
The Composite-file File System: Decoupling the One-to-one Mapping

of Files and Metadata for Better Performance

Shuanglong Zhang, Helen Catanese, and An-I Andy Wang

Computer Science Department, Florida State University

Abstract

Traditional file system optimizations typically retain the

one-to-one mapping of logical files to their physical

metadata representations. This rigid mapping results in

missed opportunities for an entire class of optimizations

in which such coupling is removed.

We have designed, implemented, and evaluated a

composite-file file system, which allows many-to-one

mappings of files to metadata, and we have explored the

design space of different mapping strategies. Under

webserver and software development workloads, our

empirical evaluation shows up to a 27% performance

improvement. This result demonstrates the promise of

decoupling files and their metadata.

1. Introduction

File system performance optimization is a well-

researched area. However, most optimization

techniques (e.g., caching, better data layout) retain the

one-to-one mapping of logical files to their physical

metadata representations (i.e., each file is associated with

its own i-node on UNIX platforms). Such mapping is

desirable because metadata constructs are deep-rooted

data structures, and many storage components and

mechanisms—such as VFS API [McKusick et al. 1990],

prefetching, and metadata caching—rely on such

constructs. However, this rigid mapping also presents

a blind spot for a class of performance optimizations.

We have designed, implemented, and evaluated the

composite-file file system (CFFS), where many logical

files can be associated with a single i-node (plus extra

information stored as extended attributes). Such an

arrangement is possible because many files accessed

together share very similar metadata subfields [Edel et

al. 2004], which can be deduplicated. Thus, the CFFS

can yield fewer metadata accesses to storage, a source of

significant overhead for accessing small files, which still

dominates the majority of file references for modern

workloads [Roselli et al. 2000; Harter et al. 2011].

Based on web server and software development

workloads, the CFFS can outperform ext4 by up to 27%,

suggesting that the approach of relaxing the file-to-

metadata mapping is promising.

2. Observations

The following observations led to the CFFS design:

Frequent access to small files: Studies [Roselli et

al. 2000; Harter et al. 2011] show that small files receive

the majority of file references. Our in-house analyses

of a desktop file system confirmed that 82% of accesses

are to files smaller than 32 bytes. Further, 41% of the

access time to access a small file on a disk can be

attributable to metadata access. Thus, reducing this

access overhead may lead to a large performance gain.

Redundant metadata information: A traditional

file is associated with its own physical metadata, which

tracks information, such as the locations of file blocks,

access permissions, etc. However, many files share

similar file attributes, as the number of file owners,

permission patterns, etc. are limited. Edel et al. [2004]

showed up to a 75% metadata compression ratio for a

typical workstation. Thus, we see many opportunities

to reduce redundant metadata information.

Files accessed in groups: Files tend to be

accessed together, as shown by Kroeger and Long

[2001], Li et al. [2004], Ding et al. [2007], and Jiang et

al. [2013]. For example, web access typically involves

accessing many associated files. However,

optimizations that exploit file grouping may not yield

automatic performance gains, as the process of

identifying and grouping files incurs overhead.

These observations beg the question of whether we

can improve performance by removing redundant

metadata information and accesses among small files

that are accessed together. This is achieved through our

approach of decoupling the one-to-one mapping of

logical files to their physical representation of metadata.

3. Composite-file File System

We introduce the CFFS, which allows multiple small

files to share a single i-node.

3.1. Design Overview

The CFFS introduces an internal physical representation

called a composite file, which holds the content of files

that are frequently accessed together, and such files tend

to be small. A composite file is invisible to end users

and is associated with a single composite i-node shared

among small files. The original information stored in

small files’ inodes are deduplicated and stored as

extended attributes of a composite file. The metadata

attributes of individual small files can still be

reconstructed, checked, and updated, so that the legacy

access semantics (e.g., types, permissions, timestamps)

are unchanged. The extended attributes also record the

locations within the composite file for individual small

files. With this representation, the CFFS can translate

a physical composite file into logical files.

The CFFS can be configured three ways to identify

file candidates for forming composite files and

consolidating their metadata. The first scheme is

directory-based consolidation, where all files within a

directory (excluding subdirectories) form a composite

file. The second scheme is embedded-reference

consolidation, where embedded file references within

file contents are extracted to identify files that can form

composite files. The third is frequency-mining-based

consolidation, where file references are analyzed

through set frequency mining [Agrawal and Srikant

1994], so that files that are accessed together frequently

form composite files.

