
LFUZZ: Exploiting Locality for File-system Fuzzing

Wenqing Liu, Florida State University An-I Andy Wang, Florida State University

Abstract

Fuzzing, or program testing using randomized inputs, is a

useful technique to detect bugs elusive to regression suites

and human testing. The idea of using randomized inputs is to

have a broad uniform reach of the code branches to increase

the program test coverage.

When fuzzing a file system, sequences of file operations are

one source of input. Its persistent file-system image is

another source of input, as file operations retrieve from and

store to the image. One interesting observation is that leading

file-system fuzzers tend to permute operations and their

parameters, accessing a small set of files to encourage the

exploration of deep code branches; thus, the accessed file-

system image locations may show decent locality. That also

means fuzzing random file-system image locations is not as

effective, as fuzzed file operations are unlikely to reference

random image locations.

Another challenge is the minimum file-system image size a

fuzzer has to track is large. Therefore, leading file-system

fuzzers avoid saving and restoring modified images at the

cost of, at times, regenerating system states and reducing the

reproducibility of bugs.

We introduce LFUZZ, a file-system fuzzing framework that

exploits the locality shown in typical fuzzing workloads.

LFUZZ tracks recently accessed image locations and nearby

locations to predict the locations that will be referenced in the

near future. Our scheme is dynamic and adaptive to

migrating file access patterns. Also, since modified image

locations are localized, LFUZZ incrementally tracks file-

system image changes, so that states can be fuzzed from

intermediary images instead of from the top-level seed

images. LFUZZ further explores the use of partially updated

images to simulate missing writes.

We applied LFUZZ to fuzz ext4, BTRFS, and F2FS, and

LFUZZ has found 17 new bugs. Compared to JANUS,

LFUZZ reduced the fuzzing area by up to a factor of eight

and increased the code execution branch coverage by up to

18%.

1. Introduction

File systems are perhaps one of the most important operating

system components, as they hold consistent and persistent

states to survive reboots and crashes. Bugs in file systems

can potentially lead to bad consequences, ranging from

deadlocking and crashing the operating system to losing data

and exposing security vulnerabilities. An adversary can lure

a user to mount a crafted file system image [Langner 2011]

or issue a sequence of file operations that leads to

vulnerabilities or escalation of privileges [MITRE 2009].

Traditional ways to eliminate file-system bugs heavily rely

on manual testing and regression test suites [Atoa and Kono

2019; SGI 2022]. However, human enumerations of testing

cases may miss bug triggers that involve complex sets of

constraints to be met. It is also possible to exhaustively and

systematically test workloads within a bounded space

[Mohan et al. 2019] such as, for example, within a dozen file

operations. The drawback of this approach is that it is

missing bugs that involve more file operations.

One alternative is fuzzing, which uses accumulated random

inputs and can find corner cases slipped from regression test

suites. Syzkaller [2022] is perhaps the most well-known

kernel fuzzer. With continuous fuzzing of syzbot [2022], it

has reported 2,800+ bugs in 2.5 years to upstream Linux

kernels. Other general kernel fuzzers include kAFL

[Schumilo et al. 2017] and the fuzzers based on Syskaller

[Wang et al. 2021]; all find a decent number of new bugs

within days of fuzzing, indicating that fuzzing is promising

to explore hard corner-case bugs.

When fuzzing file systems, the traditional notion of fuzzing

is not sufficient. The first challenge is that a file system has

two sources of inputs, sequences of file operations and

persistently stored images. For a typical fuzzer, while file

operations and parameters are randomly permuted, randomly

fuzzing file-system images is not as effective. For example,

fuzzing the content of i-node X will not affect the file-system

execution coverage if the file operations only reference i-

node Y.

A second challenge is that the minimum file-system size

ranges from 8MB to 128MB. While it may seem small

compared to the size of modern storage, if each fuzzing test

involves saving and restoring a file-system image, both the

performance overhead and storage capacity overhead can be

prohibitive.

We introduce LFUZZ, a file-system fuzzing framework, to

address these two challenges. The key observation is that

while file operations and parameters are permuted during

fuzzing, typically, only a small set of files (i.e., <100 within

240 CPU fuzzing hours) are accessed to encourage deeper

state explorations, even for a file system prepopulated with

many files. This means that the referenced file system image

locations may show a decent locality. Thus, by fuzzing the

image locations likely to be referenced next, we can reduce

the number of fuzzing iterations that yield no new execution

coverage. The locality of image updates also means smaller

and clustered modified image ranges, allowing us to save and

restore file system images in the form of deltas. Additionally,

we discovered that incompletely restoring deltas simulates

missing writes, another form of testing that leads to many bug

discoveries.

We applied LFUZZ on ext4 [Mathur et al. 2007], BTRFS

[Rodeh et al. 2013], and F2FS [Lee et al. 2015] for 240 CPU

hours. Compared to JANUS, LFUZZ increased the code

execution branch coverage by up to 18% [Xu et al. 2019].

Furthermore, LFUZZ discovered 17 new bugs.

In summary, we have made the following contributions to

this work:

 We have identified that file-system image fuzzing is

insufficient because many fuzzed locations are not

referenced by file operations.

 We analyzed the locality feature of fuzzing file

system workloads on file-system image

modifications and proposed the locality-aware

fuzzing approach for kernel file systems.

 We applied image deltas with missing write

simulations to find file-system bugs.

 We designed, implemented, and evaluated the

LFUZZ prototype, which increased the branch

coverage by up to 18% compared to JANUS, and

found 17 new bugs.

The remaining paper is structured as follows. Section 2

shows the limitations of leading file-system fuzzers. Section

3 examines image reference locality under leading fuzzing

workloads. Sections 4, 5, and 6 present our LFUZZ design,

implementation, and evaluation. Section 7 relates our work

with existing fuzzers. Section 8 discusses this study’s

limitations and directions for future work, and Section 9

concludes the paper.

2. Leading File-System Fuzzers

Since saving and restoring file-system images are expensive,

the designs of leading file-system fuzzers try to avoid this

cost.

