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Abstract 

Fuzzing, or program testing using randomized inputs, is a 

useful technique to detect bugs elusive to regression suites 

and human testing.  The idea of using randomized inputs is to 

have a broad uniform reach of the code branches to increase 

the program test coverage.  

When fuzzing a file system, sequences of file operations are 

one source of input.  Its persistent file-system image is 

another source of input, as file operations retrieve from and 

store to the image.  One interesting observation is that leading 

file-system fuzzers tend to permute operations and their 

parameters, accessing a small set of files to encourage the 

exploration of deep code branches; thus, the accessed file-

system image locations may show decent locality.  That also 

means fuzzing random file-system image locations is not as 

effective, as fuzzed file operations are unlikely to reference 

random image locations. 

Another challenge is the minimum file-system image size a 

fuzzer has to track is large.  Therefore, leading file-system 

fuzzers avoid saving and restoring modified images at the 

cost of, at times, regenerating system states and reducing the 

reproducibility of bugs. 

We introduce LFUZZ, a file-system fuzzing framework that 

exploits the locality shown in typical fuzzing workloads.  

LFUZZ tracks recently accessed image locations and nearby 

locations to predict the locations that will be referenced in the 

near future.  Our scheme is dynamic and adaptive to 

migrating file access patterns.  Also, since modified image 

locations are localized, LFUZZ incrementally tracks file-

system image changes, so that states can be fuzzed from 

intermediary images instead of from the top-level seed 

images.  LFUZZ further explores the use of partially updated 

images to simulate missing writes.   

We applied LFUZZ to fuzz ext4, BTRFS, and F2FS, and 

LFUZZ has found 17 new bugs.  Compared to JANUS, 

LFUZZ reduced the fuzzing area by up to a factor of eight 

and increased the code execution branch coverage by up to 

18%. 

1. Introduction 

File systems are perhaps one of the most important operating 

system components, as they hold consistent and persistent 

states to survive reboots and crashes.  Bugs in file systems 

can potentially lead to bad consequences, ranging from 

deadlocking and crashing the operating system to losing data 

and exposing security vulnerabilities.  An adversary can lure 

a user to mount a crafted file system image [Langner 2011] 

or issue a sequence of file operations that leads to 

vulnerabilities or escalation of privileges [MITRE 2009].  

Traditional ways to eliminate file-system bugs heavily rely 

on manual testing and regression test suites [Atoa and Kono 

2019; SGI 2022].  However, human enumerations of testing 

cases may miss bug triggers that involve complex sets of 

constraints to be met.  It is also possible to exhaustively and 

systematically test workloads within a bounded space 

[Mohan et al. 2019] such as, for example, within a dozen file 

operations.  The drawback of this approach is that it is 

missing bugs that involve more file operations. 

One alternative is fuzzing, which uses accumulated random 

inputs and can find corner cases slipped from regression test 

suites.  Syzkaller [2022] is perhaps the most well-known 

kernel fuzzer.  With continuous fuzzing of syzbot [2022], it 

has reported 2,800+ bugs in 2.5 years to upstream Linux 

kernels.  Other general kernel fuzzers include kAFL 

[Schumilo et al. 2017] and the fuzzers based on Syskaller 

[Wang et al. 2021]; all find a decent number of new bugs 

within days of fuzzing, indicating that fuzzing is promising 

to explore hard corner-case bugs. 

When fuzzing file systems, the traditional notion of fuzzing 

is not sufficient.  The first challenge is that a file system has 

two sources of inputs, sequences of file operations and 

persistently stored images.  For a typical fuzzer, while file 

operations and parameters are randomly permuted, randomly 

fuzzing file-system images is not as effective.  For example, 

fuzzing the content of i-node X will not affect the file-system 

execution coverage if the file operations only reference i-

node Y.     

A second challenge is that the minimum file-system size 

ranges from 8MB to 128MB.  While it may seem small 

compared to the size of modern storage, if each fuzzing test 

involves saving and restoring a file-system image, both the 

performance overhead and storage capacity overhead can be 

prohibitive.   

We introduce LFUZZ, a file-system fuzzing framework, to 

address these two challenges.  The key observation is that 

while file operations and parameters are permuted during 

fuzzing, typically, only a small set of files (i.e., <100 within 

240 CPU fuzzing hours) are accessed to encourage deeper 

state explorations, even for a file system prepopulated with 

many files.  This means that the referenced file system image 

locations may show a decent locality.  Thus, by fuzzing the 

image locations likely to be referenced next, we can reduce 

the number of fuzzing iterations that yield no new execution 



coverage.  The locality of image updates also means smaller 

and clustered modified image ranges, allowing us to save and 

restore file system images in the form of deltas.  Additionally, 

we discovered that incompletely restoring deltas simulates 

missing writes, another form of testing that leads to many bug 

discoveries. 

We applied LFUZZ on ext4 [Mathur et al. 2007], BTRFS 

[Rodeh et al. 2013], and F2FS [Lee et al. 2015] for 240 CPU 

hours.  Compared to JANUS, LFUZZ increased the code 

execution branch coverage by up to 18% [Xu et al. 2019].  

Furthermore, LFUZZ discovered 17 new bugs. 

In summary, we have made the following contributions to 

this work: 

 We have identified that file-system image fuzzing is 

insufficient because many fuzzed locations are not 

referenced by file operations. 

 We analyzed the locality feature of fuzzing file 

system workloads on file-system image 

modifications and proposed the locality-aware 

fuzzing approach for kernel file systems. 

 We applied image deltas with missing write 

simulations to find file-system bugs. 

