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Abstract 

Traditional file system optimizations typically retain the 

one-to-one mapping of logical files to their physical 

metadata representations.  This rigid mapping results in 

missed opportunities for an entire class of optimizations 

in which such coupling is removed.  

We have designed, implemented, and evaluated a 

composite-file file system, which allows many-to-one 

mappings of files to metadata, and we have explored the 

design space of different mapping strategies.  Under 

webserver and software development workloads, our 

empirical evaluation shows up to a 27% performance 

improvement.  This result demonstrates the promise of 

decoupling files and their metadata. 

1. Introduction 

File system performance optimization is a well-

researched area.  However, most optimization 

techniques (e.g., caching, better data layout) retain the 

one-to-one mapping of logical files to their physical 

metadata representations (i.e., each file is associated with 

its own i-node on UNIX platforms).  Such mapping is 

desirable because metadata constructs are deep-rooted 

data structures, and many storage components and 

mechanisms—such as VFS API [McKusick et al. 1990], 

prefetching, and metadata caching—rely on such 

constructs.  However, this rigid mapping also presents 

a blind spot for a class of performance optimizations.  

We have designed, implemented, and evaluated the 

composite-file file system (CFFS), where many logical 

files can be associated with a single i-node (plus extra 

information stored as extended attributes).  Such an 

arrangement is possible because many files accessed 

together share very similar metadata subfields [Edel et 

al. 2004], which can be deduplicated.  Thus, the CFFS 

can yield fewer metadata accesses to storage, a source of 

significant overhead for accessing small files, which still 

dominates the majority of file references for modern 

workloads [Roselli et al. 2000; Harter et al. 2011].    

Based on web server and software development 

workloads, the CFFS can outperform ext4 by up to 27%, 

suggesting that the approach of relaxing the file-to-

metadata mapping is promising. 

2. Observations 

The following observations led to the CFFS design:  

Frequent access to small files:  Studies [Roselli et 

al. 2000; Harter et al. 2011] show that small files receive 

the majority of file references.  Our in-house analyses 

of a desktop file system confirmed that 82% of accesses 

are to files smaller than 32 bytes.  Further, 41% of the 

access time to access a small file on a disk can be 

attributable to metadata access.  Thus, reducing this 

access overhead may lead to a large performance gain.   

Redundant metadata information:  A traditional 

file is associated with its own physical metadata, which 

tracks information, such as the locations of file blocks, 

access permissions, etc.  However, many files share 

similar file attributes, as the number of file owners, 

permission patterns, etc. are limited.  Edel et al. [2004] 

showed up to a 75% metadata compression ratio for a 

typical workstation.  Thus, we see many opportunities 

to reduce redundant metadata information.   

Files accessed in groups:  Files tend to be 

accessed together, as shown by Kroeger and Long 

[2001], Li et al. [2004], Ding et al. [2007], and Jiang et 

al. [2013].  For example, web access typically involves 

accessing many associated files.  However, 

optimizations that exploit file grouping may not yield 

automatic performance gains, as the process of 

identifying and grouping files incurs overhead.   

These observations beg the question of whether we 

can improve performance by removing redundant 

metadata information and accesses among small files 

that are accessed together.  This is achieved through our 

approach of decoupling the one-to-one mapping of 

logical files to their physical representation of metadata. 

3. Composite-file File System 

We introduce the CFFS, which allows multiple small 

files to share a single i-node.   

3.1. Design Overview 

The CFFS introduces an internal physical representation 

called a composite file, which holds the content of files 

that are frequently accessed together, and such files tend 

to be small.  A composite file is invisible to end users 

and is associated with a single composite i-node shared 

among small files.  The original information stored in 

small files’ inodes are deduplicated and stored as 

extended attributes of a composite file.  The metadata 

attributes of individual small files can still be 

reconstructed, checked, and updated, so that the legacy 

access semantics (e.g., types, permissions, timestamps) 

are unchanged.  The extended attributes also record the 

locations within the composite file for individual small 



files.  With this representation, the CFFS can translate 

a physical composite file into logical files. 