A composite file is compatible to legacy VFS

caching mechanisms and semantics, and the entire

composite file can be prefetched as a unit. At the same

time, it is also possible to access and update individual

files within the composite file.

3.2. Data Representation

The content of a composite file is formed by

concatenating small files, referred to as subfiles. All

subfiles within a composite file share the same i-node, as

well as indirect blocks, doubly indirect blocks, etc. The

maximum size limit of a composite file should not be a

concern, as composite files are designed to encapsulate

small files. Should the sum of subfile sizes exceed the

maximum file size limit, we resort to the use of multiple

composite files.

Often, the first subfile in a composite file is the

entry point, whose access will trigger the prefetching

mechanisms to load the remaining composite file or its

subfiles into the memory. For example, when a browser

accesses an html file, it loads a css file and flash script.

The html file can serve as the entry point and

prefetching trigger of this three-subfile composite file.

For the frequency-based consolidation, the ordering of

subfiles reflects how they are accessed. Although the

same group of files may have different access patterns

with different entry points, the data layout is based on the

most prevalent access pattern.

3.3. Metadata Representations and Operations

Composite file creation: When a composite file is

created, the CFFS allocates an i-node and copies and

concatenates the contents of the subfiles as its data. The

composite file records the composite file offsets and

sizes of individual subfiles as well as their deduplicated

i-node information into its extended attributes. The

original subfiles then are truncated, with their directory

entries remapped to the i-node of the composite file and

their original i-nodes deallocated. Thus, end users still

perceive individual logical files in the name space, while

individual subfiles can still be located (Figure 3.3.1).

I-node content reconstruction: Deduped subfile

i-nodes are reconstructed on the fly. By default, a

subfile’s i-node field inherits the value of the composite

file’s i-node field, unless otherwise specified in the

extended attributes.

Figure 3.3.1: Creation of the internal composite file

(bottom) from the two original files (top).

Permissions: At file open, the permission is first

checked based on the composite i-node. If it failed, no

further check is needed. Otherwise, if a subfile has a

different permission stored as an extended attribute, the

permission will be checked again. Therefore, the

composite i-node will have the broadest permissions

across all subfiles. For example, within a composite

file, we have a read-only subfile A, and a writable subfile

B, while the permission for the composite i-node will be

read-write. However, when opening subfile A with a

write permission, the read-only permission in the

extended attribute will catch the violation.

Timestamps: The timestamps of individual

subfiles and the composite file are updated with each file

operation. However, during checks (e.g., stat system

calls), we return the timestamps of the subfiles.

Sizes: For data accesses, the offsets are translated

and bound-checked via subfile offsets and sizes encoded

in the extended attributes. The size field of a composite

file’s i-node is the length of the composite file, which can

be greater than the total size of its subfiles. For

example, if a subfile in the middle of a composite file is

deleted, the region is freed, but the size of the composite

file remains unchanged. In addition, once the entry-

point file is accessed, the legacy VFS would prefetch at

the level of the composite file.

Subfile and subfile membership updates: When

a subfile is added to a composite file, it is concatenated

to the end of the composite file. When a subfile is

deleted from a composite file, the corresponding data

region within the composite file is marked freed. The

composite file compacts its space when half of its

allotted size is freed.

File 1 i-node 1 Indirect 1 Data 1

File 2 i-node 2 Indirect 2 Data 2

File 1 i-node C Indirect 1 Data 1

File 2 Deduplicated metadata

Data 2

Subfile open/close operations: An open/close

call to a subfile is the same as an open/close call to the

composite file, with the current file-position pointer

translated. While lock contentions can be a concern,

files detected to be involved in such reference streams

can be opted out from forming composite files.

Subfile write operations: In-place updates are

handled the same way as those in a traditional file

system. However, if an update involves growing a

subfile in the middle of a composite file and no free space

is available at the end of the subfile, we move the

updated subfile to the end of the composite file. This

scheme exploits the potential temporal locality that a

growing subfile is likely to grow in the near future.