 We designed, implemented, and evaluated the 

LFUZZ prototype, which increased the branch 

coverage by up to 18% compared to JANUS, and 

found 17 new bugs. 

The remaining paper is structured as follows.  Section 2 

shows the limitations of leading file-system fuzzers.  Section 

3 examines image reference locality under leading fuzzing 

workloads.  Sections 4, 5, and 6 present our LFUZZ design, 

implementation, and evaluation.  Section 7 relates our work 

with existing fuzzers.  Section 8 discusses this study’s 

limitations and directions for future work, and Section 9 

concludes the paper. 

2. Leading File-System Fuzzers 

Since saving and restoring file-system images are expensive, 

the designs of leading file-system fuzzers try to avoid this 

cost.   

Syzkaller [2022]: for image fuzzing, Syzkaller first creates a 

file-system image by picking an mkfs parameter set and 

prepopulateing the file system.  Then, a random sequence of 

fuzzed file operations is applied.  File operation fuzzing is 

similar, but file operations are tested one after another 

without resetting the kernels until the container VM reaches 

the time limit or needs to reboot.  Note that the notion of 

randomness here is constrained by the file system semantics.  

A write system call can only be issued to a file that is already 

open [Syzkaller 2022a].  This constraint limits the number of 

files being fuzzed in one execution (within 240 CPU fuzzing 

hours, we see the maximum referenced file number is 4, and 

the maximum number of operations on files is 13, but the 

average number of operations on files is only 2). 

One consequence of not resetting file system images between 

sequences of file operations is that when a bug is detected 

(e.g., system crashes, kernel panics, BUG() error message, 

KASAN [Jeon et al. 2020] error messages, time outs), it is 

difficult to discern whether it is caused by the latest sequence 

of file operations or the cumulative changes of system states 

leading to this point.  When the latest sequence of file 

operations is applied to the original image, the bug 

reproducibility rate is only around 50% based on our 

experience.  Xu et al. [2019] found that all crash-related bugs 

for Syzkaller are not reproducible.  Additionally, Syzkaller 

does not fuzz the file system images.  

AFL [Zalewski 2018], a popular fuzzing tool based on 

genetic algorithms, has also been used to fuzz file-system 

images [Nossum and Casanovas 2016].  The fuzzed images 

can be mounted to run regression test suites.  AFL narrows 

down the file-system image by fuzzing only nonzero 

metadata blocks.  Corrupted data blocks generally pose little 

threat to file-system integrity; thus, they are omitted for 

fuzzing.  An unintended side effect is that AFL may skip 

valid metadata blocks that are zero-initialized.  Another issue 

is that for copy-on-write file systems, new versions of 

metadata are written elsewhere instead of updating metadata 

in place, littering obsolete nonzero metadata blocks behind, 

diluting the fuzzing targets.  Fuzzing obsolete metadata 

blocks would not contribute to finding new execution 

branches. 

JANUS [Xu et al. 2019] is built on a variant of the AFL 

fuzzing code base, and it fuzzes both file operations and file 

system images.  To increase the chance of fuzzing image 

locations that will be referenced, JANUS extracts the initial 

metadata regions from a given file-system image with 

prepopulated files, and it would fuzz only the fixed metadata 

region.   

A JANUS fuzzing round starts with an image fuzzing phase, 

with a selected file system image, say I0.  JANUS then fuzzes 

a metadata location to create I1, and applies a random file 

operation F0 (complying with file-system semantics).  A new 

execution coverage is detected when a new transition is found 

between two compiled basic blocks.  If no new execution 

coverage is found, JANUS returns to I0, starts a new iteration, 

fuzzes another metadata location to create I2, and reapplies F0 

to I2.  If a new execution coverage is found, JANUS saves the 

metadata region of I2 and F0, along with file states indicating 

whether a file is open, etc. 

After enough iterations (depending on the coverage found so 

far with I0), if JANUS cannot find any coverage during the 

image fuzzing phase, it enters the second phase of file-



operation fuzzing (still within the same round).  Since we 

have discovered new coverage, the file operation phase is 

skipped in this case.  The saved image with the highest 

priority is chosen based on the AFL seed scheduling scheme. 

In this case, I2 is chosen for the next round. 

However, suppose no coverage is found during the first 

phase.  Random file operations are selected with mutated 

arguments or appended to the file operation sequence.  After 

each mutation or appending, file operations are applied to the 

original unfuzzed I0.  After enough iterations (depending on 

the coverage found so far), the saved image with the highest 

coverage increase is chosen. 

One detail to handle with image fuzzing is checksummed 

blocks (e.g., superblocks).  Fuzzing a superblock will likely 

lead to mount failures, which precludes the exploration of 

deeper code branches behind the checksum verification.  

Thus, JANUS will fix various checksums to be consistent 

with fuzzed content, simulating corruptions that occur 

immediately before checksums are computed.   

Even though JANUS has narrowed down the fixed initial 

metadata region for fuzzing, the range of metadata regions is 

still large, while most fuzzing rounds focus on <100 files 

within 240 CPU hours.  Also, JANUS will not fuzz 

dynamically allocated metadata blocks located beyond the 

initial metadata regions. 

3. Image Reference Locality of FS Fuzzers  

Based on leading file-system fuzzers, our intuition is that 

fuzzing references to a file-system image is far from random.  

Thus, we examined the size of referenced areas for a fuzzing 

iteration, their temporal relationship across fuzzing iterations, 

and their interactions with structured file-system layouts. 