Syzkaller [2022]: for image fuzzing, Syzkaller first creates a

file-system image by picking an mkfs parameter set and

prepopulateing the file system. Then, a random sequence of

fuzzed file operations is applied. File operation fuzzing is

similar, but file operations are tested one after another

without resetting the kernels until the container VM reaches

the time limit or needs to reboot. Note that the notion of

randomness here is constrained by the file system semantics.

A write system call can only be issued to a file that is already

open [Syzkaller 2022a]. This constraint limits the number of

files being fuzzed in one execution (within 240 CPU fuzzing

hours, we see the maximum referenced file number is 4, and

the maximum number of operations on files is 13, but the

average number of operations on files is only 2).

One consequence of not resetting file system images between

sequences of file operations is that when a bug is detected

(e.g., system crashes, kernel panics, BUG() error message,

KASAN [Jeon et al. 2020] error messages, time outs), it is

difficult to discern whether it is caused by the latest sequence

of file operations or the cumulative changes of system states

leading to this point. When the latest sequence of file

operations is applied to the original image, the bug

reproducibility rate is only around 50% based on our

experience. Xu et al. [2019] found that all crash-related bugs

for Syzkaller are not reproducible. Additionally, Syzkaller

does not fuzz the file system images.

AFL [Zalewski 2018], a popular fuzzing tool based on

genetic algorithms, has also been used to fuzz file-system

images [Nossum and Casanovas 2016]. The fuzzed images

can be mounted to run regression test suites. AFL narrows

down the file-system image by fuzzing only nonzero

metadata blocks. Corrupted data blocks generally pose little

threat to file-system integrity; thus, they are omitted for

fuzzing. An unintended side effect is that AFL may skip

valid metadata blocks that are zero-initialized. Another issue

is that for copy-on-write file systems, new versions of

metadata are written elsewhere instead of updating metadata

in place, littering obsolete nonzero metadata blocks behind,

diluting the fuzzing targets. Fuzzing obsolete metadata

blocks would not contribute to finding new execution

branches.

JANUS [Xu et al. 2019] is built on a variant of the AFL

fuzzing code base, and it fuzzes both file operations and file

system images. To increase the chance of fuzzing image

locations that will be referenced, JANUS extracts the initial

metadata regions from a given file-system image with

prepopulated files, and it would fuzz only the fixed metadata

region.

A JANUS fuzzing round starts with an image fuzzing phase,

with a selected file system image, say I0. JANUS then fuzzes

a metadata location to create I1, and applies a random file

operation F0 (complying with file-system semantics). A new

execution coverage is detected when a new transition is found

between two compiled basic blocks. If no new execution

coverage is found, JANUS returns to I0, starts a new iteration,

fuzzes another metadata location to create I2, and reapplies F0

to I2. If a new execution coverage is found, JANUS saves the

metadata region of I2 and F0, along with file states indicating

whether a file is open, etc.

After enough iterations (depending on the coverage found so

far with I0), if JANUS cannot find any coverage during the

image fuzzing phase, it enters the second phase of file-

operation fuzzing (still within the same round). Since we

have discovered new coverage, the file operation phase is

skipped in this case. The saved image with the highest

priority is chosen based on the AFL seed scheduling scheme.

In this case, I2 is chosen for the next round.

However, suppose no coverage is found during the first

phase. Random file operations are selected with mutated

arguments or appended to the file operation sequence. After

each mutation or appending, file operations are applied to the

original unfuzzed I0. After enough iterations (depending on

the coverage found so far), the saved image with the highest

coverage increase is chosen.

One detail to handle with image fuzzing is checksummed

blocks (e.g., superblocks). Fuzzing a superblock will likely

lead to mount failures, which precludes the exploration of

deeper code branches behind the checksum verification.

Thus, JANUS will fix various checksums to be consistent

with fuzzed content, simulating corruptions that occur

immediately before checksums are computed.

Even though JANUS has narrowed down the fixed initial

metadata region for fuzzing, the range of metadata regions is

still large, while most fuzzing rounds focus on <100 files

within 240 CPU hours. Also, JANUS will not fuzz

dynamically allocated metadata blocks located beyond the

initial metadata regions.

3. Image Reference Locality of FS Fuzzers

Based on leading file-system fuzzers, our intuition is that

fuzzing references to a file-system image is far from random.

Thus, we examined the size of referenced areas for a fuzzing

iteration, their temporal relationship across fuzzing iterations,

and their interactions with structured file-system layouts.

3.1. Size of Referenced File-system Image Locations

By intercepting bio_endio(), we traced the referenced

locations on a file-system image for a sequence of 200

random file operations applied under JANUS. The results for

ext4, BTRFS, and F2FS are tabulated in Table 3.1. The total

referenced image size for a given sequence of file operations

is only up to 0.02% of the smallest file system image,

reflecting that JANUS fuzzing focuses on metadata.

Although JANUS has narrowed down the fuzzing range to

the initial metadata region, the actual referenced image size

is still only up to 13% of the initial metadata size. That means

if we randomly fuzz an image location, the chance of the

fuzzed region being referenced is small. Another implication

is that if we want to frequently track, save, and restore just

the modified file-system image locations, the overhead may

be affordable.

Table 3.1. The size of referenced image locations for 200

random file operations under JANUS.

 ext4 BTRFS F2FS

Smallest file system image 8MB 128MB 64MB

Initial metadata size

fuzzed under JANUS
111KB 41KB 90KB

Accessed image size 1.3KB 3.3KB 12KB

Percentage of file-system

image bytes referenced
0.02% 0.003% 0.02%

Percentage of initial

metadata bytes referenced
1% 8% 13%

3.2. Temporal correlations of referenced image
locations

Another question is how well the currently fuzzed image

locations correlate with the next iteration of fuzzed image

locations. For JANUS, the same file operation sequence is

applied to many fuzzed file-system images during the image

fuzzing phase before the next mutated file operation is

appended to the sequence. Thus, it is highly likely that the

image reference locations of one iteration are correlated with

the next.

We traced referenced image locations for the JANUS fuzzing

for 6,000 iterations and found that for ext4, 78% of

referenced image locations for one iteration overlap with the

referenced image locations of the next iteration. Similarly,

for BTRFS, the overlapping rate is 75%; for F2FS, 80%.

