

Abstract—Mobile computing is the new norm. As people feel

increasingly comfortable computing in public places such as
coffee shops and transportation hubs, the threat of exposing
sensitive information increases. While solutions exist to guard
the communication channels used by mobile devices, the visual
channel remains, to a significant degree, open. Shoulder surfing
is becoming a viable threat in a world where users are frequently
surrounded by high-power cameras and sensitive information
from recorded images can be extracted with modest computing
power.

In response, we present Cashtags: a system to defend against
attacks on mobile devices based on visual observations. The
system allows users to access sensitive information in public
without the fear of visual leaks. This is accomplished by
intercepting sensitive data elements before they are displayed on
screen, then replacing them with non-sensitive information. In
addition, the system provides a means of computing with
sensitive data in a non-observable way. All of this is
accomplished while maintaining full functionality and legacy
compatibility across applications.

Index Terms—Mobile privacy, shoulder surfing.

I. INTRODUCTION

houlder surfing is becoming a concern in the context of
mobile computing. As mobile devices become

increasingly capable, people are able to access a much richer
set of applications in public places such as coffee shops and
public transportation hubs. Inadvertently, users risk exposing
sensitive information to bystanders via the screen display.
Personal information exposure can increase the risk of
personal, fiscal, and criminal identity theft. Exposing trade or
governmental secrets can lead to business losses, government
espionage, and other forms of cyber terrorism [12, 13, 14].

This problem is exacerbated by the ubiquity of surveillance
and high-power cameras on mobile devices such as
smartphones and emerging wearable computing devices such
as Google Glass [57]. Additionally, the trend towards
multicore machines, GPUs, and cloud computing makes
computing cycles much more accessible and affordable for
criminals or even seasoned hobbyists, seeking to extract
sensitive information via off-the-shelf visual analysis tools
[58].

This paper presents the design, implementation, and

evaluation of Cashtags, a system that defends against shoulder
surfing threats. With Cashtags, sensitive information will be
masked with user-defined aliases, and a user can use these
aliases to compute in public. Our system is compatible with
legacy features such as auto correct, and our deployment
model requires no changes to applications and the underlying
firmware, with a performance overhead of less than 3%.

A. The shoulder surfing threat

The threat of exposing sensitive information on screen to
bystanders is real. In a recent visual data survey of IT
professionals, 85% of those surveyed admitted there have been
cases when they were able to see unauthorized sensitive on-
screen data, 82% admitted that there have been cases where
their own sensitive on-screen data could be viewed by
unauthorized personnel, and 82% had little or no confidence
that users in their organization would protect their screen from
sensitive data exposure to unauthorized personnel [1]. These
results are consistent with other surveys indicating that 76% of
respondents were concerned about people observing their
screens in public [2], while 80% admitted that they have
attempted to shoulder surf the screen of a stranger in a public
location [3].

The future projection of the shoulder-surfing threat is even
worse, as mobile devices are replacing desktop computers.
Mobile device sales now account for over 73% of annual
technical device purchases [4]. Employees more frequently
take their work with them on the go; by 2015, the world's
mobile worker population will reach 1.3 billion [5]. This is
highest in the US, where more than 80% of the workforce
continues working when they have left the office [6], and
figures suggest that 67% of employees regularly access
sensitive data outside at places where they cannot do so safely
[2]. While some organizations have implemented specific
guidelines and practices to reduce this risk, 44% do not have
any defined policy addressing these threats [1]. Advances in
screen technology further increase the risk of exposure, with
many new tablets claiming near 180-degree screen viewing
angles [8].

B. The dangers are everywhere

Visual exposure of sensitive information in the form of
observation-based attacks can come in many forms. Mobile

Michael Mitchell, An-I Wang Peter Reiher
 Department of Computer Science Department of Computer Science

Florida State University University of California, Los Angeles
Tallahassee, FL, USA Los Angeles, CA, USA

{mitchell, awang}@cs.fsu.edu reiher@cs.ucla.edu

Cashtags: Prevent Leaking Sensitive
Information through Screen Display

S

 2

devices with cameras are nearly ubiquitous. There now exist
more than 3 billion digital camera phones in circulation [4].
These devices are evolving rapidly, with newer models
capable of capturing images at over 40 megapixels of
resolution and over 10 times optical zoom for under $100 [7].
Visual exposure can also be captured by one of the billions of
security devices in existence. These high-resolution and often
insecure cameras are everywhere, especially in major
metropolitan areas. For example, figures suggest the average
resident of London is captured on CCTV over 300 times every
day [9]. Finally, but no less threateningly, sensitive data can
be exposed by simple human sight.

Observation-based attacks can also be much more complex.
Increasingly sophisticated tools and systems have been
developed to capture and exploit sensitive user data. Partial
images can be merged, sharpened, and reconstructed, even
from reflections. Optical Character Recognition (OCR) is
becoming much more capable, with over 40 years of
innovation. Offline and cloud-based OCR solutions are highly
accurate with only a small percentage of error in recognition.
Embedded OCR solutions are inexpensive and capable even
on low-end hardware devices [10].

Personal information exposure can also make other attacks
possible. The capture of just a small number of personal
information elements can greatly increase the risk of other
threats including social engineering attacks, phishing, and
other personal identity theft threats.

C. The consequences can be severe

Observation-based information leaks can lead to significant
personal and business losses. Recently, an S&P 500
company’s profit forecasts were leaked as a result of visual
data exposure. The vice president was working on the figures
on a flight while sitting next to a journalist [4]. In a different
case, British government documents were leaked when a
senior officer fell asleep on a train, thereby permitting another
passenger to photograph sensitive data on his screen [11]. In
another case, security cameras captured the private details of
Bank of America clients through the bank’s windows [12]. In
yet another case, sensitive personal information relating to the
United Kingdom’s Prince William was captured and published
as a result of on-screen exposure to a bystander [13].

The risk of loss from shoulder surfing is also hurting
business productivity. Figures show that 57% of people have
stopped working in a public place due to privacy concerns and
70% believe their productivity would increase if they felt that
no one would be able to see their screen [2].

D. Current solutions

Several techniques have been developed to limit the visual
exposure of sensitive private information. However, the
primary focus of these systems has been limited to preventing
the visual leakage of password entries [22, 23, 24, 25, 33, 34,
35]. Once the user has been successfully authenticated, all
accessed sensitive information is displayed in full view.
Clearly, such measures are insufficient for general computing
in public when the need to access sensitive information arises.
Unfortunately, many techniques used to prevent visual

password leaks cannot be readily generalized beyond
password protection, a situation that motivates our work.

II. CASHTAGS

We present Cashtags1: a system that defends against
observation-based attacks. The system allows a user to access
sensitive information in public without the fear of visual
privacy leaks.

A. Threat model

We define the threat model as passive, observation-based
attacks (e.g., captured video or physical observation by a
human). We assume the attacker can observe both the screen
of the user as well as any touch sequences the user may make
on the screen, physical buttons, or keyboards. We also assume
the absence of an active attack; the observer cannot directly
influence the user in any way.