3.1. Size of Referenced File-system Image Locations   

By intercepting bio_endio(), we traced the referenced 

locations on a file-system image for a sequence of 200 

random file operations applied under JANUS.  The results for 

ext4, BTRFS, and F2FS are tabulated in Table 3.1.  The total 

referenced image size for a given sequence of file operations 

is only up to 0.02% of the smallest file system image, 

reflecting that JANUS fuzzing focuses on metadata.  

Although JANUS has narrowed down the fuzzing range to 

the initial metadata region, the actual referenced image size 

is still only up to 13% of the initial metadata size.  That means 

if we randomly fuzz an image location, the chance of the 

fuzzed region being referenced is small.  Another implication 

is that if we want to frequently track, save, and restore just 

the modified file-system image locations, the overhead may 

be affordable. 

Table 3.1.  The size of referenced image locations for 200 

random file operations under JANUS. 

 ext4 BTRFS F2FS 

Smallest file system image 8MB 128MB 64MB 

Initial metadata size 

fuzzed under JANUS 
111KB 41KB 90KB 

Accessed image size 1.3KB 3.3KB 12KB 

Percentage of file-system 

image bytes referenced 
0.02% 0.003% 0.02% 

Percentage of initial 

metadata bytes referenced 
1% 8% 13% 

 

3.2. Temporal correlations of referenced image 
locations  

Another question is how well the currently fuzzed image 

locations correlate with the next iteration of fuzzed image 

locations.  For JANUS, the same file operation sequence is 

applied to many fuzzed file-system images during the image 

fuzzing phase before the next mutated file operation is 

appended to the sequence.  Thus, it is highly likely that the 

image reference locations of one iteration are correlated with 

the next.   

We traced referenced image locations for the JANUS fuzzing 

for 6,000 iterations and found that for ext4, 78% of 

referenced image locations for one iteration overlap with the 

referenced image locations of the next iteration.  Similarly, 

for BTRFS, the overlapping rate is 75%; for F2FS, 80%.  

Thus, by fuzzing the current referenced image locations, we 

can have a high chance of being referenced by the next 

iteration of file operations. 

3.3. Spatial Correlations of Referenced Image 
Locations   

Since file system images are highly structured and metadata 

blocks are allocated systematically, we examined whether 

there is a distance relationship between the updated blocks 

from one iteration to the next iteration.  Suppose iteration one 

updates blocks 1 and 2; iteration two updates blocks 2, 3, and 

4.  We compute all pair-wise distances from newly referenced 

blocks from the second iteration to blocks from the first 

iteration:  (3 – 1), (3 – 2), (4 – 1), (4 – 2).  Thus, we will have 

2, 1, 3, and 2.  So the newly referenced block has a 50% 

chance of being 2 blocks away from any blocks in the first 

iteration and a 25% chance of being 1 or 3 blocks away.  We 

bound the distance to 50 blocks.  Since an update may involve 

different metadata structures located in different areas (e.g., 

journal and i-node blocks), the distance between these areas 

little reflects how metadata blocks of the same type are 

allocated.   



Figure 3.3.1:  Frequency distribution of distances between 

updated blocks between iterations for ext4. 

 

Figure 3.3.2:  Frequency distribution of distances between 

updated blocks between iterations for BTRFS. 

 

Figure 3.3.3:  Frequency distribution of distances between 

updated blocks between iterations for F2FS. 

 

We ran JANUS for two hours to perform data gathering.  

Figures 3.3.1-3.3.3 present the results.  For ext4, the most 

popular update neighbor distance is 1, reflecting that blocks 

are linearly and incrementally allocated.  Also, when fuzzing 

the next iteration, the next referenced blocks are likely to be 

within three blocks of a block referenced within the current 

iteration.  For BTRFS, the range is more scattered due to the 

use of b-trees.  For F2FS, the most popular update neighbor 

distances are 1, -1, and 5.  Thus, fuzzing blocks surrounding 

referenced blocks for the current fuzzing iteration can 

increase the chance of them being referenced by the next 

sequence of file operations. 

4. LFUZZ Design  

Although the concept of locality is applied extensively to 

optimize storage systems, applying locality to enhance 

fuzzing is counterintuitive since fuzzing thrives on permuting 

random inputs to broaden the code execution branch 

coverage.  Based on the evidence we found in Section 3, we 

introduce LFUZZ, a file-system fuzzing framework that 

exploits both spatial and temporal localities when fuzzing 

file-system images.  For temporal locality, LFUZZ fuzzes 

currently referenced image locations, since the next fuzzing 

iteration will likely have overlapping referenced locations.  

For spatial locality, LFUZZ also fuzzes neighboring blocks 

of currently referenced image locations, since the next 

fuzzing iteration is likely to reference surrounding locations. 

LFUZZ maps file-system image locations into cached 

memory locations.  By intercepting memory references made 

by a file system, LFUZZ can track referenced file-system 

image locations at a fine granularity.  Referenced file-system 

image locations are stored in our least-recently-used (LRU) 

list with a bounded length to adapt to locality changes over 

time.  Thus, for each iteration, LFUZZ will fuzz these file-

system referenced locations plus some neighboring locations. 

One implication of this list is that when we save a file system 

image because of the discovery of new coverage, we also 

need to save this LRU list.  So, when the saved image is 

restored for further fuzzing, the locality information is also 

restored.  Each list element size is only a fraction of a storage 

block (i.e., 64B) to reduce the storage and saving/restoration 

overheads. 

To reduce the cost of saving file system images, we also 

introduced the notion of deltas, which can be obtained by 

subtracting the modified image I’ from image I before 

applying fuzzed the file operation.  Again, we use a sub-block 

granularity (e.g., 256B) to reduce the storage and the 

saving/restoration overhead.   