Thus, by fuzzing the current referenced image locations, we

can have a high chance of being referenced by the next

iteration of file operations.

3.3. Spatial Correlations of Referenced Image
Locations

Since file system images are highly structured and metadata

blocks are allocated systematically, we examined whether

there is a distance relationship between the updated blocks

from one iteration to the next iteration. Suppose iteration one

updates blocks 1 and 2; iteration two updates blocks 2, 3, and

4. We compute all pair-wise distances from newly referenced

blocks from the second iteration to blocks from the first

iteration: (3 – 1), (3 – 2), (4 – 1), (4 – 2). Thus, we will have

2, 1, 3, and 2. So the newly referenced block has a 50%

chance of being 2 blocks away from any blocks in the first

iteration and a 25% chance of being 1 or 3 blocks away. We

bound the distance to 50 blocks. Since an update may involve

different metadata structures located in different areas (e.g.,

journal and i-node blocks), the distance between these areas

little reflects how metadata blocks of the same type are

allocated.

Figure 3.3.1: Frequency distribution of distances between

updated blocks between iterations for ext4.

Figure 3.3.2: Frequency distribution of distances between

updated blocks between iterations for BTRFS.

Figure 3.3.3: Frequency distribution of distances between

updated blocks between iterations for F2FS.

We ran JANUS for two hours to perform data gathering.

Figures 3.3.1-3.3.3 present the results. For ext4, the most

popular update neighbor distance is 1, reflecting that blocks

are linearly and incrementally allocated. Also, when fuzzing

the next iteration, the next referenced blocks are likely to be

within three blocks of a block referenced within the current

iteration. For BTRFS, the range is more scattered due to the

use of b-trees. For F2FS, the most popular update neighbor

distances are 1, -1, and 5. Thus, fuzzing blocks surrounding

referenced blocks for the current fuzzing iteration can

increase the chance of them being referenced by the next

sequence of file operations.

4. LFUZZ Design

Although the concept of locality is applied extensively to

optimize storage systems, applying locality to enhance

fuzzing is counterintuitive since fuzzing thrives on permuting

random inputs to broaden the code execution branch

coverage. Based on the evidence we found in Section 3, we

introduce LFUZZ, a file-system fuzzing framework that

exploits both spatial and temporal localities when fuzzing

file-system images. For temporal locality, LFUZZ fuzzes

currently referenced image locations, since the next fuzzing

iteration will likely have overlapping referenced locations.

For spatial locality, LFUZZ also fuzzes neighboring blocks

of currently referenced image locations, since the next

fuzzing iteration is likely to reference surrounding locations.

LFUZZ maps file-system image locations into cached

memory locations. By intercepting memory references made

by a file system, LFUZZ can track referenced file-system

image locations at a fine granularity. Referenced file-system

image locations are stored in our least-recently-used (LRU)

list with a bounded length to adapt to locality changes over

time. Thus, for each iteration, LFUZZ will fuzz these file-

system referenced locations plus some neighboring locations.

One implication of this list is that when we save a file system

image because of the discovery of new coverage, we also

need to save this LRU list. So, when the saved image is

restored for further fuzzing, the locality information is also

restored. Each list element size is only a fraction of a storage

block (i.e., 64B) to reduce the storage and saving/restoration

overheads.

To reduce the cost of saving file system images, we also

introduced the notion of deltas, which can be obtained by

subtracting the modified image I’ from image I before

applying fuzzed the file operation. Again, we use a sub-block

granularity (e.g., 256B) to reduce the storage and the

saving/restoration overhead.

Having deltas can tame the algorithmic complexity of

fuzzing. In JANUS’s file-operation fuzzing phase, to avoid

saving/restoring images, an original image is fuzzed with an

increasing length of file operations in an O(n2) manner since

iteration appends one new file operation, and all preceding

operations need to be reapplied. LFUZZ delta fuzzing only

needs to apply one new file operation to the delta image

accumulated in each iteration. In addition, we discovered that

partially restored deltas could lead to many file-system bugs;

thus, we incorporated this technique into our delta fuzzing.

0

5000

10000

15000

20000

25000

-50 -30 -10 10 30 50

count

update neighbor distance (blocks)

0

5000

10000

15000

20000

25000

30000

-50 -30 -10 10 30 50

count

update neighbor distance (blocks)

0

5000

10000

15000

20000

-50 -30 -10 10 30 50

count

update neighbor distance (blocks)

We leveraged the Linux Kernel Library [Purdila et al. 2010]

to fuzz file systems in the user space to avoid expensive

system reboots. The system rebooting cost is replaced with

resetting the file system image. Also, all fuzzing states and

file system images are memory-resident via the use of shared

memory. To avoid reinventing the wheel, we leveraged the

fuzzing infrastructure of JANUS, which has file operation

permutation mechanisms that comply with file-system

semantics. JANUS also has built-in genetic algorithms from

AFL that can be used to fuzz targeted file-system image

areas.

4.1. Tracking Referenced Image Locations

LFUZZ intercepts requests with stubs inserted at the block

layer to create a file-system image-location-to-memory-

address mapping (F2M) table (Table 4.1.1). LFUZZ

instrumented the stubs to report referenced memory

addresses. A referenced file-system image location can be

identified whenever a referenced memory address is found in

the F2M table. For example, if memory address

0x7FF0041a3008 is referenced, it is within 0x7FF0041a3000

+ page size (0x1000 bytes); thus, file-system image block

9217 is referenced.

Table 4.1.1: File Image Location to Memory Address Table.

Image block number Memory address

5121 0x7FF004195000

9217 0x7FF0041a3000

… …

Once the block number is identified, it is stored in our LRU

list. Since LRU-tracked content regions need to be saved and

restored along with images with newly found coverage, we

used a sub-block granularity of 64B, or a bucket to reduce the

storage and saving/restoration overhead. In Table 4.1.2, each

LRU list item tracks a bucket. In this case, this reference

lands in bucket 0 of image block 9217.

Table 4.1.2: LRU List.

Image block

number

Bucket offset

number

Timestamp

9221 17 1

9217 0 16

… … …

4.2. Exploiting Locality for Fuzzing

During various fuzzing phases, the referenced image

locations can change after certain bytes are mutated. To

increase the reference rate after a fuzzing iteration, we exploit

spatial and temporal localities of file system behaviors.