Although sensitive information can be presented in many
forms, we focus on textual information to demonstrate the
feasibility of our framework. Protecting sensitive information
in other forms (e.g., images and bitmaps) will be the subject of
future work.

B. User model

Conceptually, Cashtags is configured with a user-defined
list of sensitive data items, each with a respective Cashtags
alias or a cashtag (e.g., $visa to represent a 16-digit credit-card
number; see other examples in Table II). Then, whenever the
sensitive term would be displayed on screen, the system
displays the pre-defined alias instead (Fig 2.1). At the point at
which the sensitive data would be used internally by the
device or an app, cashtags will be replaced by the sensitive
data items represented by the alias, allowing whatever login,
communication, transmission, or upload to proceed normally.

Also, a user can directly type in a cashtag in place of the
sensitive term, permitting more complex data-sensitive tasks
such as filling out an application for a credit card or loan
without risk of observation from a bystander. In addition,
cashtags are easier to remember than the actual information
itself. For example, $visa can be used as a shortcut for
entering a 16-digit credit card number.

C. Design overview

Although conceptually simple, the design of Cashtags
addresses a number of major design points.

Intercepting sensitive data: Cashtags intercepts sensitive
data items as they are sent to the display; for apps, at their
common textual rendering library routines; for users, at
routines to handle software keyboards as well as physical
devices (e.g., USB and wireless input devices).

User interface: Users can type in cashtags instead of
sensitive data items to compute in public. This interface
allows cashtags to be compatible with existing tools such as
auto completion, spellcheckers, cut and paste, etc. Thus, users

1 Cashtag, an amalgam of the words cash and hashtag, serving as an easy-

to-remember alias for a valuable sensitive personal identifier. A cashtag alias
consists of a dollar sign followed by an arbitrary string of printable characters.

 3

can enter the first few characters and auto complete the full
cashtag.

Accessing sensitive data: User-entered cashtags are
converted internally to the sensitive data items before the apps
access the data; this way, Cashtags will not break applications
due to unanticipated input formats.

Variants of data formats: Cashtags can leverage existing
libraries to match sensitive data items represented in different
formats (e.g., John Smith vs. John Q. Smith for a name).

Development and deployment models: Cashtags uses a
code-injection framework. This approach avoids modifying
individual apps and the firmware, while altering the behavior
of the overall system to incorporate Cashtags at runtime.

Cashtag repository: the mapping of cashtags to sensitive
data items is stored in a centralized, password-protected
repository.

III. CASHTAG DESIGN

This section will present the design options for each
Cashtags design point and explain how we arrived at the
current design.

A. Intercepting sensitive data

To decide where to intercept sensitive data, we first need to
understand how sensitive data traverses from apps to the
screen through various display data paths. Fig. 3.1 shows
various display data paths under the Android application
development platform. Although iOS and Windows use
different platforms, the display data paths generally can be
mapped from one platform to another.
 A typical app displays information on screen by invoking
some user-level display or graphics library routines. Various
routines eventually invoke routines in the underlying window
management system (e.g., Surface Flinger for Android) before
information is processed by the OS and displayed on screen.

Arguably, the window management system might seem to
be a single point at which all sensitive data can be captured.
Unfortunately, by the time sensitive information arrives there,
some sensitive information may have been translated into
bitmaps. While OCR technologies are computationally cheap
enough to be used for launching shoulder surfing attacks, they
are still too heavyweight for deployment in the display data
path, which is critical for user interactions. Also, replacing
sensitive bitmaps with non-sensitive ones would pose other
obstacles we would like to avoid.

Another extreme is to intercept at the app level, where the
sensitive information is introduced. Potentially, we can
modify a few top apps and capture a majority of cases where
sensitive information is used. For instance, custom e-mail
applications or browsers could offer protection for task-
specific usages. However, such solutions may restrict users to
using a specific tool for a specific task. In addition, statistics
show that specific app usage accounts for 86% of user time,
trending away from general-purpose browsers [56]. Thus, the
burden of incorporating our features could spread to a much
wider range of app developers, which is undesirable. Further,
new apps and updates to old apps would not automatically
include the desired protection.

Thus, an intermediary ground is to intercept sensitive data
within a few key display and graphics library routines.

Fig. 3.1. Display data paths for the Android platform.

Fig. 2.1. On-screen sensitive data (left) and data protected by masking with
cashtag aliases (right).

TABLE II
SAMPLE MAPPING OF SENSITIVE DATA TO CASHTAG ALIASES
Type Actual Alias
Name John Smith $name
Email jsmith@gmail.com $email
Username Jsmith1 $user
Password p@ssw0rd $pass
Street Address 123 Main St. $address
Phone number 555-111-2222 $phone
Birthday 1/1/85 $bday
SSN 111-22-3333 $ssn
Credit Card 4321 5678 9012 1234 $visa
Account number 123456789 $acct

 4

B. User interface

Early design: In our early user-interface design, a user
defines English-like aliases in a repository to indicate sensitive
data items that they wish not to be shown (e.g., use John to
represent Joe). To discern these aliases when processing, we
used an alternative input channel to mark them. This initial
design turned out to be problematic in a number of ways.

One way to achieve this effect is to add a separate software
keyboard that a user would use whenever they want to input
sensitive information. Essentially, this keyboard would be an
app with elevated privilege to offer input across applications,
and it would be easier to port across platforms, deploy, install,
and update. However, changing keyboards amidst a stream of
input is cumbersome in practice. This method would result in
the loss of functionality offered in default keyboards,
including swipe-based inputs, emoticon support, auto
correction, and custom dictionaries.

One step further is to replace the default keyboard with
ours, which provides ways (e.g., a screen tapping sequence) to
switch modes between normal entries with sensitive entries.
By doing so, we can retain legacy functionalities such as auto
correction. The user learning curve would be less steep, since
no keyboard switching would be involved. On the other hand,
the development effort of this approach would be significantly
higher, and it would be harder for novice users to install our
software, namely, by carrying out the replacement of the
default keyboard.

Direct input of cashtags: While there are other input
interface options than these, the need to perform cumbersome
switches of input modes so that the aliases can appear as
normal text seems superfluous in many contexts (e.g., using
“visa” to represent the 16-digit credit card number).

 Thus, we explored the use of cashtags, where aliases are
prepended with a $ sign, to represent sensitive information.
By doing so, a user can directly enter cashtags, and the mode
change is explicitly encoded in the cashtag alias (e.g., use
$fname to represent John and $gmail to represent
jsmith@gmail.com). This method can leverage the existing
custom dictionary for auto completion, which makes it easier
for the user to remember and input cashtags. This method can
also utilize standard application level development techniques,
opening up the range of supported device platforms and
decreasing development and installation efforts.

Direct input of sensitive information: Another alternative
(albeit with some potential for information leak) is for a user
to attempt to enter the initial characters of a sensitive data
item. As soon as the auto completion detects that Jo, for
example, is likely to mean Joe, it will be automatically masked
with the cashtag $John. The user then can choose $John and
proceed.