Having deltas can tame the algorithmic complexity of 

fuzzing.  In JANUS’s file-operation fuzzing phase, to avoid 

saving/restoring images, an original image is fuzzed with an 

increasing length of file operations in an O(n2) manner since 

iteration appends one new file operation, and all preceding 

operations need to be reapplied.  LFUZZ delta fuzzing only 

needs to apply one new file operation to the delta image 

accumulated in each iteration.  In addition, we discovered that 

partially restored deltas could lead to many file-system bugs; 

thus, we incorporated this technique into our delta fuzzing.  
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We leveraged the Linux Kernel Library [Purdila et al. 2010] 

to fuzz file systems in the user space to avoid expensive 

system reboots.  The system rebooting cost is replaced with 

resetting the file system image.  Also, all fuzzing states and 

file system images are memory-resident via the use of shared 

memory.  To avoid reinventing the wheel, we leveraged the 

fuzzing infrastructure of JANUS, which has file operation 

permutation mechanisms that comply with file-system 

semantics.  JANUS also has built-in genetic algorithms from 

AFL that can be used to fuzz targeted file-system image 

areas. 

4.1. Tracking Referenced Image Locations  

LFUZZ intercepts requests with stubs inserted at the block 

layer to create a file-system image-location-to-memory-

address mapping (F2M) table (Table 4.1.1).  LFUZZ 

instrumented the stubs to report referenced memory 

addresses.  A referenced file-system image location can be 

identified whenever a referenced memory address is found in 

the F2M table.  For example, if memory address 

0x7FF0041a3008 is referenced, it is within 0x7FF0041a3000 

+ page size (0x1000 bytes); thus, file-system image block 

9217 is referenced. 

Table 4.1.1:  File Image Location to Memory Address Table. 

Image block number Memory address 

5121 0x7FF004195000 

9217 0x7FF0041a3000 

… … 

 

Once the block number is identified, it is stored in our LRU 

list.  Since LRU-tracked content regions need to be saved and 

restored along with images with newly found coverage, we 

used a sub-block granularity of 64B, or a bucket to reduce the 

storage and saving/restoration overhead.  In Table 4.1.2, each 

LRU list item tracks a bucket.  In this case, this reference 

lands in bucket 0 of image block 9217. 

Table 4.1.2:  LRU List. 

Image block 

number 

Bucket offset 

number 

Timestamp 

9221 17 1 

9217 0 16 

… … … 

 

4.2. Exploiting Locality for Fuzzing  

During various fuzzing phases, the referenced image 

locations can change after certain bytes are mutated.  To 

increase the reference rate after a fuzzing iteration, we exploit 

spatial and temporal localities of file system behaviors. 

 

4.2.1. Temporal Locality  

We exploit temporal locality by using an LRU list to track 

recently referenced image locations as potential targets for 

fuzzing.  This is particularly helpful when the locality 

changes over time.  Metadata blocks may be allocated 

dynamically beyond the initial metadata regions, and the 

LRU list can adapt to the workload and include those blocks 

for fuzzing.   

The LRU list is also bounded, so that less frequently accessed 

locations will be dropped as potential fuzzing targets.  For 

copy-on-write file systems, for example, updated metadata 

blocks are written elsewhere instead of in-place, leaving 

obsolete metadata blocks behind, and diluting the quality of 

potential fuzzing targets.  Dropping them from the fuzzing 

targets increases the chance of fuzzed locations being 

referenced in the next iteration. 

4.2.2. Spatial Locality  

The referenced image location changes when metadata areas 

are fuzzed.  For instance, when open is called, a file system 

needs to assign an unused i-node to the created file.  If the i-

node bitmap is fuzzed in a way such that some unused i-nodes 

are marked as used, then the new i-node will be allocated to 

skip entries that are marked as used.  To increase the chance 

of newly fuzzed image locations being referenced in the next 

fuzz iteration, we chose neighboring locations and referenced 

locations as fuzzing targets. 

Intra-block locality:  Since image fuzzing typically starts 

from a sparse state, with a limited number of prepopulated 

files, i-nodes, directory entries, etc. tend to be allocated in 

succession.  This means, that when an allocation is requested, 

it is highly likely that the system will pick the free space near 

the currently used ones.  We used a bucket size of 64B instead 

of the actual bytes referenced.  Our measurements report that 

78% of image bucket locations referenced in this fuzz 

iteration are referenced in the next iteration for ext4, 75% for 

BTRFS, and 80% for F2FS.  Thus, by fuzzing the currently 

referenced image locations and surrounding locations, these 

locations are likely to be referenced in the next fuzz iteration. 

Inter-block locality:  Since metadata block allocations can be 

allocated in succession, neighboring blocks are likely to be 

referenced in the next fuzzing iteration as well.  Another 

possible scenario is for copy-on-write file systems, an 

updated metadata block in memory may be written to another 

(potentially neighboring) metadata block on storage.  Thus, if 

we reference a bucket offset within the current block, we 

would add the same bucket offset of neighboring blocks as 

potential targets for fuzzing. 

4.3. Image Deltas 

Given the locality in fuzzing workloads, we devised the use 

of image deltas to reduce the file-system image storage and 



saving/restoration overheads.  An image delta D is defined as 

the modified file-system image I’, subtracting the original 

image I0 before modifications.  This subtraction can be 

expensive if only a few places are modified due to locality.  

Thus, we applied a copy-on-write mechanism on I0, so that 

only the modified image regions are copied and tracked.   

