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Abstract 

The legacy storage data path is largely structured in 

black-box layers and has four major limitations:  (1) 

functional redundancies across layers, (2) poor cross-

layer coordination and data tracking, (3) presupposition 

of high-latency storage devices, and (4) poor support for 

new storage data models.  

We introduce Tags, a unifying primitive that can be 

used throughout the storage data path.  This white-box 

approach enables all storage layers to coordinate and 

track data using shared data structures that are 

constructed through the Tags API.  Our case studies 

show that by eliminating redundant services, our Tags-

based key-value store can outperform LevelDB by 20-

170% when inserting and deleting 100-byte key-value 

pairs.  We also build a Tags-based file system (TagFS) 

to demonstrate the usability and robustness of Tags.  In 

addition, we build per-file secure deletion via TagFS to 

show data-path-wide coordination and data tracking.   

1. Introduction 

The legacy storage data path is structured in layers and 

is largely disk-centric.  Layering offers good 

abstraction with which hide underlying details, enabling 

each layer to evolve swiftly.  The storage-wide disk-

centric assumptions reflect storage devices’ continuing 

standing as a system-wide bottleneck for decades.   

However, disks are replaced by low-latency SSDs, 

which have very different traits.  Applications also 

demand more coordination and control across storage 

layers (e.g., data tracking).  These driving forces make 

us rethink how to preserve the advantages of layering, 

while granting more cross-layer control and how to 

design a data model to provide more support for different 

emerging storage media. 

We propose Tags, a unifying primitive that enables 

various data path components to build cross-layer data 

structures, even across kernel and application 

boundaries.  Tags enables cross-layer coordination and 

data tracking, supports both disks and SSDs, and eases 

the extension of new data path features. 

1.1. Legacy Storage Data Path 

The legacy storage data path is composed of layers 

(Figure 1.1.1).  Under UNIX, the bottom layer consists 

of device-specific drivers.  A higher-level device-

driver layer provides services, including mapping (e.g., 

NAND flash translation layer) and to coordinate multiple 

devices.  The logical, device-independent file-system 

layer provides file names for data, organization for files, 

and data layouts on storage media to minimize access 

overhead.  The VFS layer enables multiple file systems 

to coexist and contains common file-system functions, 

including caching.  Finally, applications issue storage 

requests via file-system system calls. (Since the 

Windows storage data path uses similar organization to 

that of UNIX, we use UNIX terminology in the 

remainder of this paper.) 

The legacy storage data path has four major 

limitations.  First, storage layers are large black boxes 

and introduce unnecessary functional redundancies and 

missed opportunities for optimizations.  For example, 

both logical and physical layers try to manage data 

layouts.  Thus, B-trees in databases can be remapped to 

extent-based trees at the file-system layer [13], and then 

remapped to linked lists at the flash-translation layer, 

rendering the original optimization ineffective.  

Second, layered abstraction hiding makes coordination 

and data tracking difficult.  For example, a device 

driver cannot discern the file membership of a block 

[21].   The third limitation is that the legacy data path 

is not designed for the low-latency storage.  Thus, for 

small IO requests, the storage-stack latency can no 

longer be masked by low-latency SSDs [23].  Finally, 

the legacy data path has limited support for new storage 

data models (e.g., key-value store), and they suffer fates 

similar to those in the B-tree example and are remapped 

to underlying storage layers. 

Figure 1.1.1:  Conventional storage data path. 

1.2. Some Alternatives 

One approach to these limitations is to bypass the legacy 

storage data path by accessing the storage device directly 

(e.g., direct IOs, DAX [26]).  The downside to this is 

that application programmers may need to duplicate 

existing services in the legacy storage stack.  Some 
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Virtual file system (VFS) 

File system 

Multi-device drivers 

Ext4 

Device 

driver 

Device 

driver 

MTD MTD 

JFFS2 

NFTL 

Apps Database Search engine 

Data 

layout 

Data 

layout 

Medium-

specific 

optimization

s 

Naming 



metadata and data (e.g., [8]) or deduce information 

across layers (e.g., [20]).  However, these solutions do 

not address the issues of redundant services and medium-

specific mechanisms.  Imperfectly deduced 

information may lead to optimizations based on 

conservative decisions [2].  To streamline storage 

requests and avoid redundant services, integrated design 

across multiple layers is possible (e.g., [22]).  However, 

either such solutions are tailored for specific workloads 

[17], or the black-box treatment of layers remains and 

hinders information flow.   