3.4. Identifying Composite File Membership

3.4.1 Directory-based Consolidation

Given that legacy file systems have deep-rooted spatial

locality optimizations revolving around directories, a

directory is a good approximation of file access patterns

and for forming composite files. Currently, this

consolidation scheme excludes subdirectories.

The directory-based consolidation can be performed

on all directories without tracking and analyzing file

references. However, it will not capture file

relationships across directories.

3.4.2 Embedded-reference-based Consolidation

Embedded-reference-based consolidation identifies

composite file memberships based on embedded file

references in files. For example, hyperlinks may be

embedded in an html file, and a web crawler is likely to

access each web page via these links. In this case, we

consolidate the original html file and the referenced

files, while the original html subfile works as an entry

point. Similar ideas apply to compilation. We can

extract the dependency rules from Makefiles and

consolidate source files that lead to the generation of the

same binary. As file updates may break dependency,

we need to sift continuously or periodically through

updated files to update composite file memberships.

The embedded-reference-based scheme can be more

accurate when identifying related files accessed across

directories, but it may not be easy to identify embedded

file references beyond text-based file formats (e.g.,

html, source code). In addition, it requires knowledge

of specific file formats.

3.4.3 Frequency-mining-based Consolidation

The frequency-mining-based consolidation applies a

variant of the Apriori algorithm [Agrawal and Srikant

1994]. The key observation is that if a set of files is

accessed frequently, its subset must be as well.

Initial pass: Figure 3.4.1 illustrates the algorithm

with an access stream to files A, B, C, D, and E. During

the initial pass, we count the number of accesses for each

file. Files are first eliminated if they are not accessed

at least twice. In addition, we can use a threshold (say

two), to remove files with fewer accesses from further

analyses.

Second pass: For the files that exceed the

threshold, we can permute and build all possible two-file

reference sets and count their occurrences. Thus,

whenever file A is accessed right after B, or vice versa,

we increment the count for file set {A, B}. If the access

count for a two-file set is less than the threshold, the set

is eliminated (e.g., the file set {B, D}).

{A} 5 {A, B} 2 {A, B, C} 5

{B} 2 {A, C} 2 {A, B, D}

{C} 2 {A, D} 6 {A, C, D}

{D} 4 {B, C} 2 {B, C, D}

{E} 1 {B, D} 0

 {C, D} 0

Figure 3.4.1: Steps for the Apriori algorithm to identify

frequently accessed file sets for a file reference stream E,

D, A, D, A, D, A, B, C, A, B, C, A, D.

Third pass: For the remaining files, we can

generate all three-file reference sets. However, we

apply the constraint that if a three-file reference set

occurs frequently, all its two-file reference sets also need

to occur frequently (the Apriori property). Thus, file

sets such as {A, B, D} are pruned, since file set {B, D}

is eliminated in the second pass.

Termination: As we can no longer generate four-

file reference sets, the algorithm ends. Now, if a file

can belong to multiple file sets, we return sets {A, B, C}

and {A, D} as two frequently accessed sets. Sets {A,

B}, {B, C}, and {A, C} are eliminated as they are already

subsets of {A, B, C}.

Variations: An alternative is to use a normalized

threshold, or support, which is the percentage of set

occurrences (number of the occurrences of a set divided

by the total occurrences, ranged between 0 and 1).

Instead of tracking file sets, we can also track file

reference sequences to determine the entry point and the

content layout of the composite file.

We currently disallow overlapping file sets. To

choose a subfile’s membership between two composite

files, the decision depends on whether a composite file

has more subfiles, higher support, and more recent

creation timestamps.

Optimizations: One way to prune the number of

file sets is to use a higher threshold or support. In

addition, the tracking tables can be incrementally

updated as new file references arrive. For Figure 3.4.1,

suppose another access to file A arrives, we can update

the counters for {A} in the first table and {A, D} in the

second. Further, we can analyze the data in batches of

n recent file references, and process them by PIDs or web

IP addresses to detangle interleaved concurrent file

references. As reference patterns change, subfiles

within composite files may be reassigned to other

composite files.