Unlike leading file-system fuzzers where images are saved 

when new coverage or bugs are found, delta images are 

sufficiently lightweight that can be saved whenever a file-

system image is modified.  That means instead of replaying 

file operations from the top-level image, a newly fuzzed file 

operation only needs to be applied to the saved delta image, 

which has accumulated the file system state changes for all 

proceeding file operations.   Thus, during the file-operation 

fuzzing phase of JANUS, we can reduce the O(n2) file 

operations applied down to O(n), albeit, the overhead per 

iteration is higher due to the need to save and restore delta 

images. 

4.4. Missing Writes 

While developing our image delta technique, we discovered 

that partially restored deltas led to file-system bugs and 

crashes.  Further investigation revealed that partially restored 

deltas simulate missing writes, where two versions of file 

system states are co-mingled.  Thus, segments of the file 

system states are self-consistent, while globally, the file 

system states are inconsistent.  Since we discovered quite a 

few bugs this way, we incorporated this fuzzing technique 

into delta fuzing.  The probability of triggering a missing 

write is the current length of system call sequence L, divided 

by (L + 5).  This means that when the system call sequence is 

short, LFUZZ is likelier to use delta fuzzing.  When the 

system call sequences grows longer, LFUZZ is likelier to 

fuzz using missing writes. 

4.5. LFUZZ Phases 

LFUZZ has the following fuzzing orders in three phases—

LRU-based fuzzing, JANUS-based system-call fuzzing, and 

system-call fuzzing with delta.  The fuzzing ordering is 

similar to JANUS’s fuzzing order, to ease our comparison.  

Also, similar to JANUS, the next phase is only triggered, 

when the current phase cannot find any new coverage.   

Figure 4.5.1 presents the LRU-based fuzzing phase, where a 

single file operation is applied to different fuzzed images.  At 

line 1, a new corpus is loaded with an initial image I, a 

sequence of file operations F, and LRU regions L from the 

first fuzzing iteration.  The LRU regions L are first fuzzed 

(line 2), and the fuzzed regions L’ are distributed to the 

original image I (line 4) to build a fuzzed image I’.  A 

sequence of file operations F is applied to the fuzzed image 

I’ (line 5).  If new coverage is found, save modified image I’, 

the file operation sequence F, and modified LRU regions L’ 

(line 7).  The number of fuzzing iterations is adaptive 

depending on whether new coverage is found (lines 8-9).  At 

the end of the iteration, LRU regions L’ are fuzzed for the 

next iteration (line 12).  

1   for corpus C = {image I, file ops F, LRU L from the 

first iteration}  

2     L’ = fuzzed L 

3     for (iteration j < bound B) { 

4       I’ = apply L’ to I 

5       Apply F to I’ 

6       if (new coverage found}{ 

7         save(I’, F, L’) 

8         if  (B < max_bound) { 

9           B *= 2; 

10       } 

11     } 

12     L’ = fuzzed L’ 

13   } 

14 } 

Figure 4.5.1:  LFUZZ LRU-based fuzzing phase. 

 

1   for corpus C = {image I, file ops F, image delta D} { 

2     F’ = F + file op // append a new file op 

3     D’ = applying D to I 

4     for (iteration j < bound B) { 

5        D’ = applying F’ to D’ 

6        if (no new coverage found) { 

7          move on to the next corpus 

8        } else { 

9           save(I, F’, D’)  

10         if  (B < max_bound) { 

11             B *= 2; 

12         } 

13         F’ += fuzzed file op // append a new file op 

14      } 

15   } 

16 } 

Figure 4.5.2:  LFUZZ delta-image-based fuzzing phase.  

 

Figure 4.5.2 presents the delta-based system-call fuzzing 

phase, where an incrementally increased file operation 

sequence is applied to delta images updated after each 

iteration.  At line 1, a new corpus is loaded with an initial 

image I, a sequence of file operations F, and a saved delta 

image D.  The sequence of file operation F is appended with 

a newly selected file operation to form F’ (line 2).  A fuzzed 

image D’ is formed by applying delta regions D to the initial 

image I (line 3).  The newly formed delta image D’ is updated 

by applying the new file operation sequence F’ to itself to 

accumulate states for each iteration (line 5).  If no new 

coverage is found, move on to the next corpus (line 7).  If new 

coverage is found, save the initial image I, the updated file 

operation sequence F’, and the updated delta image D’ (line 



9) and increase the number of iterations adaptively (lines 10-

11).  Finally, append a new file operation to F’ for the next 

iteration (line 13). 

5. Implementation  

The development tool-chain eco-system of a file-system 

fuzzing framework is complex, which made it difficult to 

start our framework from scratch.  We choose JANUS over 

Syzkaller as a starting point in favor of the reproducibility of 

crash-based bugs.  Since JANUS is based on the Linux 

Kernel Library, which is not frequently updated, we had to 

port newer versions of the Linux kernel.   

We need to add wrapper functions for each file system, to fix 

checksums and distribute the fuzzed contents from LRU 

regions to the JANUS fuzzing buffer. 

Tracking file-system reference locations contributes most of 

the system overhead, as it traces all memory references and 

extracts the ones that access cached file-system image pages.  

If the overhead is too high, it can neutralize the benefit of 

locality-based image fuzzing.  So, instrumentation tools such 

as Intel PIN [Luk et al. 2005] and Valgrain [Nethercote and 

Seward 2007] are not suitable as they incur too much 

overhead.  Instead, we used LLVM [Lattner and Adve 2004] 

to inject instrumentation at compile time.  With no need to 

run an emulator at run time, the overhead is significantly 

lower when compared to Intel PIN. 