1.3. In Search of a New Storage Data Path Design 

Legacy limitations prompt the question of how to design 

and build a new storage data path that is modular, and 

supports data-path-wide coordination, tracking, and 

emerging storage media.  A more fundamental question 

is what makes a storage system a storage system?  In 

essence, a storage system provides storage and retrieval 

of data.  At the minimum, a storage data path needs the 

ability to store and retrieve data from a storage medium, 

and to tag data to provide persistence and control.  

From these basic requirements, we can rethink and 

design a unifying framework that addresses various 

limitations of the legacy data path.   

Figure 2.1:  Tagging-based storage data path. 

2. Tags 

We introduce the Tags framework, which uses tags, a 

unifying primitive (Figure 2.1), to construct shared data 

structures throughout the storage data path.  

Conceptually, each piece of data is associated with one 

or more tags, indicating how data pieces are related and 

should be handled within the data path.  The collection 

of data pieces and tags forms a single-level data tagging 

layer.  To ease coordination, these tags provide global 

and logical communication throughout the data path.  

Tags also provide a common denominator for high-level 

storage layers and applications, providing enough 

flexibility to accommodate the direct construction of 

name spaces by file systems and of indices by databases 

and to bypass redundant services (e.g., data structure 

remapping).  Below the tagging layer, a consolidated 

layer comprising the physical tags and data management 

makes informed decisions on how tags and data pieces 

are accessed and stored.  As data traverse through the 

data path, they can be tracked using tagging. 

Unlike in the traditional data path, Tags separates 

logical access from physical storage management, which 

enables medium-specific optimizations, easing the 

accommodation of emerging storage technologies. 

3. Tags Design Space 

Conceptually, each piece of data is associated with a 

globally unique ID (i.e., <data ID, “data”>).  Each data 

ID can be associated with one or more types of globally 

registered and extensible tags, each in the form of <tag 

type ID, data ID>.  Figure 3.1.1 shows that the ID for 

“data” is 0.  The access permission tag for “data” refers 

to the data ID of 1, which is “READ_ONLY”.  The size 

tag for “data” refers to the data ID of 2, which is “5”.   

Although the data model is simple, storage modules 

can use tags as a common denominator when building 

data structures for cross-layer coordination and tracking.  

For example, through data ID indirections, we can build 

hierarchical graphs commonly used in file systems.   

Figure 3.1:  Tags primitive example. 

  … 

Figure 3.1.1:  Graph-based representation of Tags. 

3.1 Graph-based API 

Because a tag expresses the relationship between two 

pieces of data, we can logically transform Tags in terms 

of nodes and edges, with the nodes holding data, and the 

tags types representing directional edges (Figure 3.1.1).   

Figure 3.1.2 shows the core API for Tags.  A node 

can be created to hold a dynamically allocated copy of 

data.  A node can be destroyed given a node ID.  An 

edge-type ID can be created with a given name.  To 

create or delete an edge, we must specify the IDs of both 

the source and the destination nodes and of the edge type.  
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Because dangling edges (without end nodes) may lead to 

corrupted graphs, this API requires that the end nodes be 

created first, before the edge between the two.  Before 

an edge can be deleted, the nodes must exist on both 

ends, and the user must delete the edge before deleting 

the end nodes.  When an edge needs to point to NULL, 

an empty node can be used to assure that each edges is 

formed between two nodes.  Certain edge types involve 

enumeration (e.g., block ID edge type); thus, when 

operating on edges, an additional optional info parameter 

is used to pass in the enumerated number. 

A node can be accessed through its ID or through 

the incoming edge of another node.  To disambiguate, 

although a node can potentially be reached from different 

nodes through the same in-bound edge type, a node can 

be associated only with unique out-bound edge types.  

node_ID = tags_create_node(data, len, …); 

tags_delete_node(node_ID); 

 

edge_type_ID = tags_create_edge_type(name); 

tags_delete_edge_type(edge_type_ID); 

 

tags_create_edge(src_node_ID, dest_node_ID,  

                    edge_type_ID, <edge_info>); 

tags_delete_edge(src_node_ID, dest_node_ID,  

                     edge_type_ID, <edge_info>); 

 

tags_get_dest_node(src_node_ID, edge_type_ID,  

                       <edge_info>); 

tags_ID_to_node(node_ID); 

Figure 3.1.2:  Core API for Tags. 

group_op_ID = tags_begin_group_ops(); 

tags_abort_ops(group_op_ID); 

tags_commit_ops(group_op_ID); 

Figure 3.2.1:  Group operations for Tags. 