The CFFS can be configured three ways to identify 

file candidates for forming composite files and 

consolidating their metadata.  The first scheme is 

directory-based consolidation, where all files within a 

directory (excluding subdirectories) form a composite 

file.  The second scheme is embedded-reference 

consolidation, where embedded file references within 

file contents are extracted to identify files that can form 

composite files.  The third is frequency-mining-based 

consolidation, where file references are analyzed 

through set frequency mining [Agrawal and Srikant 

1994], so that files that are accessed together frequently 

form composite files.  

A composite file is compatible to legacy VFS 

caching mechanisms and semantics, and the entire 

composite file can be prefetched as a unit.  At the same 

time, it is also possible to access and update individual 

files within the composite file. 

3.2. Data Representation 

The content of a composite file is formed by 

concatenating small files, referred to as subfiles.  All 

subfiles within a composite file share the same i-node, as 

well as indirect blocks, doubly indirect blocks, etc.  The 

maximum size limit of a composite file should not be a 

concern, as composite files are designed to encapsulate 

small files.  Should the sum of subfile sizes exceed the 

maximum file size limit, we resort to the use of multiple 

composite files.   

Often, the first subfile in a composite file is the 

entry point, whose access will trigger the prefetching 

mechanisms to load the remaining composite file or its 

subfiles into the memory.  For example, when a browser 

accesses an html file, it loads a css file and flash script.  

The html file can serve as the entry point and 

prefetching trigger of this three-subfile composite file.  

For the frequency-based consolidation, the ordering of 

subfiles reflects how they are accessed.  Although the 

same group of files may have different access patterns 

with different entry points, the data layout is based on the 

most prevalent access pattern.  

3.3. Metadata Representations and Operations 

Composite file creation:   When a composite file is 

created, the CFFS allocates an i-node and copies and 

concatenates the contents of the subfiles as its data.  The 

composite file records the composite file offsets and 

sizes of individual subfiles as well as their deduplicated 

i-node information into its extended attributes.  The 

original subfiles then are truncated, with their directory 

entries remapped to the i-node of the composite file and 

their original i-nodes deallocated.  Thus, end users still 

perceive individual logical files in the name space, while 

individual subfiles can still be located (Figure 3.3.1).  

I-node content reconstruction:  Deduped subfile 

i-nodes are reconstructed on the fly.  By default, a 

subfile’s i-node field inherits the value of the composite 

file’s i-node field, unless otherwise specified in the 

extended attributes.   

Figure 3.3.1:  Creation of the internal composite file 

(bottom) from the two original files (top). 

Permissions: At file open, the permission is first 

checked based on the composite i-node.  If it failed, no 

further check is needed.  Otherwise, if a subfile has a 

different permission stored as an extended attribute, the 

permission will be checked again.  Therefore, the 

composite i-node will have the broadest permissions 

across all subfiles.  For example, within a composite 

file, we have a read-only subfile A, and a writable subfile 

B, while the permission for the composite i-node will be 

read-write.  However, when opening subfile A with a 

write permission, the read-only permission in the 

extended attribute will catch the violation. 

Timestamps:  The timestamps of individual 

subfiles and the composite file are updated with each file 

operation.  However, during checks (e.g., stat system 

calls), we return the timestamps of the subfiles.  

Sizes:  For data accesses, the offsets are translated 

and bound-checked via subfile offsets and sizes encoded 

in the extended attributes.  The size field of a composite 

file’s i-node is the length of the composite file, which can 

be greater than the total size of its subfiles.  For 

example, if a subfile in the middle of a composite file is 

deleted, the region is freed, but the size of the composite 

file remains unchanged.  In addition, once the entry-

point file is accessed, the legacy VFS would prefetch at 

the level of the composite file. 

Subfile and subfile membership updates:  When 

a subfile is added to a composite file, it is concatenated 

to the end of the composite file.  When a subfile is 

deleted from a composite file, the corresponding data 

region within the composite file is marked freed.  The 

composite file compacts its space when half of its 

allotted size is freed.  

File 1 i-node 1 Indirect 1 Data 1 

File 2 i-node 2 Indirect 2 Data 2 

File 1 i-node C Indirect 1 Data 1 

File 2 Deduplicated metadata 

Data 2 



Subfile open/close operations:  An open/close 

call to a subfile is the same as an open/close call to the 

composite file, with the current file-position pointer 

translated.  While lock contentions can be a concern, 

files detected to be involved in such reference streams 

can be opted out from forming composite files. 