For delta fuzzing, to track incremental updates, we leverage 

the JANUS’s page-fault handler in userfaultfd to 

compare locations of file-system images that triggered page 

faults.  The delta is obtained at the end of a page fault 

execution to compare page fault locations of volatile memory 

with the cached file-system image memory addresses. 

Table 5.1 summarizes the line count for the LFUZZ 

implementation. 

Table 5.1:  LFUZZ implementation line counts 

LLVM runtime (+LRU fuzzing) 1,193 

LLVM pass 239 

File-system wrapper 864 

AFL 264 

bio_stub 64 

Delta fuzzing 72 

 

6. Evaluation  

We tested LFUZZ in a VM on a Dell Precision 7820 with 

Intel® Xeon® Gold 5218R 40 cores with 128GB of memory.  

The tests of LFUZZ and JANUS are performed with 10 

processes each.  The figures are presented with a 90% 

confidence interval, unless otherwise specified.  Since 

JANUS has already demonstrated more effective coverage 

than Syzkaller [Xu et al. 2019], we will only compare with 

JANUS.  To evaluate how LFUZZ performs, we focused on 

the following questions:   

 How well can LFUZZ find new bugs? 

 How well can LFUZZ increase coverage? 

 How well LFUZZ can narrow down the fuzzing 

range? 

6.1. New Bugs 

We ran LFUZZ and JANUS for a week and found 30 new 

bugs (Table 6.1.1), and 17 of them were only found by 

LFUZZ.  Among the unique bugs, 10 of them are memory 

bugs that have security implications.  The bugs were reported 

to either Red Hat or upstream maintainers.  Six of them are 

patched and three requested CVE numbers are assigned.  

LFUZZ found more bugs in ext4 and BTRFS, which have 

more features.  F2FS with less complicated features is well 

fuzzed by JANUS.  Most of the unfuzzed code regions are 

from ioctl-related code, which is not fuzzed by JANUS. 

6.1.1. Case Study:  CVE-2022-A  

JANUS cannot find this bug because it lies in do_split().  

The function is executed when an image is almost filled-up 

with prepopulated files.  However, after JANUS extracts the 

metadata range, the fuzz area is too large for its AFL 

component to fuzz.  That means, reducing candidate fuzzing 

area matters, and exploiting locality helps.  LFUZZ can fuzz 

smaller file-system image areas to trigger this bug. 

6.1.2. Case Study:  CVE-2021-B  

The cause of this bug is that the fuzzed image makes a data 

block a special file (e.g., character, block, FIFO, or socket 

file).  When the block is to be migrated due to F2FS garbage 

collection, it calls a_ops->set_dirty_page(), but the 

operation pointer is NULL for the special files, triggering a 

NULL pointer dereference.   

To trigger this bug, the fuzzer needs to either modify the 

segment summary area (SSA) entry, pointing the migrated 

block’s parent to a special file i-node, or fuzz the 

corresponding parent i-node’s imode field as a special file.  

Meanwhile, if the fuzzed i-node imode or SSA entries are in 

the state to trigger the bug, the block has to be migrated to 

make it happen. 

JANUS fuzzes the initial metadata block locations.  For 

F2FS, the total size is 90 KB.  During the first iteration of 

fuzzing, LFUZZ tracked 12KB as potential fuzzing locations, 

which is about one-seventh of JANUS.  Focused image 

fuzzing helped us find this bug.  Syzkaller generated a bug 

report with a similar call stack but did not provide a 

reproducer, making it hard to find the root cause. 

 



Table 6.1.1:  Bugs found by LFUZZ and JANUS. 

File 

systems 
Bug type 

Affected 

version 
Bug Status 

Found 

by 

JANUS 

Found 

by 

LFUZZ 

ext4 

Stack-out-

of-bounds 5.18 __blk_flush_plug acknowledged X O 

use after 

free 5.18 fs/ext4/namei.c: do_split() acknowledged X O 

out-of-

bounds 

read  4.19 ext4_search_dir() patched X O 

use after 

free 5.18 

fs/ext4/namei.c:dx_insert_block()  

CVE-2022-A confirmed X O 

Slab-out-

of-bounds 5.18 fs/ext4/xattr.c: ext4_xattr_set_entry() reported X O 

use after 

free 5.18 fs/ext4/namei.c:ext4_insert_dentry() reported X O 

BUG() 5.18 fs/ext4/extents_status.c:202 reported O O 

BUG() 5.18 fs/ext4/ext4_jbd2.h:ext4_inode_journal_mode() reported X O 

BUG() 5.18 fs/ext4/extent.c:ext4_ext_determine_hole() patched X O 

BTRFS 

array out of 

bound 

access 5.16 fs/btrfs/struct-funcs.c:btrfs_get_16()  patched O O 

NULL 

pointer 

dereference 5.17 fs/btrfs/ctree.c:btrfs_search_slot() reported O O 

general 

protection 

fault 5.16 fs/btrfs/struct-funcs.c:btrfs_get_32()  patched O O 

general 

protection 

fault 5.17 fault at fs/btrfs/tree-checker.c: check_dir_item() reported O O 

general 

protection 

fault 5.17 fs/btrfs/print-tree.c: btrfs_print_leaf() reported O O 

general 

protection 

fault 5.17 

fs/btrfs/treelog.c: 