3.2 Group Operations  

One problem with using the graph-based API on fine-

grained tags is achieving atomicity across many tags 

operations.  Any failure along a sequence of graph 

operations would require lengthy cleanup code.  To 

mitigate this problem, we added group operations 

(Figure 3.2.1).  If an error occurs between the begin and 

commit calls, the abort call automatically performs the 

graph cleanup and the rollback to the graph states.   

For instance, Tags periodically takes snapshots of 

edges (using semantics akin to the ordered journaling 

mode for ext3) and maintains a list of committed and 

pending group operations.  A new snapshot can be 

created by applying committed group operations to the 

latest snapshot.  As the periodic snapshot only concerns 

edges and is built incrementally, the overhead is light.  

In the case of aborting group operations, Tags tries to 

undo operations when it is possible.  When it is not, 

Tags rolls back to the most recent snapshot. 

This rollback exploits two Tags properties.  First, 

a node must be created prior to establishing its edges.  

When aborting a group operation that involves creating 

a new node, all edge operations on the newly created 

node can be discarded, and the new node can be deleted.  

Second, all edges related to a node must be deleted 

before deleting the node.  Thus, when a node deletion 

is aborted, the node should no longer be reachable by the 

remaining graph.  Therefore, delayed node deletion via 

garbage collection suffices.   

3.3 Physical Representation 

In a nutshell, Tags is a single-level store with operations 

revolving around nodes and edges.   

Nodes:  Tags nodes are variable-sized, memory-

mapped storage chunks governed by a memory allocator 

(e.g., slab [3] or buddy allocators [11]).  A node’s 

memory address (offset by the starting memory-mapped 

address) is used as a unique ID for that node, freeing us 

from implementing node-allocation management. 

Edges: Tags edges are implicitly stored in an 

extensible hash table [5].  Basically, hash(source node 

ID, edge type ID, edge info) returns the destination node 

ID.  The destination node can be tagged with a magic 

number to perform a dynamic type check prior to 

accessing the node’s content.   

Persistence:  To survive reboots, the states of the 

memory allocator must be persistent, using techniques 

similar to [25].  The governed memory is divided into 

separate flushable regions for persistent states, 

ephemeral states (to optimize the Tags internal data 

structures), shared memory (for IPCs), snapshots and 

journals (for rollbacks), and reserved locations (for the 

states of the memory allocator itself).  

Data layout:  With the storage organization for 

Tags, data layouts are largely governed by the 

representation of the hash table and by the memory 

allocator.  Thus, by exploiting the notion of temporal 

and spatial locality for hashing and for memory 

allocation, we can tune the system’s performance by 

aligning the characteristics of the workload and with the 

characteristics of the underlying storage devices.  

Currently, we use a customized slab allocator [3] for sub-

page requests and buddy allocators [11] for requests 

larger than one page.  Alternatively, we can use 

hierarchical hashing or a log-structured memory 

allocator [15] to exploit spatial or temporal locality.   

3.4 Access control 

Since Tags aims to create primitives smaller than the 

granularity of common data structures, we anticipate 

many small tags, rendering high overhead for per-node 

permission checks.  Allowing edges to be created 

between any two nodes is also an unwieldly way to 

enforce the permission to access restricted nodes.  

However, since many tags share the same permission, it 

would make sense to check and enforce permissions at 

fewer locations.  Also, a certain degree of restrictions 



on how edges can be formed can help manage the access 

control properties of the resulting graph topology. 

Super nodes: The idea of super nodes (or s-nodes) 

is to reduce the number of places where permissions are 

set and checked:  only s-nodes have edges to 

permission nodes.  All nodes belonging to the same s-

node implicitly share the same permissions.  In terms of 

the restrictions, edges can be created from an s-node to 

its nodes (Table 3.4.1).  Also, edges can be created 

from any node to an s-node, since that destination s-node 

can enforce the access permissions.  However, forming 

edges between nodes that are under different s-nodes is 

prohibited.  Also, one source s-node cannot create an 

out-bound edge node to a node that is under another s-

node. 

One challenge to realizing s-nodes is finding a 

node’s s-node without additional edges or lookup tables.  