4.2.1. Temporal Locality

We exploit temporal locality by using an LRU list to track

recently referenced image locations as potential targets for

fuzzing. This is particularly helpful when the locality

changes over time. Metadata blocks may be allocated

dynamically beyond the initial metadata regions, and the

LRU list can adapt to the workload and include those blocks

for fuzzing.

The LRU list is also bounded, so that less frequently accessed

locations will be dropped as potential fuzzing targets. For

copy-on-write file systems, for example, updated metadata

blocks are written elsewhere instead of in-place, leaving

obsolete metadata blocks behind, and diluting the quality of

potential fuzzing targets. Dropping them from the fuzzing

targets increases the chance of fuzzed locations being

referenced in the next iteration.

4.2.2. Spatial Locality

The referenced image location changes when metadata areas

are fuzzed. For instance, when open is called, a file system

needs to assign an unused i-node to the created file. If the i-

node bitmap is fuzzed in a way such that some unused i-nodes

are marked as used, then the new i-node will be allocated to

skip entries that are marked as used. To increase the chance

of newly fuzzed image locations being referenced in the next

fuzz iteration, we chose neighboring locations and referenced

locations as fuzzing targets.

Intra-block locality: Since image fuzzing typically starts

from a sparse state, with a limited number of prepopulated

files, i-nodes, directory entries, etc. tend to be allocated in

succession. This means, that when an allocation is requested,

it is highly likely that the system will pick the free space near

the currently used ones. We used a bucket size of 64B instead

of the actual bytes referenced. Our measurements report that

78% of image bucket locations referenced in this fuzz

iteration are referenced in the next iteration for ext4, 75% for

BTRFS, and 80% for F2FS. Thus, by fuzzing the currently

referenced image locations and surrounding locations, these

locations are likely to be referenced in the next fuzz iteration.

Inter-block locality: Since metadata block allocations can be

allocated in succession, neighboring blocks are likely to be

referenced in the next fuzzing iteration as well. Another

possible scenario is for copy-on-write file systems, an

updated metadata block in memory may be written to another

(potentially neighboring) metadata block on storage. Thus, if

we reference a bucket offset within the current block, we

would add the same bucket offset of neighboring blocks as

potential targets for fuzzing.

4.3. Image Deltas

Given the locality in fuzzing workloads, we devised the use

of image deltas to reduce the file-system image storage and

saving/restoration overheads. An image delta D is defined as

the modified file-system image I’, subtracting the original

image I0 before modifications. This subtraction can be

expensive if only a few places are modified due to locality.

Thus, we applied a copy-on-write mechanism on I0, so that

only the modified image regions are copied and tracked.

Unlike leading file-system fuzzers where images are saved

when new coverage or bugs are found, delta images are

sufficiently lightweight that can be saved whenever a file-

system image is modified. That means instead of replaying

file operations from the top-level image, a newly fuzzed file

operation only needs to be applied to the saved delta image,

which has accumulated the file system state changes for all

proceeding file operations. Thus, during the file-operation

fuzzing phase of JANUS, we can reduce the O(n2) file

operations applied down to O(n), albeit, the overhead per

iteration is higher due to the need to save and restore delta

images.

4.4. Missing Writes

While developing our image delta technique, we discovered

that partially restored deltas led to file-system bugs and

crashes. Further investigation revealed that partially restored

deltas simulate missing writes, where two versions of file

system states are co-mingled. Thus, segments of the file

system states are self-consistent, while globally, the file

system states are inconsistent. Since we discovered quite a

few bugs this way, we incorporated this fuzzing technique

into delta fuzing. The probability of triggering a missing

write is the current length of system call sequence L, divided

by (L + 5). This means that when the system call sequence is

short, LFUZZ is likelier to use delta fuzzing. When the

system call sequences grows longer, LFUZZ is likelier to

fuzz using missing writes.

4.5. LFUZZ Phases

LFUZZ has the following fuzzing orders in three phases—

LRU-based fuzzing, JANUS-based system-call fuzzing, and

system-call fuzzing with delta. The fuzzing ordering is

similar to JANUS’s fuzzing order, to ease our comparison.

Also, similar to JANUS, the next phase is only triggered,

when the current phase cannot find any new coverage.

Figure 4.5.1 presents the LRU-based fuzzing phase, where a

single file operation is applied to different fuzzed images. At

line 1, a new corpus is loaded with an initial image I, a

sequence of file operations F, and LRU regions L from the

first fuzzing iteration. The LRU regions L are first fuzzed

(line 2), and the fuzzed regions L’ are distributed to the

original image I (line 4) to build a fuzzed image I’. A

sequence of file operations F is applied to the fuzzed image

I’ (line 5). If new coverage is found, save modified image I’,

the file operation sequence F, and modified LRU regions L’

(line 7). The number of fuzzing iterations is adaptive

depending on whether new coverage is found (lines 8-9). At

the end of the iteration, LRU regions L’ are fuzzed for the

next iteration (line 12).

1 for corpus C = {image I, file ops F, LRU L from the

first iteration}

2 L’ = fuzzed L

3 for (iteration j < bound B) {

4 I’ = apply L’ to I

5 Apply F to I’

6 if (new coverage found}{

7 save(I’, F, L’)

8 if (B < max_bound) {

9 B *= 2;

10 }

11 }

12 L’ = fuzzed L’

13 }

14 }

Figure 4.5.1: LFUZZ LRU-based fuzzing phase.

1 for corpus C = {image I, file ops F, image delta D} {

2 F’ = F + file op // append a new file op

3 D’ = applying D to I

4 for (iteration j < bound B) {

5 D’ = applying F’ to D’

6 if (no new coverage found) {

7 move on to the next corpus

8 } else {

9 save(I, F’, D’)

10 if (B < max_bound) {

11 B *= 2;

12 }

13 F’ += fuzzed file op // append a new file op

14 }

15 }

16 }

Figure 4.5.2: LFUZZ delta-image-based fuzzing phase.