Subfile write operations:  In-place updates are 

handled the same way as those in a traditional file 

system.  However, if an update involves growing a 

subfile in the middle of a composite file and no free space 

is available at the end of the subfile, we move the 

updated subfile to the end of the composite file.  This 

scheme exploits the potential temporal locality that a 

growing subfile is likely to grow in the near future.   

3.4. Identifying Composite File Membership 

3.4.1 Directory-based Consolidation 

Given that legacy file systems have deep-rooted spatial 

locality optimizations revolving around directories, a 

directory is a good approximation of file access patterns 

and for forming composite files.  Currently, this 

consolidation scheme excludes subdirectories.   

The directory-based consolidation can be performed 

on all directories without tracking and analyzing file 

references.  However, it will not capture file 

relationships across directories.   

3.4.2 Embedded-reference-based Consolidation 

Embedded-reference-based consolidation identifies 

composite file memberships based on embedded file 

references in files.  For example, hyperlinks may be 

embedded in an html file, and a web crawler is likely to 

access each web page via these links.  In this case, we 

consolidate the original html file and the referenced 

files, while the original html subfile works as an entry 

point.  Similar ideas apply to compilation. We can 

extract the dependency rules from Makefiles and 

consolidate source files that lead to the generation of the 

same binary.  As file updates may break dependency, 

we need to sift continuously or periodically through 

updated files to update composite file memberships.  

The embedded-reference-based scheme can be more 

accurate when identifying related files accessed across 

directories, but it may not be easy to identify embedded 

file references beyond text-based file formats (e.g., 

html, source code).  In addition, it requires knowledge 

of specific file formats.  

3.4.3 Frequency-mining-based Consolidation 

The frequency-mining-based consolidation applies a 

variant of the Apriori algorithm [Agrawal and Srikant 

1994].  The key observation is that if a set of files is 

accessed frequently, its subset must be as well.  

Initial pass:  Figure 3.4.1 illustrates the algorithm 

with an access stream to files A, B, C, D, and E.  During 

the initial pass, we count the number of accesses for each 

file.  Files are first eliminated if they are not accessed 

at least twice.  In addition, we can use a threshold (say 

two), to remove files with fewer accesses from further 

analyses. 

Second pass:  For the files that exceed the 

threshold, we can permute and build all possible two-file 

reference sets and count their occurrences.  Thus, 

whenever file A is accessed right after B, or vice versa, 

we increment the count for file set {A, B}.  If the access 

count for a two-file set is less than the threshold, the set 

is eliminated (e.g., the file set {B, D}).   

{A} 5  {A, B} 2  {A, B, C} 5 

{B} 2  {A, C} 2  {A, B, D}  

{C} 2  {A, D} 6  {A, C, D}  

{D} 4  {B, C} 2  {B, C, D}  

{E} 1  {B, D} 0    

   {C, D} 0    

Figure 3.4.1:  Steps for the Apriori algorithm to identify 

frequently accessed file sets for a file reference stream E, 

D, A, D, A, D, A, B, C, A, B, C, A, D. 

Third pass:  For the remaining files, we can 

generate all three-file reference sets.  However, we 

apply the constraint that if a three-file reference set 

occurs frequently, all its two-file reference sets also need 

to occur frequently (the Apriori property).  Thus, file 

sets such as {A, B, D} are pruned, since file set {B, D} 

is eliminated in the second pass.   

Termination:  As we can no longer generate four-

file reference sets, the algorithm ends.  Now, if a file 

can belong to multiple file sets, we return sets {A, B, C} 

and {A, D} as two frequently accessed sets.  Sets {A, 

B}, {B, C}, and {A, C} are eliminated as they are already 

subsets of {A, B, C}. 

Variations:  An alternative is to use a normalized 

threshold, or support, which is the percentage of set 

occurrences (number of the occurrences of a set divided 

by the total occurrences, ranged between 0 and 1).   

Instead of tracking file sets, we can also track file 

reference sequences to determine the entry point and the 

content layout of the composite file.   