Since our unique node IDs are based on 64-bit memory-

mapped addresses, we borrowed unused S high-order 

bits.  An s-node ID is a unique S-bit number, zero-

extended to form a 64-bit ID.  To access its nodes, we 

also must connect the s-node to at least one of its nodes.  

To locate the permission from a node under an s-node, 

we hash(zero extended upper S bit of the node ID, 

permission edge type ID).   

In terms of the API, a programmer can use a special 

call to create s-node IDs and use them to create node IDs 

(Figure 3.4.1).  The s-node tracks the number of nodes 

created beneath it.  To delete an s-node, all its nodes 

must first be deleted.  Otherwise, the permission of the 

undeleted node will be either undefined, or defined by a 

newly allocated s-node with a reused s-node ID. 

Sessions: Since node IDs are capabilities, we need 

the ability to revoke privileges.  Thus, other than for the 

root node ID, the user should interact with Tags through 

translated IDs.  This mechanism is enabled using 

session open and close calls and a primitive translation 

table (Figure 3.4.1).  An open session call is needed 

before accessing the translated root node of a Tags graph.  

All subsequent node IDs obtained from the root node’s 

edges are translated via a translation table.  At the end 

of a program, a close session call is needed to delete the 

translation table.  Optionally, a timeout can be 

specified to close a session when the system registers no 

activity occurring within a timeout period.  

Table 3.4.1:  Rules for creating edges. 

from \ to 
s-node 

A/B 

s-node A’s nodes s-node B’s nodes 

s-node A Yes Yes No 

s-node B Yes No Yes 

s-node A’s nodes Yes Yes No 

s-node B’s nodes Yes No Yes 

 

 

 

s_node_ID = tags_create_s_node(mode); 

node_ID = tags_create_node(data, len,     

                                 s_node_ID); 

Figure 3.4.1:  Super node operations. 

translated_root_node_ID  

  = tags_open_session(root_node_ID,  

                          <time_out_minutes>); 

tags_close_session(translated_root_node); 

Figure 3.4.2:  Super node operations for sessions. 

4. Implementation 

Tags is prototyped in C as a user-level library.  Tags 

applications link and load the library to use the Tags API 

to perform storage tasks.  Figure 4.1 shows how a Tags-

based key-value store (§5.1) uses the Tags library to 

interact with the kernel and communicates with the 

kernel via memory mapping and shared memory. 

Figure 2.1 shows the two major components of 

Tags.  The data-tagging and data-tracking component 

implements the graph API, the nodes and edges, the 

group operations, and the access control.  The physical 

management component implements the persistent 

memory allocator, which also controls the physical data 

layout.  Currently, the Tags library does not support 

sessions or multi-threaded and nested group operations.   

Figure 4.1:  Storage data paths for Tags-based key-

value store (shaded boxes) and LevelDB [6]. 

5. Tags Evaluation via Case Studies 

While evaluating Tags, we wanted to show (1) its ability 

to avoid redundant layered features when supporting 

new data models, (2) its usability and robustness when 

building complex software, (3) its ability to coordinate 

and track data across layers, and (4) its ability to perform 

well with both disk and SSD storage media. 

To show that Tags can perform well with HDDs 

and SSDs, in each experimental setting, we conducted 

benchmarks on both media.  Each experiment was 

repeated 5 times and presented at the 95% confidence 

interval.  Table 5.1 shows the system configuration. 

5.1 Tags-based Key-value Store 

To show the benefit of the direct support for new data 

models, we prototyped a key-value store using the Tags 
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library.  The data path had no file system and associated 

redundant efforts to manage data layout (Figure 4.1). 

Given that Tags is built on a hash table that stores 

edges to nodes, Tags operations can be directly mapped 

to support key-value store operations.  We began by 

creating a root node.  For the key-value Put(key, 

data) operation, we created a node to store the data and 

used the key as an edge type ID.  For Get(key), we 

called tags_get_dest_node(root node ID, 

key) to retrieve the data node.  For Delete(key), 

we called tags_delete_edge(root node ID, 

node ID), followed by 

tags_delete_node(node ID). 

We compared the Tags-based key-value store with 

LevelDB 1.9.0 [6].  Figure 4.1 shows the differences 

between the two data paths.  For the workload, we 

inserted 10 million, 100-byte key-value pairs, each with 

16-byte keys.  Figures 5.1.1 and 5.1.2 show the results.   