Additional Cashtags semantics: Recursion is supported, so
we can use $signature to represent $first_name $last_name
$gmail, which in turn maps to John Smith, jsmith@gmail.com.
We detect and disallow circular cashtags mappings (e.g., use
$John to represent $Joe, and $Joe to represent $John).

C. Accessing sensitive information

One design issue involves when to convert cashtags back to
the sensitive data for accesses by apps. Normally, when an
app wants to access the sensitive information and sends it back
to the hosting server, we need to make sure that the conversion
is performed prior to access, so that the app would not be able
to cache, store, or transmit the cashtags. The main concern is
that cashtags may not adhere to the type or formatting
constraints and break an app inadvertently.

Another thing we need to make sure of is that the cashtags
are actually entered by the user, not just pre-populated by the
app. Otherwise, a malicious app can extract sensitive
information just by displaying cashtags.

There are also certain exceptions where it is desirable to
directly operate on cashtags instead of the sensitive
information. For example, the auto completion task will auto
complete cashtags ($fn to $fname), not the sensitive
information it represents. By doing so, the handling of text
span issues is simplified because cashtags usually differ in text
lengths when compared to the sensitive information they
represent.

D. Variants of data formats

Sensitive data may be represented in multiple formats. For
example, names can be represented as combinations of first,
last and middle initials (e.g., John Smith; John Q. Smith;
Smith, John Q). Accounts and social security numbers can be
represented using different spacing and/or hyphenation
schemes (e.g., 123456789; 123-45-6789; 123 45 6789).
Fortunately, we can leverage existing regular expression
libraries (java.util.regex.*) to perform such matching.

Another issue involves the type restriction of the input field.
For example, a number field (e.g., SSN) may prevent the use
of cashtags ($ssn). To circumvent these restrictions, we allow
users to define special aliases (e.g., 000-00-0000) in place of
cashtags to represent certain types of sensitive information
(e.g., social security numbers).

E. Deployment and development models

To avoid modifying individual applications, we considered
two options to provide system-level changes: (1) custom
system firmware images (ROMs) or (2) code-injection
frameworks (e.g., Android Xposed)

By utilizing a custom system firmware image, complete
control of the operating system is provided. (This approach
assumes that the full source is available for modification.) In
addition, ROM-based solutions can offer a more unified
testing environment. However, the changes would be
restricted to device-specific builds; only hardware for which
the source is explicitly built would have access to the modified
system. This also limits user preference by restricting use
only for a specific system image. It would additionally require
regular maintenance, and would break vendor over-the-air
update functionality.

Instead, we used a code-injection framework, which
dynamically introduces overriding routines as a library,
incorporated into execution prior to the starting of apps. Code

 5

injection offers more streamlined development, as standard
user application development tools can be used. In addition,
these modules can be more easily deployed since they can be
distributed as applications. Because code injection only relies
on the underlying system using the same set library, the
deployment is much more portable and less coupled with the
exact versions and configurations of system firmware.

F. Cashtags App and Repository

Cashtags aliases and sensitive data items are maintained in
an internal repository. The Cashtags app coordinates the
interactions between various apps and the repository. The app
also provides password-protected access to add, edit, remove,
import, and export sensitive terms and corresponding cashtags.

 Cashtags provides per-application blacklisting, excluding
specific applications from being code-injected (or activated)
with cashtag-replacement code. For example, the cashtag
repository itself must be excluded due to circular
dependencies. To illustrate, suppose a cashtag entry maps
$first_name to Joe. If Cashtags is enabled, the screen will
show that $first_name is mapped to $first_name. When the
entry is saved, Joe will be mapped to Joe. Thus, Cashtags is
always excluded from servicing itself. Individual application
packages can be excluded for lack of relevance to sensitive
information exposure or for performance issues (e.g. games,
application launchers, home screens).

IV. IMPLEMENTATION

We prototyped Cashtags on the open-source Android
platform. Our code injection framework allows Cashtags to
operate on any Android device with the same display and
graphics libraries and root access. This section will first detail
the display data path in the Android context, then explain the
code-injection framework, and finally discuss the details of
how various display data paths are intercepted and how
cashtags are stored.

A. Android display elements

Fig 3.1 has already shown a top-level view of various ways
Android apps and browsers display information on the screen.
This section provides further background on Android
terminologies before we begin detailing our implementation.
The corresponding terminologies for iOS and Windows are
listed in Table IV.

Android on-screen display is composed of views, layouts,
and widgets. View is the base class for all on screen user
interface components. All visual elements are descendants of
this base class.

Widgets: The term widget is used to describe any graphic

on-screen element. Different widgets can be used to display
static text labels (e.g., TextView), user input boxes (e.g.,
EditText), controls (e.g., Buttons), and other media (e.g.,
ImageView).

Views are organized into ViewGroups, the base class for all
screen layouts. Layouts are arrangements of views within
vertical or horizontal aligned containers (e.g., LinearLayout),
or arranged relative to other views. Nesting of ViewGroups
and Layouts allows more complex custom composites to be
defined.

Collectively, this tree of layouts and widgets is called the
view hierarchy. When the screen canvas is drawn, the view
hierarchy is converted from logical interface components into
a raw screen bitmap. Fig. 4.1 shows a simple user input form
and its composition of various widgets and layouts.

Text rendering: Text can be rendered on screen through
several mechanisms (Fig 3.1), the most common being
through the TextView widget. Fonts, styles, colors, and so
forth can be applied to specify how these are displayed. An
EditText is an extension of the TextView that provides an
interface for text input. This input can come from the user via
the on-screen software keyboard, (integrated, plugged, or
wirelessly connected) hardware keypads, voice input, gestures,
and so forth. Like TextView, these widgets can be pre-filled
with text by the app internally. They can also be set through
suggestion or auto-correction interfaces.

Text can also be rendered on screen via OpenGL Canvas or
other graphic rendering libraries. Unlike the EditText, this
class does not inherit from the base TextView, although
similar interfaces do exist.

Text can further be rendered on-screen from HTML and
Javascript via browser rendering engines such as WebKit or
Chromium. This includes mobile web browsing applications
as well as many other cross-platform web app APIs such as
Phonegap, Apache Cordova, and JQuery Mobile.

TABLE IV
WIDGET TERMINOLOGY ON OS PLATFORMS

 Android Apple Windows
Text Labels TextView UITextView TextBlock
OpenGL Text GLES20Canvas GLKView Direct3D
Editable Text TextView UITextView TextBlock
Webapp Text WebView UIWebView WebView
Browser/Web
Views

WebView UIWebView WebView

 6

B. Android code-injection framework

Cashtags uses the Android Xposed code-injection
framework to intercept and modify the behavior of text
widgets at runtime, without being tied to specific system
firmware images. The development cycle is also accelerated
by short-circuiting the need to perform complete device
firmware rebuilds from scratch.