Another optimization concerns how to locate the file

set containing a file sequence quickly. One way is to

sort and hash the file sequence, but sorting is expensive

in the critical path. Another way is to hash files in the

sequence into a signature vector (similar to Bloom filter

[Bloom 1970]), and hash the signature, but the size of the

vector is proportional to the number of unique items in

the trace. Instead, we used a commutative hash

function, where hash(A, B) is the same has hash(B, A) to

speed up this lockup process.

The frequency-mining-based consolidation can

identify composite file candidates based on the dynamic

file references. However, the computational overhead

limits its practical application to file sequences accessed

above a certain frequency.

4. Implementation

The two major components of the CFFS are the

composite file membership generator tool and the CFFS.

We prototyped the CFFS in the user space via the

FUSE (v2.9.3) framework [Szeredi 2005] (Figure 4.1)

running atop Linux 3.16.7. The CFFS is stacked atop

of ext4, so that we can leverage legacy tools and features

such as persistence bootstrapping (e.g., file-system

creation utilities), extended attributes, and journaling.

The CFFS periodically takes the recommendations

from the generator tool to create composite files. We

leveraged mechanisms similar to hardlinks to allow

multiple file names to be mapped to the same composite

i-node. (Not to be confused with hardlinks to

individual subfiles, which are tracked by per-subfile

reference counters, as needed) We intercepted all file-

system-related calls due to the need to update the

timestamps of individual subfiles. We also need to

ensure that various accesses use the correct permissions

(e.g., open and readdir), translated subfile offsets

and sizes (e.g., read and write), and timestamps (e.g.,

getattr and setattr). The actual composite file,

its i-node, and its extended attributes are stored by the

underlying ext4 file system. The CFFS is implemented

in C++ with ~1,600 semicolons.

For the directory-based consolidation, we used a

Perl script to list all the files in a directory as composite

file members. For the embedded-reference-based

scheme, we focus on two scenarios. For the web server

workload, we consolidate the html files and their

immediately referenced files. In the case of conflicting

composite file memberships, the preference is given to

index.html, and then the html that first includes the

file. The other is the source code compilation. We

used Makefiles as a guide to consolidate source code

files. For the frequency-mining-based scheme, the

membership generator tool takes either the output from

the http access log or the strace output. The

generator implements the Apriori algorithm, with the

support parameter set to 5%. The analysis batch size is

set to 50K references. The parameters were chosen

based on empirical experience to limit the amount of

memory and processing overhead. The generator code

contains ~1,200 semicolons.

Figure 4.1: CFFS components (shaded) and data

path from applications to the underlying ext4.

5. Performance Evaluation

We compared the performance of the CFFS stacked atop

of ext4 via FUSE with the baseline ext4 file system (with

the requests routed through an empty FUSE module).

The replays were performed on a Dell T3600

workstation (Table 5.1). Each experiment was

repeated 5 times, and results are presented at 90%

confidence intervals.

We evaluated our system via replaying two traces.

The first is a three month-long http log gathered from

our departmental web server (01/01/2015-03/18/2015).

The trace contains 14M file references to 1.0TB of data.

Among which, 3.1M files are unique, holding 76GB of

data. The second trace was 11 days long, gathered via

strace from a software development workstation

(11/20/2014 – 11/30/2014). The trace contained over

240M file-system-related system calls to 24GB of data.

Among which, 291,133 files are unique with 2.9GB

bytes. Between read and write operations, 59% are

reads, and 41% are writes.

Table 5.1: Experimental platform.
 Experimental platform

Processor 2.8GHz Intel® Xeon® E5-1603, L1 cache 64KB,

L2 cache 256KB, L3 cache 10MB

Memory 2GBx4, Hyundai, 1067MHz, DDR3

Disk 250GB, 7200 RPM, WD2500AAKX with 16MB
cache

Flash 200GB, Intel SSD DC S3700

OS Linux 3.16.7

We conducted multi-threaded, zero-think-time trace

replays on a storage device. We also skipped trace

VFS FUSE

ext4

user space
kernel space

CFFS applications

composite file membership generator tool

intervals with no activities. Prior to each experiment,

we rebuilt the file system with dummy content. For

directory-based and embedded-reference-based

schemes, composite file memberships are updated

continuously. For the frequency-mining-based

consolidation, the analysis is performed in batches, but

the composite files are updated daily.