Figure 4.5.2 presents the delta-based system-call fuzzing

phase, where an incrementally increased file operation

sequence is applied to delta images updated after each

iteration. At line 1, a new corpus is loaded with an initial

image I, a sequence of file operations F, and a saved delta

image D. The sequence of file operation F is appended with

a newly selected file operation to form F’ (line 2). A fuzzed

image D’ is formed by applying delta regions D to the initial

image I (line 3). The newly formed delta image D’ is updated

by applying the new file operation sequence F’ to itself to

accumulate states for each iteration (line 5). If no new

coverage is found, move on to the next corpus (line 7). If new

coverage is found, save the initial image I, the updated file

operation sequence F’, and the updated delta image D’ (line

9) and increase the number of iterations adaptively (lines 10-

11). Finally, append a new file operation to F’ for the next

iteration (line 13).

5. Implementation

The development tool-chain eco-system of a file-system

fuzzing framework is complex, which made it difficult to

start our framework from scratch. We choose JANUS over

Syzkaller as a starting point in favor of the reproducibility of

crash-based bugs. Since JANUS is based on the Linux

Kernel Library, which is not frequently updated, we had to

port newer versions of the Linux kernel.

We need to add wrapper functions for each file system, to fix

checksums and distribute the fuzzed contents from LRU

regions to the JANUS fuzzing buffer.

Tracking file-system reference locations contributes most of

the system overhead, as it traces all memory references and

extracts the ones that access cached file-system image pages.

If the overhead is too high, it can neutralize the benefit of

locality-based image fuzzing. So, instrumentation tools such

as Intel PIN [Luk et al. 2005] and Valgrain [Nethercote and

Seward 2007] are not suitable as they incur too much

overhead. Instead, we used LLVM [Lattner and Adve 2004]

to inject instrumentation at compile time. With no need to

run an emulator at run time, the overhead is significantly

lower when compared to Intel PIN.

For delta fuzzing, to track incremental updates, we leverage

the JANUS’s page-fault handler in userfaultfd to

compare locations of file-system images that triggered page

faults. The delta is obtained at the end of a page fault

execution to compare page fault locations of volatile memory

with the cached file-system image memory addresses.

Table 5.1 summarizes the line count for the LFUZZ

implementation.

Table 5.1: LFUZZ implementation line counts

LLVM runtime (+LRU fuzzing) 1,193

LLVM pass 239

File-system wrapper 864

AFL 264

bio_stub 64

Delta fuzzing 72

6. Evaluation

We tested LFUZZ in a VM on a Dell Precision 7820 with

Intel® Xeon® Gold 5218R 40 cores with 128GB of memory.

The tests of LFUZZ and JANUS are performed with 10

processes each. The figures are presented with a 90%

confidence interval, unless otherwise specified. Since

JANUS has already demonstrated more effective coverage

than Syzkaller [Xu et al. 2019], we will only compare with

JANUS. To evaluate how LFUZZ performs, we focused on

the following questions:

 How well can LFUZZ find new bugs?

 How well can LFUZZ increase coverage?

 How well LFUZZ can narrow down the fuzzing

range?

6.1. New Bugs

We ran LFUZZ and JANUS for a week and found 30 new

bugs (Table 6.1.1), and 17 of them were only found by

LFUZZ. Among the unique bugs, 10 of them are memory

bugs that have security implications. The bugs were reported

to either Red Hat or upstream maintainers. Six of them are

patched and three requested CVE numbers are assigned.

LFUZZ found more bugs in ext4 and BTRFS, which have

more features. F2FS with less complicated features is well

fuzzed by JANUS. Most of the unfuzzed code regions are

from ioctl-related code, which is not fuzzed by JANUS.

6.1.1. Case Study: CVE-2022-A

JANUS cannot find this bug because it lies in do_split().

The function is executed when an image is almost filled-up

with prepopulated files. However, after JANUS extracts the

metadata range, the fuzz area is too large for its AFL

component to fuzz. That means, reducing candidate fuzzing

area matters, and exploiting locality helps. LFUZZ can fuzz

smaller file-system image areas to trigger this bug.

6.1.2. Case Study: CVE-2021-B

The cause of this bug is that the fuzzed image makes a data

block a special file (e.g., character, block, FIFO, or socket

file). When the block is to be migrated due to F2FS garbage

collection, it calls a_ops->set_dirty_page(), but the

operation pointer is NULL for the special files, triggering a

NULL pointer dereference.

To trigger this bug, the fuzzer needs to either modify the

segment summary area (SSA) entry, pointing the migrated

block’s parent to a special file i-node, or fuzz the

corresponding parent i-node’s imode field as a special file.

Meanwhile, if the fuzzed i-node imode or SSA entries are in

the state to trigger the bug, the block has to be migrated to

make it happen.

JANUS fuzzes the initial metadata block locations. For

F2FS, the total size is 90 KB. During the first iteration of

fuzzing, LFUZZ tracked 12KB as potential fuzzing locations,

which is about one-seventh of JANUS. Focused image

fuzzing helped us find this bug. Syzkaller generated a bug

report with a similar call stack but did not provide a

reproducer, making it hard to find the root cause.

Table 6.1.1: Bugs found by LFUZZ and JANUS.

File

systems
Bug type

Affected

version
Bug Status

Found

by

JANUS

Found

by

LFUZZ

ext4

Stack-out-

of-bounds 5.18 __blk_flush_plug acknowledged X O

use after

free 5.18 fs/ext4/namei.c: do_split() acknowledged X O

out-of-

bounds

read 4.19 ext4_search_dir() patched X O

use after

free 5.18

fs/ext4/namei.c:dx_insert_block()