 Underneath the hood, whenever an app is started, Android
forks off a new virtual machine. The Android Xposed
framework allows additional overriding library routines to be
inserted into the Java classpath, prior to the execution of the
new virtual machines. Thus, the overall system behavior is
altered without modifying either the apps or the underlying
firmware.

Individual class methods can be hooked, allowing injected
code to be executed prior to a base method calls, following the
completion of the base method call, or in place of the base
method. Private or protected member fields and functions can
also be accessed and modified, and additional fields or
functions can be added to the base class or object granularity.
Fig. 4.2 shows the API provided by Xposed for injecting
method, constructor, and fields.

C. Sensitive data intercepting points

With the background of Android display data paths (Fig.
3.1) and the code-injection framework, we can determine
where and how to intercept sensitive information. Since all
text-displaying screen widgets are descendants of the
TextView class (Fig. 4.3), we hooked TextView
(android.widget.TextView) to intercept static sensitive text.
For input, we hooked EditText (android.widget.EditText) to
capture sensitive data or cashtags entered via on-screen
software keyboard, (integrated, plugged, or wirelessly
connected) hardware keypads, voice input, and gestures. For
display through the OpenGL libraries, we intercepted GLtext
(android.view.GLES20Canvas). For browsers, we intercepted
Webview (android.WebKit/WebView).

D. TextView

Fig. 4.4 shows a simplified version of the implementation
of the TextView widget in the Android API, present since
version 1 of the Android SDK. The getText() and setText()
methods of the TextView are hooked and modified (the
setText() method in TextView is inherited by EditText, to be
detailed later). We also added mAlias to map the sensitive
text to the corresponding cashtag.

Fig. 4.5 and Fig. 4.6 show how Cashtags interacts with
TextView and EditText objects. When these getText() and
setText() methods are called by the app or through system
processes like auto correct or to be rendered on screen,
Cashtags will determine whether to return the alias or the
sensitive data, depending on the caller.

Fig. 4.3. Simplified Android screen widget view hierarchy.

View
android.view.View

TextView
android.widget.TextView

EditText
android.widget.EditText

AutoCompleteTextView
android.widget.AutoCompleteTextView

MultiAutoCompleteTextView
android.widget.MultiAutoCompleteTextView

CheckedTextView
android.widget.CheckedTextView

Button
android.widget.Button

CheckBox
android.widget.CheckBox

Switch
android.widget.Switch

RadioButton
android.widget.RadioButton

hookAllMethods() / hookAllConstructors()
findMethod() / findConstructor() / findField()
callMethod() / callStaticMethod() / newInstane()
getXXXField() / setXXXField()
getStaticXXXField() /setStaticXXXField()
getAdditionalXXXField() / setAdditionalXXXField()

Fig. 4.2. Code injection API provided by XposedBridge. XXX denotes the
specified data type, boolean, int, float, etc.

Fig. 4.1 Decomposition of on screen views, layouts, and widgets of a simple
app input forms.

FrameLayout

TextView EditText

LinearLayout
(vertical)

Button

ImageView

LinearLayout
(horizontal)

ImageView

TextView EditText

TextView EditText

TextView

…

 7

E. EditText

EditText objects are more complex since additional actions
can be performed by the user, app, or system to modify on-
screen text. For cases where the system or app has pre-
populated a text box with input, the TextView injection
handles the cashtag replacement. Since the EditText class
extends from the TextView base class, this functionality is
provided through inheritance. This is also the case for nearly
every other on-screen text widget as they are also
hierarchically descendant from the base TextView.

User input can be entered through software keyboards or
through physical devices. In both cases, Cashtags operates
similar to, and through the same interface, as the auto-correct
service. This TextWatcher (android.text.TextWatcher)
interface handles events when on-screen text has been
modified. EditTexts internally maintain an array of these
TextWatcher event handlers. Cashtags, as one of these
handlers, is activated after any character is modified within the

text field.
This functionality is also achieved through the view

OnFocusChangeListener (android.view.View
.OnFocusChangeListener). This event handler works at the
granularity of the full text field rather than individual character
of the TextWatcher. This is more efficient, since the text
replacement only occurs once per text field. It does, however,
risk additional on-screen exposure of sensitive information,
since direct input of actual sensitive terms would remain on-
screen as long the cursor remains in that text field. Input of
cashtag alias does not have this risk and further reduces any
partial exposure during term input.

In both cases, the constructor of the EditText class is
hooked and the respective OnFocusChangeListener or
TextWatcher is attached. User settings allow activation of
either or both options within the app settings.

F. OpenGL Canvas

The implementation solution for OpenGL ES Canvas is
quite similar in simplified form to the base TextView only
with different parameter types. The only distinction is that no
accompanying getText() equivalent is present in this object, so
no additional manipulation is necessary beyond drawText().

G. WebView

Distinct from the previous screen widgets, rendering occurs
independently of the native UI data path via underlying
WebKit or Chromium browser engines. The relevant
interception points for screen rendering for these are all below
the accessible Android/Java layer and are not able to be code-
injected though the same mechanisms used for previous screen
widget cases. Using custom compilations of the browser
engines with similar widget display interception was explored,
but abandoned for portability concerns.

Instead, WebView interception is handled similarly to a
web browser plug-in. This decision maintains the portability
goal of the system design.

Cashtags intercepts web rendering immediately before it is
first displayed on-screen. The HTML is pre-processed with
JavaScript to extract the DOM. Cashtags iterates over the text
nodes and makes the appropriate text replacements of
sensitive data to corresponding cashtags.

Fig. 4.6. Interactions among Cashtags, EditText, and other software
components. setText() returns cashtag or actual text depending upon the
service making the request.

Fig. 4.5. Interactions among Cashtags, TextView, and other software
components. getText() returns cashtag or actual text depending upon the
service making the request.

public class TextView extends View implements
ViewTreeObserver.OnPreDrawListener {

 ...
 private CharSequence mText;

private CharSequence mAlias:
 ...
 public CharSequence getText() {
 return mText;
 }
 ...
 private void setText(CharSequence text,
 BufferType type, boolean notifyBefore, int oldlen) {
 ...
 mBufferType = type;
 mText = text;
 }
 ...
}

Fig. 4.4. Simplified TextView implementation. Bolded functions getText()
and setText() are hooked and modified. An additional private field mAlias is
added for mapping to a displayed cashtag, if applicable.

 8

Other options were explored using specific browser and
proxy requests through the web server. However, all apps that
use cross-platform frameworks (Phonegap, Apache Cordova,
JQuery Mobile, etc.) run locally and could not easily be piped
though this service. For this reason, we favored the plug-in
approach over other alternatives.

H. Cashtags Repository

Sensitive terms are stored as encrypted SharedPreference
data, which uses AES encryption from the Java Cryptography
Architecture (javax.crypto.*). This structure is accessed by
enabled apps through the XposedSharedPreference interface.