We currently disallow overlapping file sets.  To 

choose a subfile’s membership between two composite 

files, the decision depends on whether a composite file 

has more subfiles, higher support, and more recent 

creation timestamps. 

Optimizations:  One way to prune the number of 

file sets is to use a higher threshold or support.  In 

addition, the tracking tables can be incrementally 

updated as new file references arrive.  For Figure 3.4.1, 

suppose another access to file A arrives, we can update 

the counters for {A} in the first table and {A, D} in the 



second.  Further, we can analyze the data in batches of 

n recent file references, and process them by PIDs or web 

IP addresses to detangle interleaved concurrent file 

references.  As reference patterns change, subfiles 

within composite files may be reassigned to other 

composite files. 

Another optimization concerns how to locate the file 

set containing a file sequence quickly.  One way is to 

sort and hash the file sequence, but sorting is expensive 

in the critical path.  Another way is to hash files in the 

sequence into a signature vector (similar to Bloom filter 

[Bloom 1970]), and hash the signature, but the size of the 

vector is proportional to the number of unique items in 

the trace.  Instead, we used a commutative hash 

function, where hash(A, B) is the same has hash(B, A) to 

speed up this lockup process. 

The frequency-mining-based consolidation can 

identify composite file candidates based on the dynamic 

file references.  However, the computational overhead 

limits its practical application to file sequences accessed 

above a certain frequency. 

4. Implementation 

The two major components of the CFFS are the 

composite file membership generator tool and the CFFS.  

We prototyped the CFFS in the user space via the 

FUSE (v2.9.3) framework [Szeredi 2005] (Figure 4.1) 

running atop Linux 3.16.7.  The CFFS is stacked atop 

of ext4, so that we can leverage legacy tools and features 

such as persistence bootstrapping (e.g., file-system 

creation utilities), extended attributes, and journaling.  

The CFFS periodically takes the recommendations 

from the generator tool to create composite files.  We 

leveraged mechanisms similar to hardlinks to allow 

multiple file names to be mapped to the same composite 

i-node.  (Not to be confused with hardlinks to 

individual subfiles, which are tracked by per-subfile 

reference counters, as needed)  We intercepted all file-

system-related calls due to the need to update the 

timestamps of individual subfiles.  We also need to 

ensure that various accesses use the correct permissions 

(e.g., open and readdir), translated subfile offsets 

and sizes (e.g., read and write), and timestamps (e.g., 

getattr and setattr).  The actual composite file, 

its i-node, and its extended attributes are stored by the 

underlying ext4 file system.  The CFFS is implemented 

in C++ with ~1,600 semicolons. 

For the directory-based consolidation, we used a 

Perl script to list all the files in a directory as composite 

file members.  For the embedded-reference-based 

scheme, we focus on two scenarios.  For the web server 

workload, we consolidate the html files and their 

immediately referenced files.  In the case of conflicting 

composite file memberships, the preference is given to 

index.html, and then the html that first includes the 

file.  The other is the source code compilation.  We 

used Makefiles as a guide to consolidate source code 

files.  For the frequency-mining-based scheme, the 

membership generator tool takes either the output from 

the http access log or the strace output.  The 

generator implements the Apriori algorithm, with the 

support parameter set to 5%.  The analysis batch size is 

set to 50K references.  The parameters were chosen 

based on empirical experience to limit the amount of 

memory and processing overhead. The generator code 

contains ~1,200 semicolons.  

Figure 4.1:  CFFS components (shaded) and data 

path from applications to the underlying ext4.   

5. Performance Evaluation 

We compared the performance of the CFFS stacked atop 

of ext4 via FUSE with the baseline ext4 file system (with 

the requests routed through an empty FUSE module).  

The replays were performed on a Dell T3600 

workstation (Table 5.1).  Each experiment was 

repeated 5 times, and results are presented at 90% 

confidence intervals. 

We evaluated our system via replaying two traces.  

The first is a three month-long http log gathered from 

our departmental web server (01/01/2015-03/18/2015).  

The trace contains 14M file references to 1.0TB of data.  

Among which, 3.1M files are unique, holding 76GB of 

data.  The second trace was 11 days long, gathered via 

strace from a software development workstation 

(11/20/2014 – 11/30/2014).  The trace contained over 

240M file-system-related system calls to 24GB of data.  