For both storage media, Tags and LevelDB have 

similar read performance, since both systems use 

memory-mapped IOs to avoid copying.  Both systems 

also use bulk updates (group operation for Tags) to speed 

up small updates.  For disks, Tags can outperform 

LevelDB in terms of inserts by a factor of 1.8 and for 

deletes, by a factor of 2.7.  For SSDs, Tags can 

outperform LevelDB in terms of inserts by a factor of 

1.2, and for deletes, by a factor of 1.6. 

5.2 Tags-based File System 

To demonstrate usability, we prototyped TagFS to show 

that the interface and primitives provided by Tags are 

expressive enough to build meaningful and complex 

applications.  TagFS was implemented at the user space 

via the FUSE framework [24].  Figure 5.2.1 illustrates 

the flow of data requests.   

TagFS translates POSIX file system calls into 

Tags-based nodes and edges, and this task involves many 

node and edge operations, simplified by group 

operations.  Basically, all i-nodes (permission holding 

nodes) are replaced with s-nodes, and all attributes are 

accessed through edges (Figure 5.2.2).  Directory 

entries can be accessed via ID hashes.  For traversals, a 

directory entry can locate the next and previous entries 

through hash(current ID, next edge type) or hash(current 

ID, previous edge type).  Data blocks are accessed 

through enumerated edges to support indexing on top of 

the hashing data structure. 

Although we could instead use a single node to 

contain all attributes of an i-node, we explored this 

pedantic scenario to show that even if Tags are naively 

applied, we can still configure the system to achieve 

reasonable performance.  We compared our TagFS 

with ext4 stacked on FUSE.  The times elapsed for 

TagFS and ext4 + FUSE to compile the openSSL 

(v1.1.0f) [2017] were statistically the same (87 + 0.01 

seconds).   

When running LFS large-file and small-file 

benchmarks [14], TagFS performed reasonably well 

when its block size reaches 32KB, to amortize the cost 

of fine-grained access to attribute nodes and dynamic 

type checks (Tables 5.2.1 and 5.2.2).  Future work will 

include optimizing the dynamic behavior of Tags. 

Table 5.1:  System configurations. 

CPU 2.2Ghz Intel® Xeon® E5-2430, 15MB cache 

Memory 32 GB RDIMM 1333 MT/s 

HDD Seagate® SAS 146GB 15K RPM  

SSD Intel® S3500 200 GB SATA Value MLC  

Operating system Linux Mint 3.19 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.1:  Key-value store performance for 

HDD. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.2:  Key-value store performance for SSD. 

 

Figure 5.2.1:  TagFS and the Tags library (shaded). 

 

0

50

100

150

200

250

insert read delete

KOP/S

Tags-key-value store LevelDB

0

50

100

150

200

250

300

350

400

insert read delete

KOP/S

Tags key-value store LevelDB

FUSE VFS 

TagsFS Tags library 

MMU 

Disk/MTD driver 

Storage device 

Kernel 

User space 
Applications 



Figure 5.2.2:  The Tags representation of file system. 

Table 5.2.1:  LFS large-file benchmark numbers 

(MB/s), with one 512MB file for HDD and one 2GB 

file for SSD. 

  Seq w Rand w Seq r Rand r 

Tags 

+ 

FUSE 

HDD 
190 

(+2.4) 

25 

(+1.0) 

190 

(+1.7) 

26 

(+0.4) 

SSD 
240 

(+4.8) 

120 

(+1.1) 

340 

(+7.9) 

140 

(+1.9) 

Ext4 

+ 

FUSE 

HDD 
91 

(+0.2) 

43 

(+0.3) 

190 

(+1.1) 

2.7 

(+0.0) 

SSD 
150 

(+3.2) 

100 

(+3.2) 

350 

(+4.6) 

39 

(+0.4) 

Table 5.2.2:  LFS small-file benchmark numbers 

(ops/sec), with 20K 16KB file for HDD and 100K 

16KB files for SSD. 

  Create Read Delete 

Tags 
+ 

FUSE 

HDD 1.4K (+21) 5.5K (+170) 5.5K (+260) 

SSD 3.8K (+66) 12K (+120) 17K (+290) 

Ext4 
+ 

FUSE 

HDD 
1.6K  
(+27) 2.6K (+100) 7.3K (+290) 

SSD 
4.1K  
(+80) 5.1K (+120) 19K (+1.5K) 

 

5.3 Per-file secure deletion 

To demonstrate cross-layer coordination and tracking, 

we augmented TagFS with a per-file secure-deletion 

feature akin to that of TrueErase [4].  First, a user can 

use chattr +s to set the secure-deletion bit of a file 

at the file-system layer.  However, by the time a storage 

request arrives at the device driver layer, the layer can no 

longer tell the file membership of a block.   