5.2. Web Server Trace Replay

HDD performance: Figure 5.2.1 shows the CDF of

web server request latency for a disk, measured from the

time a request is sent to the time a request is completed.

The original intent of our work is to reduce the number

of metadata IOs and improve the layout for small files

that are frequently accessed together. However, the

benefit of fewer accesses to consolidated metadata

displays itself as metadata prefetching for all subfiles,

and the composite-file semantics enable cross-file

prefetching, resulting in much higher cache-hit rates.

The embedded-reference-based consolidation

performed the best, with 62% of requests serviced from

the cache, which is 20% higher than ext4. Thus,

composite files created based on embedded references

capture the access pattern more accurately. The overall

replay time was also reduced by ~20%.

The directory-based composite files can also

improve the cache-hit rate by 15%, reflecting the

effectiveness of directories to capture spatial localities.

The frequency-mining-based consolidation

performed worse than the directory-based scheme. We

examined the trace and found that 48% of references are

made by crawlers, and the rest by users. Thus, the

bifurcate traffic patterns for the mining algorithm form

more conservative file groupings, leading to reduced

benefits.

SSD Performance: Figure 5.2.2 shows the CDF

of web server request latency for an SSD. Compared to

a disk, the relative trends are similar, with request

latency times for cache misses reduced by two orders of

magnitude due to the speed of the SSD. As the main

performance gains are caused by higher cache-hit rates

and IO avoidance, this 20% benefit is rather independent

of the underlying storage media.

5.3. Software Development File-system Trace Replay

For the software development workload replay, it is

more difficult to capture the latency of individual file-

system call requests, as many are asynchronous (e.g.,

writes), and calls like mmap omit the details of the

number of requests sent to the underlying storage.

Thus, we summarize our results with overall elapsed

times, which include all overheads of composite file

operations, excluding the one-time setup cost for the

directory- and embedded-reference-based schemes.

HDD performance: The embedded-reference-

based scheme has poor coverage, as many references are

unrelated to compilation. Therefore, the elapsed time

is closer to that of ext4. Directory-based consolidation

achieves a 17% elapsed time reduction, but the

frequency-mining-based scheme can achieve 27%

because composite files also include files across

directories.

SSD performance: The relative performance trend

for different consolidation settings is similar to that of

HDD. Similar to the web traces, the performance gain

is up to 20%.

When comparing the performance improvement

gaps between the HDD and SSD experiments, up to an

11% performance gain under HDD cannot be realized by

SSD, as an SSD does not incur disk seek overheads.

Figure 5.2.1: Web server request latency for HDD.

Figure 5.2.2: Web server request latency for SSD.

Figure 5.3.1: Elapse times for the software development

file system trace replay.

0

10

20

30

40

50

60

70

80

90

100

1.E-06 1.E-04 1.E-02

percentage of
requests

latency (seconds)

ext4

directory

embedded-
reference

frequency-
mining

0

10

20

30

40

50

60

70

80

90

100

1.E-06 1.E-04 1.E-02

percentage of
requests

latency (seconds)

ext4

directory

embedded-
reference

frequency-
mining

0.00 0.20 0.40 0.60 0.80 1.00 1.20

frequency-mining

embedded-reference

directory

ext4

SSD

frequency-mining

embedded-reference

directory

ext4

HDD

normalized elapsed time

replay time

overhead

5.5. Overheads

Directory- and embedded-reference-based schemes:

Directory- and embedded-reference-based schemes

incur a one-time cost at the deployment time to create

composite files based on directories and embedded file

references. The one-time cost of the embedded-

reference scheme depends on the number of file types

from which file references can be extracted. For our

workloads, this cost is anywhere from 1 to 14 minutes.

As for the incremental cost of updating composite

file memberships, adding members involves appending

to the composite files. Removing members involves

mostly metadata updates. A composite file is not

compacted until half its allotted space is freed. As the

trace replay numbers already include this overhead, this

cost seems negligible, and it is offset by the benefits.

Frequency-mining-based scheme: The trace

gathering overhead is below 0.6%, and the memory

overhead for trace analyses is within 200MB for an

average of 15M lines of daily logs.

The frequency-mining-based scheme involves

learning from recent file references, and it took a few

replay days to reach a steady state to reap the full benefit

of this scheme.