CVE-2022-A confirmed X O

Slab-out-

of-bounds 5.18 fs/ext4/xattr.c: ext4_xattr_set_entry() reported X O

use after

free 5.18 fs/ext4/namei.c:ext4_insert_dentry() reported X O

BUG() 5.18 fs/ext4/extents_status.c:202 reported O O

BUG() 5.18 fs/ext4/ext4_jbd2.h:ext4_inode_journal_mode() reported X O

BUG() 5.18 fs/ext4/extent.c:ext4_ext_determine_hole() patched X O

BTRFS

array out of

bound

access 5.16 fs/btrfs/struct-funcs.c:btrfs_get_16() patched O O

NULL

pointer

dereference 5.17 fs/btrfs/ctree.c:btrfs_search_slot() reported O O

general

protection

fault 5.16 fs/btrfs/struct-funcs.c:btrfs_get_32() patched O O

general

protection

fault 5.17 fault at fs/btrfs/tree-checker.c: check_dir_item() reported O O

general

protection

fault 5.17 fs/btrfs/print-tree.c: btrfs_print_leaf() reported O O

general

protection

fault 5.17

fs/btrfs/treelog.c:

btrfs_check_ref_name_override() reported O O

general

protection

fault 5.18 fs/btrfs/file-item.c: btrfs_csum_file_blocks() reported O O

general

protection

fault 5.15.57 fs/btrfs/volumes.c: btrfs_get_io_geometry() reported X O

general

protection

fault 5.15.57 fs/btrfs/lzo.c: lzo_decompress_bio() reported X O

BUG() 5.19 fs/btrfs/inode.c: btrfs_finish_ordered_io() reported X O

BUG() 5.18 fs/btrfs/extent_io.c: extent_io_tree_panic() reported X O

BUG() 5.15.57

fs/btrfs/extent-tree.c:

update_inline_extent_backref() reported X O

BUG() 5.15.57 fs/btrfs/root-tree.c: btrfs_del_root() reported X O

BUG() 5.18

fs/btrfs/delayed-ref.c:

update_existing_head_ref() reported X O

fs BUG() 5.18 fs/inode.c:611 reported O O

F2FS

NULL

pointer

dereference 5.15 CVE-2021-B patched X O

use after

free 5.15 CVE-2021-C patched O O

array-

index-out-

of-bounds 5.17-rc6 fs/f2fs/segment.c:3460 patched O O

NULL

pointer

dereference 5.17 f2fs/dir.c:f2fs_add_regular_entry() patched O O

use after

free 5.19 fs/f2fs/segment.c: f2fs_update_meta_page() patched O O

use after

free 5.19 fs/f2fs/recovery.c:check_index_in_prev_nodes() patched X O

6.2. LFUZZ Coverage

We fuzzed JANUS and LFUZZ under each configuration for

240 CPU hours and compared their code branch coverage,

defined as unique edge transitions between compiled basic

blocks. We ran LFUZZ with and without delta fuzzing. For

the LRU fuzzing option, we tested list lengths of 512 and

2,048 buckets, which can hold 32KB and 128KB,

respectively. Figures 6.2.1-6.2.3 present the edge coverage

results for ext4, BTRFS, and F2FS.

Overall, the branch coverages under various LFUZZ

configurations are comparable to JANUS. Note that with

delta enabled, LFUZZ will have three fuzzing phases instead

of JANUS’s two phases, which could impose some overhead.

In the best cases, LFUZZ edge coverage can outperform

JANUS up to 18% for ext4, 6% for BTRFS, and 13% for

F2FS.

Figure 6.2.1: ext4 branch coverage comparison between

JANUS and LFUZZ under different configurations.

Figure 6.2.2: BTRFS branch coverage comparison

between JANUS and LFUZZ under different

configurations.

Figure 6.2.3: F2FS branch coverage comparison between

JANUS and LFUZZ under different configurations.

One interesting observation is that not a single LFUZZ

configuration can achieve the best coverage for all three file

0

500

1000

1500

2000

2500

0 6 12 18 24

EDGES

HOURS

JANUS

LRU512

LRU2K

LRU512delta

LRU2Kdelta

0

500

1000

1500

2000

2500

0 6 12 18 24

EDGES

HOURS

JANUS

LRU512

LRU2K

LRU512delta

LRU2Kdelta

0

200

400

600

800

1000

1200

1400

1600

1800

0 6 12 18 24

EDGES

HOURS

JANUS

LRU512

LRU2K

LRU512delta

LRU2Kdelta

systems. For ext4 (Figure 6.2.1), since the working set was

smaller than 512 buckets, the edge coverage was about the

same with a longer LRU length bound. The combination of

LRU fuzzing and delta fuzzing achieved the highest

coverage. For BTRFS (Figure 6.2.2), LRU fuzzing

performed better, since many referenced metadata items

became obsolete due to copy-on-write, which diluted the

fuzzing candidate area. However, delta fuzzing did not seem

to contribute as much to the edge coverage. For F2FS (Figure

6.2.3), LRU fuzzing with a shorter LRU length degraded the

edge coverage because the working set for F2F2 exceeded

512 buckets; therefore, useful buckets could have been

removed before the next reference. On the other hand, delta

fuzzing, when combined with LRU, increased the edge

coverage. Out of curiosity, we tested delta fuzzing alone

without LRU (not shown); the edge coverage is only about

1K.

Overall, we found that it was difficult to attribute the cause

of the coverage increase to a particular fuzzing phase since

new coverage could be built on previously discovered and

saved coverage by going through different fuzzing phases.

6.3. LFUZZ Fuzzed Regions

Figure 6.3.1 compares the sizes of fuzzed regions between

JANUS and LFUZZ under different configurations. The

figure shows the regions being fuzzed during the 24th hour

of experiments, with error bars indicating the variation within

one standard deviation. For ext4, LFUZZ’s fuzzed area can

be one-eighth of JANUS’S fuzzed area while achieving an

18% increase in edge coverage. For BTRFS, LFUZZ’s

fuzzed area can be 30% smaller, while achieving a 6%

increase in edge coverage. As for F2FS, if LFUZZ is

configured with 2K LRU buckets, the fuzzed area can be as

large as JANUS, reflecting F2FS’s wear leveling for its

designed use on SSD devices. However, when LRU fuzzing

is combined with delta fuzzing, LFUZZ can still achieve a

13% increase in edge coverage with a fuzzed area that is only

34% as large as JANUS’s.

Figure 6.3.1: Comparison of fuzzed region sizes between

JANUS and LFUZZ under different configurations.

We also found that the bound on the LRU length interacted

with the fuzzing results. If the bound is too large, the content

held by our LRU list approaches the entire working set, which

contains both frequently and infrequently accessed areas for

fuzzing. If the bound is too small, useful content is removed

before it is referenced again in the near future. Due to the

exponential explosion of the experimental space, we only

systematically tested the lengths of 512 and 2048 buckets.