In TagFS, since each group of nodes is governed by 

an s-node to manage the permission, any node (e.g., a 

data block node) under an s-node can reach the s-node 

(see §3.4).  Then, TagFS can access the permission.  

The secure-deletion bit indicates that the corresponding 

overwrite or truncate should be handled securely.  

We handled the disk case by zeroing out data blocks 

that needed to be securely overwritten and truncated at 

the block layer.  Without the open FTL and raw flash 

setup, we did not implement this feature.  Note that the 

TRIM command is insufficient, since it only specifies 

what pages are obsolete, so that the garbage collection 

would not migrate them as live pages during the garbage 

collection process [19].   

6. Related Work 

Since the advent of SSDs, research systems have 

attempted to address some of the limitations posed by the 

legacy storage data path.   

 Cross-layer redundancy removal:  Conquest [25] 

and TableFS [12] have dedicated data paths for large 

files and remaining small files and metadata.  File-

system journals can be turned off for databases [17].   

 Cross-layer coordination:  The gray-box 

approach leverages inferred information across layers 

for coordination [1].  TrueErase [4] provides an 

auxiliary data path, so that a file system can propagate 

the information to the device layer to indicate whether a 

file needs to be securely deleted or overwritten.  

Willow [16] augments the data path with customizable 

API to coordinate across layers.   

Support for low latency storage:  JFFS [27] 

consolidates logging for the file-system and the device- 

driver layers.  DAX [26] uses direct IOs and bypasses 

the memory caching designed for high-latency storage.  

Arrakis [10] removes the kernel from the data IO path.  

IO requests are routed to and from the applications’ 

address spaces.  To perform IOs, applications rely on a 

user-level IO stack that is provided as a library. 

 Support for new storage data models:  [18] 

shows how mixed workloads from file systems and 

databases can be efficiently handled using separate 

KVFS and KVDB layers.  Cassandra [7] uses a 

customized graph API to store and retrieve data objects.  

7. Lessons Learned and Future Work 

Tags takes a minimalist approach to design and building 

a storage data path.  The idea seemed simple; however, 

Tags began as an analogue of sticky notes and was 

transformed into graph nodes and edges, implemented 

with the semantics of single-level stores and 

representations akin to those of key-value stores.  Little 

did we know that this journey would lead us to revisit 

numerous legacy concepts and design decision, and help 

us develop a better appreciation of storage advances. 

Low-level single-level store model is tricky to 

program:  When building the core Tags, low-level 

single-level-store style programming was confusing at 

times.  Since the memory allocator and all its allocated 

memory regions are persistent, all changes to memory 

data structures may result in unintended IOs.  To 

overcome this hurdle, we separated persistent and 

transient data structures.  Fortunately, users need only 

to handle node and edge IDs. 
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Locality is still important for hashing:  We 

avoided hashing repeated path prefixes using the parent 

path ID as a seed to short-circuit the hash functions; 

however, effectively, this scheme made hashing 

hierarchical.  Our future work will find additional ways 

to improve the locality of hashing. 

Access control dictates the unit of access:  

Although Tags allows fine-grained data representation 

and organization beyond the granularity of legacy data 

structures, the access control dictates which groups of 

tags are accessed together and how they can form graphs.   

Convoluted path forward:  In some ways, the 

Tags design reintroduced certain aspects of the 

components of legacy storage data path (e.g., group 

operations).  However, once we pierce through the 

legacy data structures, with fine-grained system calls, we 

can directly support data and metadata layouts not 

previously possible [28]. 

8. Conclusions 

We have presented Tags, a white-box approach to 

addressing legacy storage data path constraints.  Using 

a unifying primitive and an API of nodes and edges, we 

have shown how Tags can be used to build applications 

as complex as a file system and robust enough to compile 

the Linux kernel.  The Tags-based key-value store 

shows how direct system support and bypassing 

redundant services can significantly improve 

performance for both disks and SSDs.  Tags also eases 

data-path-wide tracking and coordination to support 

features such as per-file secure deletion.   
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