V. EVALUATION METHODS

Cashtags was evaluated for how well the intercepted points
prevent specified information from being displayed on screen,
verified by screen captures and OCR processing. This
coverage was measured by enumerating common ways
sensitive text can traverse to the screen. We also evaluated
user input through popular apps, making sure that cashtags
correctly reverted to the sensitive data items when accessed by
apps. Finally, we evaluated the performance overhead of
Cashtags.

A. API coverage evaluation

The first test is for Android API coverage. We focus on the
TextView and EditText display data paths, which account for
more than 86% of usage hours for mobile devices [56]. The
selected sensitive information (Table II) is based on the
Personally Identifiable Information (PII) chosen categorically
based on US government and NIST standards [59]. We
enumerate all combinations of input phrase type (e.g.,
numbers, strings, etc.), case sensitivity, common widget,
layout, theme, and other configuration options for these data
paths. Each combination is used to demonstrate that the PII
terms are not displayed on screen from the app internally, as
user input of the sensitive data directly, or as user input of
cashtag alias. In all three cases, we also demonstrate that the
PII term is correctly returned from Cashtags when used
internally by the app.

This totals 1,728 tests for static text widgets and inputs,
with 526 additional test cases for widgets that permit user
input via both software keyboards as well as physical devices
(on-board hardware, USB or wireless input devices). The full
list of configurations is shown in Table V.I.

For each combination of the above, the Android Debug
Bridge [60] and UIautomator tool [36] is used to capture
device layout view hierarchies and screenshots of each case.
The contents of the actual and cashtag fields within the view
hierarchy XML are compared for conversion correctness. The
device screenshot is processed using Tessseract OCR [21] and
confirms if the actual PII term has been properly masked on
screen.

For each combination, we also demonstrate that both text
input as an actual sensitive term and cashtag are correctly
converted to the actual sensitive term when accessed internally
by the app. Since the access of sensitive data within the app

normally involves remote actions, we also emulated this
scenario and performed remote verification. Once screen
processing is completed, the app accesses the text fields and
uploads to Google Sheets/Form. The uploaded actual sensitive
items and cashtag submissions are compared for accuracy
based on expected values.

Our results show that Cashtags behaves correctly for all test
cases. For each test case, Cashtags identified input containing
sensitive data in both actual and cashtag form, prevented the
display on screen of the sensitive term, and determined
correctly when to convert back to the sensitive data.

B. App coverage evaluation

The Google Play market has millions of published
applications accessible by thousands of different hardware
devices, making the enumeration of all possible users, devices,
and application scenarios infeasible. Thus, we chose a
representative subset of popular apps to demonstrate app
coverage of Cashtags. Categorically, these application types
are email, messaging, social media, cloud and local storage,
office, and finance. Table V.II shows the selected apps,

TABLE V.I
ANDROID API TEST COMBINATIONS

Input phrase type (4):
Alphabetic phrase, numeric phrase, alphanumeric phrase,
Alphanumeric with symbols.

Phrase case (2):
Case Sensitive Text, Case In-sensitive Text

Widget type (9):
TextView (android.widget.TextView),
CheckedTextView(android.widget.CheckedTextView),
Button (android.widget.Button),
CheckBox (android.widget.CheckBox),
RadioButton (android.widget.RadioButton),
Switch (android.widget.Switch),
EditText (android.widget.EditText),
AutoCompleteTextView
(android.widget.AutoCompleteTextView),
MultiAutoCompleteTextView
(android.widget.MultiAutoCompleteTextView)

Layout type (2):
LinearLayout (android.widget.LinearLayout),
RelativeLayout (android.widget. RelativeLayout)

Theme type (3):
Default theme, System theme, User-defined theme.

Generation method (2):
Static XML, Dynamic Java

Lifecycle type (2):
Activity-based lifecycle, Fragment-based lifecycle

 9

arranged according to these categories. These apps were
selected using download metrics from the Google Play
marketplace, excluding games and utility apps for lack of
relevance in terms of displaying sensitive data on screen. The
presence of a form of external verification was also used in the
application selection. Apps typically bundled with mobile
devices were also tested for correct operation.

The operation performed on each is based on a commonly
performed use case or task for each category. Table V.II
shows the operation performed for each category and
respective app.

TABLE V.II
PER-CATEGORY APP TEST TASKS

Email: AOSP Email, Gmail, K9 Mail:
A user reads an email containing a sensitive term and its

corresponding cashtag. A Cashtags-enabled system should
display the email with two instances of the cashtag.

A user composes an email with a sensitive term and its
cashtag. A remote system not running Cashtags should
display the email with two instances of the sensitive term.

Messaging: Messaging, Google Hangouts, Snapchat:
A user reads a message containing a sensitive term and its

cashtag. A Cashtags-enabled system should display a
message containing two instances of the cashtag.

A user composes a message with a sensitive term and its
cashtag. A remote system not running Cashtags should
receive the message containing two instances of the
sensitive term.

Social: Facebook, Twitter, Google+:
A user reads text containing a sensitive term and its cashtag

from tweet/post/update. A Cashtags-enabled system should
display the tweet/post/update containing two instances of
the cashtag.

A user composes a new tweet/post/update with a sensitive
term and its cashtag. A remote system not running Cashtags
should receive the tweet/post/update with two instances of
the sensitive term.

Storage: Dropbox, MS OneDrive, File Manager:
A user opens an existing file containing a sensitive term and

its cashtag. A Cashtags-enabled system should display the
file containing two instances of the cashtag.

A user creates a file with a sensitive term and its cashtag. A
remote system not running Cashtags should see the file
containing two instances of the sensitive term.

Office: GoogleDocs, MS Office Mobile, QuickOffice:
A user reads a document containing a sensitive term and its

cashtag. A Cashtags-enabled system should display the
document with two instances of the cashtag.

A user creates a document containing a sensitive term and its
cashtag. A remote system not running Cashtags should see
two instances of the sensitive term.

Finance: Google Wallet, Paypal, Square:
A user reads a document containing a sensitive term and its

cashtag. A Cashtag-enabled system should display the
document with two instances of the cashtag.

A user creates a document containing a sensitive term and its
cashtag. A remote system not running Cashtag should see
two instances of the sensitive term.

 10

Table V.III shows that Cashtags using test cases from

market apps shows correct behavior for 97% of task and app
combinations, except the MS Office Mobile tests. The reason
these tests does not work is due to the custom View used for
the primary user interaction. This View (id:
docRECanvasHost) is not a descendant of an EditText so is
not intercepted by Cashtags. All other apps tested have user
input through an EditText, or a custom class inheriting from
an EditText. Custom views beyond this scope could be made
to work with Cashtags using case-specific handling for the
internal functions and parameters that map to the equivalent
EditText function.

C. Overhead

In terms of overhead, Cashtags was evaluated based on the
incremental lag on the system. To perform this test, a modified
version of the Android API coverage test (Section A) was run
with and without Cashtags enabled. Screenshots, layout
hierarchy dumping, and all other non-essential automation
elements were removed prior to test execution. Test execution
durations are compared, and additional incremental lag
introduced by the system is calculated. This test is run with
and without the remote data verification to determine the
effects of network lags on our system overhead.