btrfs_check_ref_name_override() reported O O 

general 

protection 

fault 5.18 fs/btrfs/file-item.c: btrfs_csum_file_blocks() reported O O 

general 

protection 

fault 5.15.57 fs/btrfs/volumes.c: btrfs_get_io_geometry() reported X O 

general 

protection 

fault 5.15.57 fs/btrfs/lzo.c: lzo_decompress_bio()  reported X O 

BUG() 5.19 fs/btrfs/inode.c: btrfs_finish_ordered_io() reported X O 

BUG() 5.18 fs/btrfs/extent_io.c: extent_io_tree_panic()  reported X O 

BUG() 5.15.57 

fs/btrfs/extent-tree.c: 

update_inline_extent_backref()  reported X O 

BUG() 5.15.57 fs/btrfs/root-tree.c: btrfs_del_root() reported X O 



BUG() 5.18 

fs/btrfs/delayed-ref.c: 

update_existing_head_ref() reported X O 

fs BUG() 5.18 fs/inode.c:611 reported O O 

F2FS 

NULL 

pointer 

dereference 5.15 CVE-2021-B patched X O 

use after 

free 5.15 CVE-2021-C patched O O 

array-

index-out-

of-bounds 5.17-rc6 fs/f2fs/segment.c:3460 patched O O 

NULL 

pointer 

dereference 5.17 f2fs/dir.c:f2fs_add_regular_entry()  patched O O 

use after 

free 5.19 fs/f2fs/segment.c: f2fs_update_meta_page() patched O O 

use after 

free 5.19 fs/f2fs/recovery.c:check_index_in_prev_nodes() patched X O 

6.2. LFUZZ Coverage 

We fuzzed JANUS and LFUZZ under each configuration for 

240 CPU hours and compared their code branch coverage, 

defined as unique edge transitions between compiled basic 

blocks.  We ran LFUZZ with and without delta fuzzing. For 

the LRU fuzzing option, we tested list lengths of 512 and 

2,048 buckets, which can hold 32KB and 128KB, 

respectively.  Figures 6.2.1-6.2.3 present the edge coverage 

results for ext4, BTRFS, and F2FS.   

Overall, the branch coverages under various LFUZZ 

configurations are comparable to JANUS. Note that with 

delta enabled, LFUZZ will have three fuzzing phases instead 

of JANUS’s two phases, which could impose some overhead.  

In the best cases, LFUZZ edge coverage can outperform 

JANUS up to 18% for ext4, 6% for BTRFS, and 13% for 

F2FS.   

Figure 6.2.1:  ext4 branch coverage comparison between 

JANUS and LFUZZ under different configurations. 

 

Figure 6.2.2:  BTRFS branch coverage comparison 

between JANUS and LFUZZ under different 

configurations. 

 

Figure 6.2.3:  F2FS branch coverage comparison between 

JANUS and LFUZZ under different configurations. 

 

One interesting observation is that not a single LFUZZ 

configuration can achieve the best coverage for all three file 
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systems.  For ext4 (Figure 6.2.1), since the working set was 

smaller than 512 buckets, the edge coverage was about the 

same with a longer LRU length bound.  The combination of 

LRU fuzzing and delta fuzzing achieved the highest 

coverage.  For BTRFS (Figure 6.2.2), LRU fuzzing 

performed better, since many referenced metadata items 

became obsolete due to copy-on-write, which diluted the 

fuzzing candidate area.  However, delta fuzzing did not seem 

to contribute as much to the edge coverage. For F2FS (Figure 

6.2.3), LRU fuzzing with a shorter LRU length degraded the 

edge coverage because the working set for F2F2 exceeded 

512 buckets; therefore, useful buckets could have been 

removed before the next reference.  On the other hand, delta 

fuzzing, when combined with LRU, increased the edge 

coverage.  Out of curiosity, we tested delta fuzzing alone 

without LRU (not shown); the edge coverage is only about 

1K. 

Overall, we found that it was difficult to attribute the cause 

of the coverage increase to a particular fuzzing phase since 

new coverage could be built on previously discovered and 

saved coverage by going through different fuzzing phases. 

6.3. LFUZZ Fuzzed Regions 

Figure 6.3.1 compares the sizes of fuzzed regions between 

JANUS and LFUZZ under different configurations.  The 

figure shows  the regions being fuzzed during the 24th hour 

of experiments, with error bars indicating the variation within 

one standard deviation.  For ext4, LFUZZ’s fuzzed area can 

be one-eighth of JANUS’S fuzzed area while achieving an 

18% increase in edge coverage.  For BTRFS, LFUZZ’s 

fuzzed area can be 30% smaller, while achieving a 6% 

increase in edge coverage.  As for F2FS, if LFUZZ is 

configured with 2K LRU buckets, the fuzzed area can be as 

large as JANUS, reflecting F2FS’s wear leveling for its 

designed use on SSD devices.  However, when LRU fuzzing 

is combined with delta fuzzing, LFUZZ can still achieve a 

13% increase in edge coverage with a fuzzed area that is only 

34% as large as JANUS’s. 

Figure 6.3.1:  Comparison of fuzzed region sizes between 

JANUS and LFUZZ under different configurations.   

 

We also found that the bound on the LRU length interacted 

with the fuzzing results.  If the bound is too large, the content 

held by our LRU list approaches the entire working set, which 

contains both frequently and infrequently accessed areas for 

fuzzing.  If the bound is too small, useful content is removed 

before it is referenced again in the near future.  Due to the 

exponential explosion of the experimental space, we only 

systematically tested the lengths of 512 and 2048 buckets.   