We also tested some extreme LRU length values. For

example, on ext4, we tested an LRU length of 36 buckets,

which can hold about 2KB of content. Since for each update

operation, ext4 accesses the journal last, the LRU list mostly

held journal content for fuzzing, with prior content removed

due to the limit for LRU length. We were able to find a

journal bug at ext4_jbd2.h:

ext4_inode_journal_mode() after 12 hours. This

bug did not appear in the first 12 hours when the LRU list

length was longer than 64 buckets. Future work will focus

on optimizing LRU list length.

7. Related Work

7.1. File-System Fuzzers and Exercisers

The closest work to LFUZZ is JANUS [Xu et al. 2019] and

Syzkaller [2022]. JANUS fuzzes only the fixed initial

metadata regions. Thus, JANUS will not fuzz these new

regions if metadata regions migrate due to dynamic allocation

or copy-on-write semantics. LFUZZ, on the other hand, uses

fine-grained adaptive LRU tracking to track changes in

metadata regions. The target fuzzing region of the file-

system image can be one-eighth of the target region of

JANUS; we can increase the code branch execution by up to

18%.

Syzkaller uses QEMU to fuzz the kernel and kernel coverage

as feedback to guide the fuzzing. Syzkaller does not reset the

file-system image across different system-call fuzzing

sequences. Thus, bugs may not be reproduced by applying

just the latest system call sequence on the initial image. The

bug reproducibility rate is about 50%, and crashes are not

reproducible [Xu et al. 2019]. LFUZZ offers delta-fuzzing

that tracks modified images after each file operation is

applied. The bug reproducibility rate is about 85%.

AFL [Nossum and Casanovas 2016] file-system fuzzer

fuzzes nonzero image locations, which could exclude zero-

initialized metadata and include obsolete metadata blocks

littered by copy-on-write mechanisms.

CrashMonkey [Mohan et al. 2019] exhaustively tests file

systems with a bounded input space (e.g., short file operation

sequences). It constructs file-system crash states and runs

file-system recovery operations. It then compares the file

system states to detect bugs such as incorrect file sizes, files

0

20

40

60

80

100

120

ext4 BTRFS F2FS

FUZZED SIZE
(KB)

FILE SYSTEM

JANUS

LRU512

LRU2K

LRU512delta

LRU2Kdelta

not removed during renames, etc. Although many bugs can

be triggered within short file operation sequences,

CrashMonkey can miss bugs caused by longer file operation

sequences. Also, LFUZZ finds mostly memory bugs,

including stack out-of-bounds, memory use-after free, array

out-of-bound, general protection fault, NULL pointer

dereferencing, BUG(), etc.

7.2. Kernel Fuzzers

Some of the kernel fuzzers focus on building an effective

framework. KAFL [Schumilo et al. 2017] used the Intel®

processor-tracer result to guide the fuzzing to reduce

overhead. HFL [Kim et al. 2020] utilized symbolic execution

to solve hard branches with complex logic. USBFuzz [Peng

and Payer 2020] and Periscope [Song et al. 2019] fuzzed the

drivers by modifying the MMIO and DMA interfaces.

Some kernel fuzzers focus on improving the quality of

system-call sequences for fuzzing. When new coverage is

detected, Moonshine [Pailoor et al. 2018] exploits system-

call read/write dependencies to filter out calls that do not

contribute to the state changes of the new coverage, thus

minimizing the length of the system call sequence for further

fuzzing. DIFUZE [Corina et al. 2017] analyzed ioctl-

related code to generate valid structured input to fuzz drivers.

Instead of using code coverage as feedback, some improved

the feedback strategy. SyzVegas [Wang et al. 2021] changed

the way to schedule the seed images using the multi-armed-

bandit algorithms. StateFuzz [Zhao et al. 2022] tracks

variables that lead to state changes to prioritize test cases.

Razzer [Jeong et al. 2019] used the point-to information from

static analysis to generate test cases likely to cause race

conditions. Krace [Xu et al. 2020] used potential interleaving

memory access instructions as coverage to guide the fuzzing

to find race conditions.

8. Limitations and Future Work

Since the configuration space of LFUZZ is large, a systematic

exploration would involve an exponentially large number of

experiments. Thus, we did not conduct a fine-grained

exploration of different LRU lengths and their effects on

various file systems. We also did not explore the effects of

bucket size, delta storage granularity, the probability of

triggering missing writes, or the ordering of fuzzing phases.

We will conduct optimization studies for LFUZZ in the

future. Since each file system interacts with LFUZZ very

differently, we will also explore file-system-specific fuzzing.

Some code execution branches are controlled by compile

time configuration, which means fuzzing itself can never

reach some code regions. Features like big file handling

cannot be covered without compiling the code with certain

flags enabled. We will explore a different fuzzing framework

for fuzz compiler-enabled code branches.

The file-system sizes we fuzzed were also small; thus, we

were unable to fuzz code branches triggered by large file

sizes (e.g., 500MB).

10. Conclusions

We have designed, implemented, and evaluated LFUZZ, a

file-system fuzzer that exploits locality to enhance file-

system image fuzzing. With our locality observation, we

found it feasible to integrate delta file-system image tracking

and enable incremental fuzzing instead of reapplying file

operations from the top-level seed image. We found a new

way to fuzz file systems with incompletely restored delta

images to simulate missing writes. With all these techniques

applied, LFUZZ has found 17 bugs. LFUZZ can also reduce

the target fuzzing region by a factor of up to eight compared

to JANUS and increase the code execution coverage by up to

18%.

References

[Atoa and Kono 2019] Aota N, Kono K. File Systems Are

Hard to Test—Learning from XFStests. IEICE

Transactions on Information and Systems, 102(2):269-

279, 2019.

[Corina et al. 2017] Corina J, Machiry A, Salls C,

Shoshitaishvili Y, Hao S, Kruegel K, Vigna G. DIFUZE:

Interface Aware Fuzzing for Kernel Drivers.

Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security (CCS), 2017,

[Jeon et al. 2020] Jeon Y, Han W, Burow N, Payer M

FuZZan: Efficient Sanitizer Metadata Design for

Fuzzing. Proceedings of the 2020 USENIX Annual

Technical Conference (ATC), 2020.

