ1,. . . ,τN (with constraintdi ≤ Ti) is EDF schedulable onm identical proces-
sors if for each taskτk one of the following is true:∑

i 6=k

min{βi, 1− λk} < m(1− λk) (29)

∑
i 6=k min{βi, 1− λk} = m(1− λk) and

∃i 6= k : 0 < βi ≤ 1− λk
(30)

where

βi =
Nici + min{ci,max{0, dk −NiTi}}

dk

and

Ni =
⌊

dk − di

Ti

⌋
+ 1

Bertognaet al. demonstrated that the BCL, GFB, and Baker[2, 3] tests are generally incomparable, but observed that the
BCL test seemed to do better than the rest on task sets with a few “heavy” (high utilization) tasks. They reported simulations
on collections of pseudo-randomly generated tasks sets with a few heavy tasks, for which the BCL was able to discover
significantly more schedulable task sets than either of the other two tests. However, they did not compare these results
against the EDF-US[ζ] hybrid method of handling heavy tasks proposed in 2002 by Srinivasan and Baruah[6] or the more
general hybrid models proposed by Baker.

The main contribution of the current paper is to take the observation of BCL, that if a taskτk misses a deadline the
maximum fraction of the workload of any task that can contribute to the interference is1 − λk, and combine it with the
busy-interval analysis of [3], to obtain a tighter bound than either method could achieve alone. A secondary contribution is
to demonstrate that a hybrid scheme, in which up tom “heavy” tasks are chosen to receive top priority, is significantly more
effective than pure EDF scheduling, for task systems with some heavy tasks.

7 Empirical Comparisons

To demonstrate that the new schedulability test does offer an improvement in accuracy over the previous tests, a series
of experiments were conducted on pseudo-randomly generated sets of sporadic tasks. The tests compared are:

1personal communication
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BAK Baker’s test from [2, 3]
GFB Goosens, Funk and Baruah’s test, extended to arbitrary deadlines by Bertogna, Cirinei and Lipari, as stated Theorem

2 above.
BCL Bertogna, Cirinei, and Lipari’s test, as stated in Theorem 3 above.
BAK2 Baker’s revised test, as stated in Theorem 1 above.
GFB+BCL Apply the GFB test first, and if it fails, apply the BCL test.
GFB+BAK2 Apply the GFB test first, and if it fails, apply the BAK2 test.
GFB+BCL+BAK2 Apply the GFB+BCL, and if it fails, apply BAK2.

7.1 Generation of Datasets

The performance of the above schedulability tests was evaluated on several datasets. Each dataset contained 1,000,000
sets of tasks. The task periods were generated pseudo-randomly with a uniform distribution between 1 and 1000. The
processor utilizations (and, implicitly, the compute times) were chosen according to the following distributions, truncated
to bound the utilization between 0.001 and 0.999.

1. uniform distribution, between 1/period and 1
2. bimodal distribution: heavy tasks uniform between 0.5 and 1; light tasks uniform between 1/period and 0.5; proba-

bility of being heavy = 1/32

3. exponential distribution with mean 0.25
4. exponential distribution with mean 0.50

The deadlines were chosen in two different ways:

A constrained: deadlines uniformly distributed between the execution time and the period

B unconstrained: deadlines uniformly distributed between the execution time and 4 times the period (for all but the BCL
test)

Separate datasets were generated for 2, 4, and 8 processor systems, as follows. An initial set ofm+1 tasks was generated,
and tested. Then another task was generated and added to the previous set, and all the schedulability tests were run on the
new set. This process of adding tasks was repeated until the total processor utilization exceededm. The whole procedure
was then repeated, starting with a new initial set ofm + 1 tasks.

All five schedulability tests, and were run on these 24 datasets. Only the results of a few of the experiments are reported
here, due to space limitations and because the trends across the experiments were quite similar.

7.2 Results for Basic EDF

Figures 1-3 compare the success rates of the GFB, BCL, and BAK2 tests on three of the datasets. Like most of the other
graphs in this paper, each is a histogram of 100 buckets, each bucket corresponding to a range of 1 percent of the full range
of total utilizations possible for a given number of processors. So, with four processors the buckets each represent a total
processor utilization range of four percent. The three lower lines in each graph show how many task sets were verifiably
feasible according to each of the three tests. The upper line shows the total number of task sets in each bucket, including
both feasible and infeasible task sets.

2Intended to bias toward cases with a few heavy tasks, similar to the experiments of Bertogna, Cirinei, and Lipari[4].
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Infeasible task sets are included in the count because the only necessary and sufficient test for feasibility of global EDF
scheduling ofN tasks onm processors known to this author has worst-case execution time of the orderO(mN ·ΠN

i=1Tici).
The author implemented and tested that algorithm, but running it on datasets of the size considered here was not practical.
Reporting the relative performance of the efficient sufficient tests of feasibility on large numbers of tasks sets seemed more
important than comparing them against perfection on a much smaller number of task sets, with smaller periods.