Fig. 5.1 show the Cashtags system incurs an average 1.9%
increase in test execution duration. For tests including remote
verification, Cashtags incurred an average of a 1.1% increase
over baseline tests. For tests excluding the time consuming
remote verification, Fig. 5.2 shows that Cashtags incurred an
average of 2.6% over baseline. Therefore, under such
conditions, the additional overhead of Cashtags would not be
perceivable to the user.

Testing was also repeated using more cashtag entries, with
50 and 100 items, which is significantly higher than the list of
terms specified by PII. Fig. 5.3 and Fig. 5.4 show the results
of these test runs for both system and user input data, using
tests with and without the task inclusion of a web request.
Due to the current data structure, the performance degrades
linearly as the number of cashtags entries increases. However,
we can easily replace the data structure to make the increase
sublinear.

Cashtags is additionally evaluated for boot time overhead.
Changes to the Cashtags repository currently require reboot to
take full effect. While this operation is not in the common
critical path, the additional overhead for this operation is
relevant. The results of the boot lag are shown in Fig. 5.5.

Fig. 5.1. Comparison of mean app task execution time with and without
Cashtags enabled, using system, software and hardware text input with web
request for tests. Hardware input refers to input from physically or
wirelessly connected hardware keyboard and Software Input to input from
on screen software keyboard.

0 5 10 15 20

System Input

User Soft Input

Hardware Input

Execution time (s)

Cashtags Enabled Cashtags Disabled

TABLE V.III
APP COVERAGE EVALUATION

User
Input
Actual

User
Input
cashtag

Remote
Success
Actual

Remote
Success
cashtag

Email
AOSP Email √ √ √ √
Gmail √ √ √ √
K9 Mail √ √ √ √
Messaging
Messaging √ √ √ √
Google Hangouts √ √ √ √
Snapchat √ √ √ √
Social
Facebook √ √ √ √
Twitter √ √ √ √
Google+ √ √ √ √
Storage
Dropbox √ √ √ √
MS OneDrive √ √ √ √
File Manager √ √ √ √
Office
Google Docs √ √ √ √
MS Office Mobile √ √
QuickOffice √ √ √ √
Finance
Google Wallet √ √ √ √
Paypal √ √ √ √
Square √ √ √ √

 11

VI. RELATED WORK

Previous related works include both systems that secure
against observation-based attacks and those that provide
similar privacy protection over network channels.

A. Visual authentication protection

Prior work on protection against visual exposure is focused
primarily on securing the act of authentication. By far the
earliest is the technique of Xing out or simply not printing
entered passwords on login screens [15]. Most others can be
generalized as augmentation or replacement of password entry
mechanisms.

1) Password managers

Perhaps the most common method of securing against an
observation-based attack is the use of password managers.
These managers are software tools that allow the user to select
a predefined username and password pair from a list for entry
into the login fields [14]. This also allows a user to use
different passwords for different applications without the need
to remember each of them individually.

2) Hardware-based authentication

Other related work involves external physical devices to
supplement or replace the need to enter passwords. These
techniques utilize specialized USB dongles [17], audio jacks
[18], short-range wireless communication using NFC [19], or
Bluetooth connections [20] to connect to the authenticating
machine.

3) Graphical passwords

Another technique to help guard against information leaks
from visual attacks is the use of graphical passwords or
Graphical User Authentication (GUA) [22]. Such techniques
remove the alpha-numeric password from the equation and
replace it with the use of series of images, shapes, and colors.
Common techniques present the user with a series of human
faces that must be clicked on in sequence [23], object
sequences as part of a story [24], or specific regions within a
given image that must be clicked in sequence [25].

Fig. 5.5. Comparison of device startup times with a varying number of
cashtag entries and with system disabled.

0 10 20 30 40 50 60

Disabled

10 terms

50 terms

100 terms

Duration (s)

Fig. 5.4. Comparison of mean app task execution time with an increasing
number of cashtag entries, using system and user inputs without web request
for tests.

0 2 4 6 8 10

System Input

User Input

Execution time (s)

100 terms 50 terms 10 terms

Fig. 5.3. Comparison of mean app task execution time with an increasing
number of cashtag entries, using system and user inputs with web request for
tests.

0 5 10 15

System Input

User Input

Execution time (s)

100 terms 50 terms 10 terms

Fig. 5.2. Comparison of mean app task execution time with and without
Cashtags enabled, using system, software and hardware text input without
web request for tests. Hardware input refers to input from physically or
wirelessly connected hardware keyboard and Software Input to input from
on screen software keyboard.

0 5 10 15

System Input

Software User Input

Hardware User Input

Execution time (s)

Cashtags Enabled Cashtags Disabled

 12

4) Biometrics
Biometric authentication mechanisms can be generalized as

changing or augmenting password entry (something one
knows), with a feature unique to one’s personal biology
(something one is). There are many inherent physiological
characteristics that are sufficiently unique to identify and
differentiate one individual from another. The most commonly
used of these biometric identifiers includes contours of the
fingerprints [26], iris and retinal configuration of the eye [27],
and geometries of the face [28] and hand [29]. Behavioral
characteristics, in contrast to biometric identifiers, including
keystroke latency [30], gait [31], and voice [32] can also be
used for authentication purposes.

5) Gesture-based authentication

Closely related to both GUA techniques and biometric
solutions are gesture-based authentication techniques. These
methods allow the user to perform specific tap [33], multi-
finger presses [34], or swipe sequences on-screen [35] to
represent a password.

6) Cognitive challenges, Obfuscation and confusion

Other techniques have attempted to make games of the
authentication procedure [37]. Instead of a single password or
phrase, these techniques utilize challenge-response questions
and use of cognitive tasks to increase the difficulty of the login
session [38]. Other techniques have attempted to remedy the
shortcomings of password-based authentication through
obfuscation and confusion to a visual observer. They utilize
the hiding of cursors [39], confusion matrices [40], and
recognition [41] rather than recall-based methods, to trick and
confuse onlookers.

7) Alternate sensory inputs

Additional work has been done utilizing other biological
sensory inputs to replace or augment password-based
authentication. These systems can address two separate parts
of the authentication process; the cue to the input, or the actual
input itself.

In the first case, the additional sensory input serves as a
non-observable instruction or hint to the required passphrase
entry. These systems utilize audio direction [42] or tactile and
haptic feedback from the vibration motors on devices [43] to
provide the user with the appropriate cue for the necessary
response. The user then responds with the phrase
corresponding to the cue using traditional input methods.

In the second case, the auxiliary sense serves as the input
mechanism itself. These systems extend GUAs by requiring
sequential graphical inputs but use mechanics like eye
tracking, blinking and gaze-based interaction for the user to
input the graphical sequence [44]. Systems have even
demonstrated the capability of using brain waves for this task;
a user may only need to think a specific thought to
authenticate with a system [45]. These methods are also
useful alternatives for authentication of people with visual or
audio sensory disabilities [46].