[Jeong et al. 2019] Jeong DR, Kim K, Shivakumar B, Lee B,

Shin I. Razzer: Finding Kernel Race Bugs through

Fuzzing. Proceedings of the 2019 IEEE Symposium on

Security and Privacy, 2019.

[Kim et al. 2020] Kim K, Jeong DR, Kim CH, Jang Y, Shin

I, Lee B. HFL: Hybrid Fuzzing on the Linux Kernel. In

Proceedings 2020 Network and Distributed System

Security Symposium. 2020.

[Langner 2011] Langner R. Stuxnet: Dissecting a

Cyberwarfare Weapon. Proceedings of the 32nd IEEE

Symposium on Security and Privacy, 2011.

[Lattner and Adve 2004] Lattner C, Adve V. LLVM: A

Compilation Framework for Lifelong Program Analysis

& Transformation. Proceedings of 2004 International

Symposium on Code Generation and Optimization

(CGO), 2004.

[Lee et al. 2015] Lee C, Sim D, Hwang JY, Cho S. F2FS: A

New File System for Flash Storage. Proceedings of the

13th USENIX Conference on File and Storage

Technologies (FAST), 2015.

[Luk et al. 2005] Luk CK, Cohn R, Muth R, Patil H, Klauser,

A, Lowney G, Wallace S, Reddi VJ, Hazelwood K, Pin:

Building Customized Program Analysis Tools with

Dynamic Instrumentation. ACM SIGPLAN Notices,

40(6):190-200, 2005.

[Mathur et al. 2007] Mathur A, Cao M, Bhattacharya S,

Dilger A, Tomas A, Vivier L. The New ext4 Filesystem:

Current Status and Future Plans. Proceedings of the

Linux Symposium, 2007.

[MITRE 2009] MITRE Corporation. CVE-2009-1235, 2009.

[Mohan et al. 2019] Mohan J, Martinez A, Ponnapalli S, Raju

P, Chidambaram V. CrashMonkey and ACE:

Systematically Testing File-System Crash Consistency.

ACM Transactions on Storage, 15(2), Article 14, 2019.

[Nethercote and Seward 2007] Nethercote N, Seward J.

Valgrind: a Framework for Heavyweight Dynamic

Binary Instrumentation. ACM SIGPLAN Notices,

42(6):89-100, 2007.

[Nossum and Casanovas 2016] Nossum V, Casasnovas Q.

Filesystem Fuzzing with American Fuzzy Lop.

Proceedings of Vault Linux Storage and Filesystems

Conference, 2016.

[Pailoor et al. 2018] Pailoor S, Aday A, Jana S. 2018.

MoonShine: Optimizing OS Fuzzer Seed Selection with

Trace Distillation. Proceedings of the 27th USENIX

Security Symposium, 2018.

[Peng and Payer 2020] Peng H, Payer M. 2020. USBFuzz: A

Framework for Fuzzing USB Drivers by Device

Emulation. Proceedings of the 29th USENIX Security

Symposium, USENIX Security 2020.

[Purdila et al. 2010] Purdila O, Grijincu LA, Tapus N. LKL:

The Linux Kernel Library. Proceedings of the 9th

RoEduNet IEEE International Conference, 2010.

[Rodeh et al. 2013] Rodeh O, Bacik J, Mason C. 2013.

BTRFS: The Linux B-Tree Filesystem. ACM

Transactions on Storage (TOS), 9(3), Article 9, 2013.

[Schumilo et al. 2017] Schumilo S, Aschermann C, Gawlik

R, Schinzel S, Holz T. kAFL: Hardware-Assisted

Feedback Fuzzing for OS Kernels. Proceedings of the

26th USENIX Security Symposium, 2017,

[SGI 2022] SGI, OSDL and Bull. Linux Test Project.

https://github.com/linux-test-project/ltp, 2022.

[Song et al. 2019] Song D, Hetzelt F, Das D, Spensky C, Na

Y, Volckaert S, Vigna G, Kruegel C, Seifert JP, Franz

M. PeriScope: An Effective Probing and Fuzzing

Framework for the Hardware-OS Boundary.

Proceedings of the 26th Annual Network and Distributed

System Security Symposium (NDSS). 2019.

[syzbot 2022] syzbot, Google.

https://Syzkaller.appspot.com/upstream, 2022.

[Syzkaller 2022] Syzkaller, Google.

https://github.com/google/Syzkaller, 2022.

[Syzkaller 2022a] Syzkaller, Syscall Descriptions,

https://github.com/google/Syzkaller/blob/master/docs/s

yscall_descriptions.md, 2022a.

[Wang et al. 2021] Wang D, Zhang Z, Zhang H, Qian Z,

Krishnamurthy SV, Abu-Ghazaleh N. Beating Kernel

Fuzzing Odds with Reinforcement Learning.

Proceedings of the 30th USENIX Security Symposium,

2021.

[Wen et al. 2020] Wen C, Wang H, Li Y, Qin S, Liu Y, Xu

Z, Chen H, Xie X, Pu G, Liu T. Memlock: Memory

usage guided fuzzing. Proceedings of the 42nd

International Conference on Software Engineering,

2020.

[Xu et al. 2019] Xu W, Moon H, Kashyap S, Tseng PN, Kim

T. Fuzzing File Systems via Two-Dimensional Input

Space Exploration. Proceedings of the 2019 IEEE

Symposium on Security and Privacy (SP), 2019.

[Xu et al. 2020] Xu M, Kashyap S, Zhao H, Kim T. Krace:

Data race fuzzing for kernel file systems. Proceedings of

2020 IEEE Symposium on Security and Privacy (SP),

2020.

[Zalewski 2018] Zalewski M. American Fuzzy Lop (2.52b).

http://lcamtuf.coredump.cx/afl, 2018.

[Zhao et al. 2022]. Zhao B, Li Z, Qin S, Ma Z, Yuan M, Zhu,

W, Zhang C. StateFuzz: System Call-Based State-Aware

Linux Driver Fuzzing. Proceedings of the 31st USENIX

Security Symposium, 2022.