Among which, 291,133 files are unique with 2.9GB 

bytes.  Between read and write operations, 59% are 

reads, and 41% are writes.   

Table 5.1:  Experimental platform. 
 Experimental platform 

Processor 2.8GHz Intel® Xeon® E5-1603, L1 cache 64KB, 

L2 cache 256KB, L3 cache 10MB 

Memory 2GBx4, Hyundai, 1067MHz, DDR3 

Disk 250GB, 7200 RPM, WD2500AAKX with 16MB 
cache 

Flash 200GB, Intel SSD DC S3700 

OS Linux 3.16.7 

We conducted multi-threaded, zero-think-time trace 

replays on a storage device.  We also skipped trace 

VFS FUSE 

ext4 

user space 
kernel space 

CFFS applications 

composite file membership generator tool 



intervals with no activities.  Prior to each experiment, 

we rebuilt the file system with dummy content.  For 

directory-based and embedded-reference-based 

schemes, composite file memberships are updated 

continuously.  For the frequency-mining-based 

consolidation, the analysis is performed in batches, but 

the composite files are updated daily. 

5.2. Web Server Trace Replay 

HDD performance:  Figure 5.2.1 shows the CDF of 

web server request latency for a disk, measured from the 

time a request is sent to the time a request is completed.   

The original intent of our work is to reduce the number 

of metadata IOs and improve the layout for small files 

that are frequently accessed together.  However, the 

benefit of fewer accesses to consolidated metadata 

displays itself as metadata prefetching for all subfiles, 

and the composite-file semantics enable cross-file 

prefetching, resulting in much higher cache-hit rates. 

The embedded-reference-based consolidation 

performed the best, with 62% of requests serviced from 

the cache, which is 20% higher than ext4.  Thus, 

composite files created based on embedded references 

capture the access pattern more accurately.  The overall 

replay time was also reduced by ~20%. 

The directory-based composite files can also 

improve the cache-hit rate by 15%, reflecting the 

effectiveness of directories to capture spatial localities.  

The frequency-mining-based consolidation 

performed worse than the directory-based scheme.  We 

examined the trace and found that 48% of references are 

made by crawlers, and the rest by users.  Thus, the 

bifurcate traffic patterns for the mining algorithm form 

more conservative file groupings, leading to reduced 

benefits.    

SSD Performance:  Figure 5.2.2 shows the CDF 

of web server request latency for an SSD.  Compared to 

a disk, the relative trends are similar, with request 

latency times for cache misses reduced by two orders of 

magnitude due to the speed of the SSD.  As the main 

performance gains are caused by higher cache-hit rates 

and IO avoidance, this 20% benefit is rather independent 

of the underlying storage media.   

5.3. Software Development File-system Trace Replay 

For the software development workload replay, it is 

more difficult to capture the latency of individual file-

system call requests, as many are asynchronous (e.g., 

writes), and calls like mmap omit the details of the 

number of requests sent to the underlying storage.  

Thus, we summarize our results with overall elapsed 

times, which include all overheads of composite file 

operations, excluding the one-time setup cost for the 

directory- and embedded-reference-based schemes.  

HDD performance:  The embedded-reference-

based scheme has poor coverage, as many references are 

unrelated to compilation.  Therefore, the elapsed time 

is closer to that of ext4.  Directory-based consolidation 

achieves a 17% elapsed time reduction, but the 

frequency-mining-based scheme can achieve 27% 

because composite files also include files across 

directories.   

SSD performance: The relative performance trend 

for different consolidation settings is similar to that of 

HDD.  Similar to the web traces, the performance gain 

is up to 20%. 

When comparing the performance improvement 

gaps between the HDD and SSD experiments, up to an 

11% performance gain under HDD cannot be realized by 

SSD, as an SSD does not incur disk seek overheads. 

 
Figure 5.2.1:  Web server request latency for HDD. 

 
Figure 5.2.2:  Web server request latency for SSD. 

 
Figure 5.3.1: Elapse times for the software development 

file system trace replay. 
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5.5. Overheads 

Directory- and embedded-reference-based schemes:  

Directory- and embedded-reference-based schemes 

incur a one-time cost at the deployment time to create 

composite files based on directories and embedded file 

references.  The one-time cost of the embedded-

reference scheme depends on the number of file types 

from which file references can be extracted.  For our 

workloads, this cost is anywhere from 1 to 14 minutes.  