B. Digital Communication Channel Protection

Many protocols and systems have also been developed to
handle other aspects of privacy-oriented attacks through the
encryption of the digital communication channel. Transport
Layer Security and Secure Sockets Layer can enhance security
by providing session-based encryption [47]. Virtual Private
Networks can be used to enhance security by offering point-
to-point encryption to provide secure resources access across
insecure network topologies [48]. Proxy servers [49] and
onion routing protocols such as Tor [50] can add extra privacy
by providing obfuscation of location, and anonymization of IP
addresses.

Many other solutions have been developed to enhance
security and privacy at the browser level. Do-not-track
requests can be included in HTTP headers to request that the
web server or application disable its user and cross-site
tracking mechanisms [51]. Many browser extensions and
plug-ins exist to block advertising [52] as well as analytics,
beacons, and other tracking mechanisms [53]. Other systems
alert the user when specific privacy elements are leaked [54,
prevent the transmission of sensitive data without explicit user
permission [55], and cryptography secure access to sensitive
data outside of trusted situations [16].

C. Compared to Cashtags

Despite the various mechanisms mentioned, the visual
channel remains largely open. A limited number of tools are
available to obfuscate sensitive data other than during the act
of authentication. All existing tools developed for encryption
of data are not originally designed for such purposes.

Password-based solutions and biometrics are effective in
handling visual leaks during the act of authentication, but
cannot be generalized to handle other cases. No existing
mechanism is in place to allow arbitrary data to be marked as
sensitive. Cashtags is the only existing system that can protect
general data from shoulder surfing.

VII. DISCUSSION & LIMITATIONS

A. Coverage Limitation

Cashtags widget-level text manipulation works for apps that
use standard text rendering methods. However, should
developers deviate from such standards and create display data
paths that do not inherit from the base text widgets, Cashtags
would not capture such cases. Still, the additions required to
incorporate these custom methods to work within Cashtags
would be minimal if knowledge of the custom text display
functions and parameters were provided.

B. Common Name Issue

Commonly occurring names can result in certain side
effects. Consider a user John Smith, with Cashtag aliases of
his name: John -> $fname, and Smith -> $lname. Therefore,
all on-screen instances of John are masked as $fname. Now,
John opens his mobile browser and googles for John Addams,
John Travolta, or John Williams. All returned search results
would be displayed with on-screen representations as $fname
Addams, $fname Travolta, or $fname Williams, respectively.

 13

While this may or may not be acceptable to the user, it could
also have the unintended consequence of inadvertently
visually leaking private data. If an on-looker was able to
observe the above search queries in the situation above, and
was aware of the operation of Cashtags, they might be able to
derive the sensitive data from context; in this case,
determining that the user making the searches is named John.
This limitation is isolated to common phrases; most instances
of numerical phrases would not be relevant to this issue.

C. Data Formatting

Data formatting and types is another issue. Many cases are
handled through simple transformations of text fields,
including the removal of spaces and symbols, and
capitalization mismatches. However, on-screen data that
expands between individual TextViews is not recognized, e.g.,
input fields for a credit card split into parts rather than
combined into a single field. This could be handled by
Cashtags if each part of the credit card number were
individually added to the repository.

VIII. FUTURE WORK

In its current form, Cashtags is designed to protect against
privacy leaks for the device owner. However, modification
could be made to provide more generalized protection from
on-screen data leaks, especially for business use cases. Many
professions regularly access lists of data containing sensitive
data elements. This use case is becoming more commonplace,
as progressively more computing is being performed on
mobile devices. Additional processing of text elements for
specific patterns of text and other data could be applied to
contextually determine which data fields may contain sensitive
data. These fields could then be masked accordingly.

Other future work could improve the scalability of the
sensitive data repository. The current implementation is
optimized for coverage rather than performance. Disabling of
specific classes of widgets unlikely to contain sensitive data is
one solution. In addition, more efficient text processing
methods and data structures can be considered.

Other future work could include the remote synchronization
of Cashtags. Updates to sensitive actual and alias lists could be
propagated to other devices automatically. Cashtags could also
be modified to provide shared access for multiple users.
Permissions could allow a user to share a cashtag for use by
another without disclosing the sensitive data. In addition, this
method would provide improved redaction of access to shared
sensitive resource.

IX. CONCLUSION

Cashtags is a first step toward protection against visual
leaks of on-screen data. The system demonstrates that it is
possible to perform most mobile computing tasks in public
locations without exposing sensitive personal information. The
evaluation of the system shows that this is accomplished
efficiently, with minimal perceived overhead. The app
coverage test confirms that the system is general purpose and
maintains full functionality with nearly all tested common use
cases. These results suggest that Cashtags will likely also
work on most other mobile apps, providing unified, device-

wide protection against shoulder surfing.

REFERENCES
[1] Honan, Brian. “Visual Data Security White Paper”, July 2012. BH

Consulting & European Association for Visual Data Security.
http://www.visualdatasecurity.eu/wp-content/uploads/2012/07/Visual-
Data-Security-White-Paper.pdf. Retrieved 4/2014

[2] Thomson, Herbert H, PhD. "Visual Data Breach Risk Assessment
Study." 2010. People Security Consulting Services, Commissioned by
3M.
http://solutions.3m.com/3MContentRetrievalAPI/BlobServlet?assetId=1
273672752407&assetType=MMM_Image&blobAttribute=ImageFile.
Retrieved 4/2014

[3] Vikuiti Privacy Filters. "Shoulder Surfing Survey". 2007. Commissioned
by 3M UK PLC.
http://multimedia.3m.com/mws/mediawebserver?6666660Zjcf6lVs6EVs
66SlZpCOrrrrQ-. Retrieved 4/2014

[4] European Association for Visual Data Security. "Visual Data Security",
March 2013. http://www.visualdatasecurity.eu/wp-
content/uploads/2013/03/Secure-Briefing-2013-UK.pdf. Retrieved
4/2014

[5] International Data Corporation. “Worldwide Mobile Worker Population
2011-2015 Forecast.” http://cdn.idc.asia/files/5a8911ab-4c6d-47b3-
8a04-01147c3ce06d.pdf. Retrieved 4/2014

[6] Good Technology. "Americans are Working More, but on their Own
Schedule", July 2012. http://www1.good.com/about/press-
releases/161009045.html. Retrieved 4/2014

[7] Nokia, USA. "Nokia Lumia 1020", http://www.nokia.com/us-
en/phones/phone/lumia1020/. Retrieved 4/2014

[8] NPD DisplaySearch. “Wide Viewing Angle LCD Technologies Gain
Share Due to Tablet PC Demand”. January 2012.
http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/120119
_wide_viewing_angle_lcd_technologies_gain_share_due_to_tablet_pc_
demand.asp. Retrieved 4/2014