5.6. Discussion and Future Work

Composite files can benefit both read-dominant and

read-write workloads using different storage media,

suggesting that the performance gains are mostly due to

the reduction in the number of IOs (~20%). The

performance improvement gaps between the SSD and

HDD suggest the performance gains due to reduced disk

seeks and modified data layouts are up to ~10%.

Overall, we are intrigued by the relationship among

ways to form composite files, the performance effects of

consolidating metadata and prefetching enabled by the

composite files. Future work will explore additional

ways to form composite files and quantify their qualities

and their interplay with different components of

performance contributions.

6. Related Work

Small file optimizations: While our research focuses

on the many-to-one mapping of logical files and physical

metadata, this work is closely related to ways to optimize

small file accesses by reducing the number of metadata

accesses. Some early works involve collocating a file’s

i-node with its first data block [Mullender and

Tanenbaum 1984] and embedding i-nodes in directories

[Ganger and Kaashoek 1997]. The CFFS consolidates

i-nodes for files that are often accessed together.

The idea of accessing subfile regions and

consolidating metadata is later explored in the parallel

and distributed computing domain, where CPUs on

multiple computers need to access the same large data

file [Yu et al. 2007]. Facebook’s photo storage [Beaver

et al. 2010] leverages the observation that the

permissions of images are largely the same and can be

consolidated. However, these mechanisms are tailored

for very homogeneous data types. With different ways

to form composite files, the CFFS can work with subfiles

with more diverse content and access semantics.

Prefetching: While a large body of work can be

found to improve prefetching, perhaps C-Miner [Li et al.

2004] is closest to our work. In particular, C-Miner

applied frequent-sequence mining at the block level to

optimize the layout of the file and metadata blocks and

improve prefetching. However, the CFFS reduces the

number of frequently accessed metadata blocks and

avoids the need for a large table to map logical to

physical blocks. In addition, our file-system-level

mining deals with significantly fewer objects and

associated overheads. DiskSeen [Ding et al. 2007]

incorporates the knowledge of disk layout to improve

prefetching, and the prefetching can cross file and

metadata boundaries. The CFFS proactively reduces

the number of physical metadata items and alters the

storage layout to promote sequential prefetching.

Soundararajan et al. [2008] observed that by passing

high-level execution contexts (e.g., thread, application

ID) to the block layer, the resulting data mining can

generate prefetching rules with longer runs under

concurrent workloads. Since the CFFS performs data

mining at the file-system level, we can use PIDs and IP

addresses to detangle concurrent file references.

Nevertheless, the CFFS’s focus on altering the mapping

of logical files to their physical representations, and it

can adopt various mining algorithms to consolidate

metadata and improve storage layouts.

7. Conclusions

We have presented the design, implementation, and

evaluation of a composite-file file system, which

explores the many-to-one mapping of logical files and

metadata. The CFFS can be configured differently to

identify files that are frequently accessed together, and it

can consolidate their metadata. The results show up to

a 27% performance improvement under two real-world

workloads. The CFFS experience shows that the

approach of decoupling the one-to-one mapping of files

and metadata is promising and can lead to many new

optimization opportunities.

References

[Abd-El-Malek et al. 2005] Abd-El-Malek M, Courtright

WV, Cranor C, Ganger GR, Hendricks J,

CKlosterman AJ, Mesnier M, Prasad M, Salmon B,

Sambasivan RR, Sinnamohideen S, Strunk JD,

Thereska E, Wachs M, Wylie JJ. Ursa Minor:

Versatile Cluster-based Storage. Proceedings of

the 4th USENIX Conference on File and Storage

Technology, 2005.

[Agrawal and Srikant 1994] Agrawal R, Srikant R.

Fast Algorithms for Mining Association Rules,

Proceedings of the 20th VLDB Conference, 1994.

[Albrecht 2015] Albrecht R. Web Performance:

Cache Efficiency Exercise.

https://code.facebook.com/posts/964122680272229

/web-performance-cache-efficiency-exercise/,

2015.

[Beaver et al. 2010] Beaver D, Kumar S, Li HC, Vajgel

P. Finding a Needle in Haystack: Facebook’s

Photo Storage. Proceedings of the 9th USENIX

Symposium on Operating Systems Design and

Implementation, 2010.