Note that in [4] it is claimed that “simulation of the schedule up to the hyper-period checking for missed deadlines” is
a necessary and sufficient test for schedulability. However, this author is not aware of any proof that such a simulation is
a sufficient test for feasibility of sporadic task sets, or even of periodic tasks sets with arbitrary initial release time offsets.
Even under the assumption of strictly periodic tasks and simultaneous start times, if periods can exceed deadlines simulation
to the hyperperiod is not sufficient.
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Figure 1. Constrained deadline, bimodal utilization distribution, 4 CPUs

Figure 1 is for one of the datasets were the BCL test was more effective than the other tests over some range of the
utilization distribution. The dataset shown is for constrained deadlines and bimodal task utilizations on four processors.
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Figure 2. Constrained deadline, exponential utilization w/mean 0.25, 2 CPUs

Figure 2 is for one of the datasets where the GFB test was most accurate over some range of the utilization distribution.
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The dataset shown is for unconstrained deadlines and exponentially distributed task utilizations with mean 0.25 on two
processors.
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Figure 3. Unconstrained deadline, exponential utilization w/mean 0.25, 4 CPUs

Figure 3 is for a 4-cpu dataset with unconstrained deadlines and exponentially distributed task utilizations with mean
0.25.

Because the three tests each have some cases where they are more accurate in determining feasibility, it makes sense to
apply them in combination, starting with the computationally least expensive, that is:

1. apply the GFB test
2. if the GFB test fails, apply the BCL test
3. if the BCL test fails, apply the BAK2 test

Figures 4-6 show the results of applying such a three-stage test on the same datasets reported in Figures 1-3. These are
typical of the results on all of the 24 datasets.

It is clear that the combination of the three tests, GFB+BCL+BAK2, is the winner among the feasibility tests for pure
EDF scheduling. This test is called “GBB” for short, from this point on.

7.3 Hybrid Scheduling Schemes

In addition to basic EDF scheduling, the performance of the following hybrids of EDF and highest-utilization-first
scheduling was tested:

1. EDF-US[1/2]: give special priority to the tasks of utilization greater than 1/2, which is the cut-off value that guarantees
the highest worst-case utilization when deadline=period;

2. EDF-UM: give special priority to thek tasks with highest utilization, wherek is the smallest value between 0 andm
for which the system can be verified as schedulable according to the GBB Test.

3. EDF-LM: give special priority to thek tasks with highest value ofci/ max{Ti, di}, wherek is the smallest value
between 0 andm for which the system can be verified as schedulable according to the GBB Test.
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Figure 4. Constrained deadline, bimodal utilization distribution, 4 CPUs
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Figure 5. Constrained deadline, exponential utilization w/mean 0.25, 2 CPUs
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Figure 6. Unconstrained deadline, exponential utilization w/mean 0.25, 4 CPUs
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Figure 7. Constrained deadline, bimodal utilization, 2 CPUs

14



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  50  100  150  200  250  300  350  400

GBB
GBB-US[1/2]

GBB-UM
GBB-LM

()

Figure 8. Constrained deadline, bimodal utilization, 4 CPUs
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Figure 9. Constrained deadline, bimodal utilization, 8 CPUs
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Figure 10. Constrained deadline, exponential utilization w/mean 0.25, 2 CPUs
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Figure 11. Constrained deadline, exponential utilization w/mean 0.25, 4 CPUs
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Figure 12. Constrained deadline, exponential utilization w/mean 0.25, 8 CPUs
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Figure 13. Unconstrained deadline, exponential utilization w/mean 0.25, 2 CPUs
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Figure 14. Unconstrained deadline, exponential utilization w/mean 0.25, 4 CPUs
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Figure 15. Unconstrained deadline, exponential utilization w/mean 0.25, 8 CPUs
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Figures 7-15 show the results of applying these three hybrid EDF scheduling policies with the GBB test on the same
datasets reported in Figures 1-3. The GBB test was applied to the remainingN−k tasks onm−k processors, after choosing
k special tasks to receive top priority. These result are typical of what was observed on all of the 24 datasets. The EDF-LM
hybrid scheme clearly finds the highest number of verifiably schedulable task sets at every total utilization level.

8 Conclusions

Theorem 1 provides a new schedulability test, that is able to verify the feasibility under EDF multiprocessor scheduling
of a significant number of task systems that could not be verified using previously known tests, including those recently by
Bertogna, Cirinei, and Lipari[4] and those proposed earlier by Baker[2, 3] and Goossens, Funk, and Baruah [5]. Combining
these tests has been shown to be advantageous, especially in a hybrid scheduling scheme where which a few tasks, up to
one minus the number of processors, are given special top priority and the other tasks are scheduled by EDF priority.
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