As for the incremental cost of updating composite 

file memberships, adding members involves appending 

to the composite files.  Removing members involves 

mostly metadata updates.  A composite file is not 

compacted until half its allotted space is freed.  As the 

trace replay numbers already include this overhead, this 

cost seems negligible, and it is offset by the benefits. 

Frequency-mining-based scheme:  The trace 

gathering overhead is below 0.6%, and the memory 

overhead for trace analyses is within 200MB for an 

average of 15M lines of daily logs.   

The frequency-mining-based scheme involves 

learning from recent file references, and it took a few 

replay days to reach a steady state to reap the full benefit 

of this scheme. 

5.6. Discussion and Future Work 

Composite files can benefit both read-dominant and 

read-write workloads using different storage media, 

suggesting that the performance gains are mostly due to 

the reduction in the number of IOs (~20%). The 

performance improvement gaps between the SSD and 

HDD suggest the performance gains due to reduced disk 

seeks and modified data layouts are up to ~10%.   

Overall, we are intrigued by the relationship among 

ways to form composite files, the performance effects of 

consolidating metadata and prefetching enabled by the 

composite files.  Future work will explore additional 

ways to form composite files and quantify their qualities 

and their interplay with different components of 

performance contributions. 

6. Related Work 

Small file optimizations:  While our research focuses 

on the many-to-one mapping of logical files and physical 

metadata, this work is closely related to ways to optimize 

small file accesses by reducing the number of metadata 

accesses.  Some early works involve collocating a file’s 

i-node with its first data block [Mullender and 

Tanenbaum 1984] and embedding i-nodes in directories 

[Ganger and Kaashoek 1997].  The CFFS consolidates 

i-nodes for files that are often accessed together.   

The idea of accessing subfile regions and 

consolidating metadata is later explored in the parallel 

and distributed computing domain, where CPUs on 

multiple computers need to access the same large data 

file [Yu et al. 2007].  Facebook’s photo storage [Beaver 

et al. 2010] leverages the observation that the 

permissions of images are largely the same and can be 

consolidated.  However, these mechanisms are tailored 

for very homogeneous data types.  With different ways 

to form composite files, the CFFS can work with subfiles 

with more diverse content and access semantics.   

Prefetching:  While a large body of work can be 

found to improve prefetching, perhaps C-Miner [Li et al. 

2004] is closest to our work.  In particular, C-Miner 

applied frequent-sequence mining at the block level to 

optimize the layout of the file and metadata blocks and 

improve prefetching.  However, the CFFS reduces the 

number of frequently accessed metadata blocks and 

avoids the need for a large table to map logical to 

physical blocks.  In addition, our file-system-level 

mining deals with significantly fewer objects and 

associated overheads.  DiskSeen [Ding et al. 2007] 

incorporates the knowledge of disk layout to improve 

prefetching, and the prefetching can cross file and 

metadata boundaries.  The CFFS proactively reduces 

the number of physical metadata items and alters the 

storage layout to promote sequential prefetching.  

Soundararajan et al. [2008] observed that by passing 

high-level execution contexts (e.g., thread, application 

ID) to the block layer, the resulting data mining can 

generate prefetching rules with longer runs under 

concurrent workloads.  Since the CFFS performs data 

mining at the file-system level, we can use PIDs and IP 

addresses to detangle concurrent file references.  

Nevertheless, the CFFS’s focus on altering the mapping 

of logical files to their physical representations, and it 

can adopt various mining algorithms to consolidate 

metadata and improve storage layouts. 

7. Conclusions 

We have presented the design, implementation, and 

evaluation of a composite-file file system, which 

explores the many-to-one mapping of logical files and 

metadata.  The CFFS can be configured differently to 

identify files that are frequently accessed together, and it 

can consolidate their metadata.  The results show up to 

a 27% performance improvement under two real-world 

workloads.  The CFFS experience shows that the 

approach of decoupling the one-to-one mapping of files 

and metadata is promising and can lead to many new 

optimization opportunities. 
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