[Bloom 1970] Bloom B. Space/Time Trade-offs in Hash

Coding with Allowable Errors. Communications of

the ACM, 13, July 1970

[Chandrasekar et al. 2013] Chandrasekar S,

Dakshinamurthy R, Seshakumar PG, Prabavathy B,

Chitra B. A Novel Indexing Scheme for Efficient

Handling of Small Files in Hadoop Distributed File

System. Proceedings of 2013 International

Conference on Computer Communication and

Information, 2013.

[Ding et al. 2007] Ding X, Jiang S, Chen F, Davis K,

Zhang X. DiskSeen: Exploiting Disk Layout

and Access History to Enhance Prefetch.

Proceedings of the 2007 USENIX Annual Technical

Conference, 2007.

[Dong et al. 2010] Dong B, Qiu J. Zheng Q, Zhong X, Li

J, Li Y. A Novel Approach to Improving the

Efficiency of Storing and Accessing Smaller Files

on Hadoop: a Case Study by PowerPoint Files.

Proceedings of the 2010 IEEE International

Conference on Services Computing, 2010.

[Edel et al. 2004] Edel NK, Tuteja D, Miller EL,

Brandt SA. Proceedings of the IEEE Computer

Society’s 12th Annual International Symposium on

Modeling, Analysis, and Simulation of Computer

and Telecommunications Systems (MASCOTS),

2004.

[Ganger and Kaashoek 1997] Ganger GR, Kaashoek

MF. Embedded Inode and Explicit Grouping:

Exploiting Disk Bandwidth for Small Files.

Proceedings of the USENIX 1997 Annual Technical

Conference, 1997.

[Garrison and Reddy 2009] Garrison JA, Reddy ALN.

Umbrella File System: Storage Management

across Heterogeneous Devices. ACM

Transactions on Storage, 5(1), Article 3, 2009.

[Harter et al. 2011] Harter T, Dragga C, Vaughn M,

Arpaci-Dusseau AC, Arpaci-Dusseau RH. A File

is Not a File: Understanding the I/O Behavior of

Apple Desktop Applications. Proceedings of 23rd

Symposium on Operating Systems Principles, 2011.

[Heidemann and Popek 1994] Heidemann JS, Popek GJ.

File-System Development with Stackable Layers.

ACM Transactions on Computer Systems, 22(1), pp.

58-89.

[Jiang et al. 2013] Jiang S, Ding X, Xu Y, Davis K. A

Prefetching Scheme Exploiting Both Data Layout

and Access History on Disk. ACM Transactions

on Storage, 9(3), Article No. 10.

[Kroeger and Long 2001] Kroeger TM, Long DE.

Design and Implementation of a Predictive File

Prefetching. Proceedings of the USENIX 2001

Annual Technical Conference, 2001.

[Li et al. 2004] Li Z, Chen Z, Srinivasan SM, Zhou YY.

C-Miner: Mining Block Correlations in Storage

Systems. Proceedings of the 3rd USENIX

Conference on File and Storage Technologies,

2004.

[McKusick et al. 1990] McKusick MK, Karels MJ,

Bostic K. A Pageable Memory Based Filesystem.

Proceeding of USENIX Conference, June 1990.

[Mullender and Tanenbaum 1984] Mullender S,

Tanenbaum. Immediate Files, Software Practice

and Experience, 14(4):365-368, 1984.

[Roselli et al. 2000] Roselli D, Lorch JR, Anderson TE.

A Comparison of File System Workloads.

Proceeding of 2000 USENIX Annual Technical

Conference, 2000.

[Soundararajan et al. 2008] Soundararajan G, Mihailescu

M, Amza C. Context-aware Prefetching at the

Storage Server. Proceedings of the 2008 USENIX

Annual Technical Conference, 2008.

[Szeredi 2005] Szeredi M. Filesystem in Userspace.

http://userspace.fuse.sourceforge.net, 2005.

[Yu et al. 2007] Yu W, Vetter J, Canon RS, Jian S.

Exploiting Lustre File Joining for Effective

Collective IO, Proceedings of the 7th International

Symposium on Cluster Computing and the Grid,

2007.