We also tested some extreme LRU length values.  For 

example, on ext4, we tested an LRU length of 36 buckets, 

which can hold about 2KB of content.  Since for each update 

operation, ext4 accesses the journal last, the LRU list mostly 

held journal content for fuzzing, with prior content removed 

due to the limit for LRU length.  We were able to find a 

journal bug at   ext4_jbd2.h: 

ext4_inode_journal_mode() after 12 hours.  This 

bug did not appear in the first 12 hours when the LRU list 

length was longer than 64 buckets.  Future work will focus 

on optimizing LRU list length. 

7. Related Work  

7.1. File-System Fuzzers and Exercisers 

The closest work to LFUZZ is JANUS [Xu et al. 2019] and 

Syzkaller [2022].  JANUS fuzzes only the fixed initial 

metadata regions.  Thus, JANUS will not fuzz these new 

regions if metadata regions migrate due to dynamic allocation 

or copy-on-write semantics.  LFUZZ, on the other hand, uses 

fine-grained adaptive LRU tracking to track changes in 

metadata regions.  The target fuzzing region of the file-

system image can be one-eighth of the target region of 

JANUS; we can increase the code branch execution by up to 

18%. 

Syzkaller uses QEMU to fuzz the kernel and kernel coverage 

as feedback to guide the fuzzing. Syzkaller does not reset the 

file-system image across different system-call fuzzing 

sequences.  Thus, bugs may not be reproduced by applying 

just the latest system call sequence on the initial image.  The 

bug reproducibility rate is about 50%, and crashes are not 

reproducible [Xu et al. 2019].  LFUZZ offers delta-fuzzing 

that tracks modified images after each file operation is 

applied.  The bug reproducibility rate is about 85%. 

AFL [Nossum and Casanovas 2016] file-system fuzzer 

fuzzes nonzero image locations, which could exclude zero-

initialized metadata and include obsolete metadata blocks 

littered by copy-on-write mechanisms. 

CrashMonkey [Mohan et al. 2019] exhaustively tests file 

systems with a bounded input space (e.g., short file operation 

sequences).  It constructs file-system crash states and runs 

file-system recovery operations.  It then compares the file 

system states to detect bugs such as incorrect file sizes, files 
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not removed during renames, etc.  Although many bugs can 

be triggered within short file operation sequences, 

CrashMonkey can miss bugs caused by longer file operation 

sequences.  Also, LFUZZ finds mostly memory bugs, 

including stack out-of-bounds, memory use-after free, array 

out-of-bound, general protection fault, NULL pointer 

dereferencing, BUG(), etc.   

7.2. Kernel Fuzzers  

Some of the kernel fuzzers focus on building an effective 

framework.  KAFL [Schumilo et al. 2017] used the Intel® 

processor-tracer result to guide the fuzzing to reduce 

overhead.  HFL [Kim et al. 2020] utilized symbolic execution 

to solve hard branches with complex logic.  USBFuzz [Peng 

and Payer 2020] and Periscope [Song et al. 2019] fuzzed the 

drivers by modifying the MMIO and DMA interfaces. 

Some kernel fuzzers focus on improving the quality of 

system-call sequences for fuzzing.  When new coverage is 

detected, Moonshine [Pailoor et al. 2018] exploits system-

call read/write dependencies to filter out calls that do not 

contribute to the state changes of the new coverage, thus 

minimizing the length of the system call sequence for further 

fuzzing.  DIFUZE [Corina et al. 2017] analyzed ioctl-

related code to generate valid structured input to fuzz drivers. 

Instead of using code coverage as feedback, some improved 

the feedback strategy.  SyzVegas [Wang et al. 2021] changed 

the way to schedule the seed images using the multi-armed-

bandit algorithms.  StateFuzz [Zhao et al. 2022] tracks 

variables that lead to state changes to prioritize test cases. 

Razzer [Jeong et al. 2019] used the point-to information from 

static analysis to generate test cases likely to cause race 

conditions.  Krace [Xu et al. 2020] used potential interleaving 

memory access instructions as coverage to guide the fuzzing 

to find race conditions. 

8. Limitations and Future Work 

Since the configuration space of LFUZZ is large, a systematic 

exploration would involve an exponentially large number of 

experiments.  Thus, we did not conduct a fine-grained 

exploration of different LRU lengths and their effects on 

various file systems.  We also did not explore the effects of 

bucket size, delta storage granularity, the probability of 

triggering missing writes, or the ordering of fuzzing phases.  

We will conduct optimization studies for LFUZZ in the 

future.  Since each file system interacts with LFUZZ very 

differently, we will also explore file-system-specific fuzzing. 

Some code execution branches are controlled by compile 

time configuration, which means fuzzing itself can never 

reach some code regions.  Features like big file handling 

cannot be covered without compiling the code with certain 

flags enabled.  We will explore a different fuzzing framework 

for fuzz compiler-enabled code branches. 

The file-system sizes we fuzzed were also small; thus, we 

were unable to fuzz code branches triggered by large file 

sizes (e.g., 500MB).   

10. Conclusions  

We have designed, implemented, and evaluated LFUZZ, a 

file-system fuzzer that exploits locality to enhance file-

system image fuzzing.  With our locality observation, we 

found it feasible to integrate delta file-system image tracking 

and enable incremental fuzzing instead of reapplying file 

operations from the top-level seed image.  We found a new 

way to fuzz file systems with incompletely restored delta 

images to simulate missing writes.  With all these techniques 

applied, LFUZZ has found 17 bugs.  LFUZZ can also reduce 

the target fuzzing region by a factor of up to eight compared 

to JANUS and increase the code execution coverage by up to 

18%. 
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