[9] Pillai, Geetha. "Caught on Camera: You are Filmed on CCTV 300
Times a Day in London", International Business Times, March 2012.
http://www.ibtimes.co.uk/britain-cctv-camera-surveillance-watch-
london-big-312382. Retrieved 4/2014

[10] Loh Zhi Chang and Steven Zhou ZhiYing. “Robust pre-processing
techniques for OCR applications on mobile devices”, In Proceedings of
the 6th International Conference on Mobile Technology, Application &
Systems (Mobility '09). ACM, New York, NY, USA, Article 60 , 4
pages. DOI=10.1145/1710035.1710095
http://doi.acm.org/10.1145/1710035.1710095

[11] Owen, Glen. "The zzzzivil servant who fell asleep on the train with
laptop secrets in full view", November 2008.
http://www.dailymail.co.uk/news/article-1082375/The-zzzzivil-servant-
fell-asleep-train-laptop-secrets-view.html. Retrieved 4/2014

[12] Penn, Ivan. "Simple fix to bank security breach: Close the blinds",
Tampa Bay Times. December 2010.
http://www.tampabay.com/features/consumer/simple-fix-to-bank-
security-breach-close-the-blinds/1139356. Retrieved 4/2014

[13] Davies, Caroline. "Prince William photos slip-up forces MoD to change
passwords", The Guardian, November 2102.
http://www.theguardian.com/uk/2012/nov/20/prince-william-photos-
mod-passwords. Retrieved 4/2014

[14] J. Alex Halderman, Brent Waters, and Edward W. Felten. “A convenient
method for securely managing passwords”, In Proceedings of the 14th
international conference on World Wide Web (WWW '05). ACM, New
York, NY, USA, 471-479. DOI=10.1145/1060745.1060815
http://doi.acm.org/10.1145/1060745.1060815

[15] CTSS Programmers Guide, 2nd Ed., MIT Press, 1965
[16] C. Fleming, P. Peterson, E. Kline and P. Reiher, "Data Tethers:

Preventing Information Leakage by Enforcing Environmental Data
Access Policies," in International Conference on Communications
(ICC), 2012.

[17] Yubico, Inc. "About YubiKey", 2014. http://www.yubico.com/about.
Retrieved 4/2014

[18] Square, Inc. "About Square", 2014. https://squareup.com/news.
Retrieved 4/2014

[19] Google, Inc. "Google NFC YubiKey Neo", September 2013.
http://online.wsj.com/news/articles/SB100014241278873235856045790
08620509295960

 14

[20] Wayne Jansen and Vlad Korolev. “A Location-Based Mechanism for
Mobile Device Security”, In Proceedings of the 2009 WRI World
Congress on Computer Science and Information Engineering (CSIE '09),
Vol. 1. IEEE Computer Society, Washington, DC, USA, 99-104.
DOI=10.1109/CSIE.2009.719 http://dx.doi.org/10.1109/CSIE.2009.719

[21] Google, Inc. Tesseract-OCR. https://code.google.com/p/tesseract-ocr/
[22] Blonder, Greg E. "Graphical Passwords". United States patent 5559961,

Lucent Technologies, Inc. 1996.
[23] Passfaces Corporation. "The Science Behind Passfaces", June 2004.

http://www.realuser.com/published/ScienceBehindPassfaces.pdf
[24] Darren Davis, Fabian Monrose, and Michael K. Reiter. “On user choice

in graphical password schemes”, In Proceedings of the 13th conference
on USENIX Security Symposium - Volume 13 (SSYM'04), Vol. 13.
USENIX Association, Berkeley, CA, USA, 11-11.

[25] Susan Wiedenbeck, Jim Waters, Jean-Camille Birget, Alex Brodskiy,
and Nasir Memon. “PassPoints: design and longitudinal evaluation of a
graphical password system” International Journal of Human-Computer
Studies. 63, 1-2 (July 2005), 102-127. DOI=10.1016/j.ijhcs.2005.04.010
http://dx.doi.org/10.1016/j.ijhcs.2005.04.010

[26] Jain, A.K.; Hong, L.; Pankanti, S.; Bolle, R., "An identity-authentication
system using fingerprints," Proceedings of the IEEE, vol.85, no.9,
pp.1365, 1388, Sep 1997. doi: 10.1109/5.628674

[27] J. Daugman. “How iris recognition works”, IEEE Transactions on
Circuits and Systems for Video Technology. 14, 1 (January 2004), 21-
30. DOI=10.1109/TCSVT.2003.818350
http://dx.doi.org/10.1109/TCSVT.2003.818350

[28] Anil K. Jain, Arun Ross, Sharath Pankanti. "A Prototype Hand
Geometry-based Verifcation System", In Proceedings of 2nd
International Conference on Audio- and Video-based Biometric Person
Authentication (AVBPA), Washington D.C., pp.166-171, March 22-24,
1999.

[29] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. “Face
recognition: A literature survey”. ACM Computing Surveys. 35, 4
(December 2003), 399-458. DOI=10.1145/954339.954342
http://doi.acm.org/10.1145/954339.954342

[30] Rick Joyce and Gopal Gupta. “Identity authentication based on
keystroke latencies”, Communications of the ACM ,33, 2 (February
1990), 168-176. DOI=10.1145/75577.75582
http://doi.acm.org/10.1145/75577.75582

[31] Davrondzhon Gafurov, Kirsi Helkala, Torkjel Søndrol. "Biometric Gait
Authentication Using Accelerometer Sensor", Journal of Computers,
Vol. 1, No. 7, October 2006.

[32] Roberto Brunelli and Daniele Falavigna. “Person Identification Using
Multiple Cues”, IEEE Transactions on Pattern Analysis and Machine
Intelligence. 17, 10 (October 1995), 955-966. DOI=10.1109/34.464560
http://dx.doi.org/10.1109/34.464560

[33] Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner, and
Heinrich Hussmann. “Touch me once and I know it's you!: implicit
authentication based on touch screen patterns”, In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI
'12). ACM, New York, NY, USA, 987-996.
DOI=10.1145/2207676.2208544
http://doi.acm.org/10.1145/2207676.2208544

[34] Ioannis Leftheriotis. “User authentication in a multi-touch surface: a
chord password system” In CHI '13 Extended Abstracts on Human
Factors in Computing Systems (CHI EA '13). ACM, New York, NY,
USA, 1725-1730. DOI=10.1145/2468356.2468665
http://doi.acm.org/10.1145/2468356.2468665

[35] Ming Ki Chong, Gary Marsden, and Hans Gellersen. “GesturePIN:
using discrete gestures for associating mobile devices”, In Proceedings
of the 12th international conference on Human computer interaction
with mobile devices and services (MobileHCI '10). ACM, New York,
NY, USA, 261-264. DOI=10.1145/1851600.1851644
http://doi.acm.org/10.1145/1851600.1851644

[36] Android Developers, Uiautomator.
https://developer.android.com/tools/help/uiautomator/index.html

[37] Volker Roth, Kai Richter, and Rene Freidinger. “A PIN-entry method
resilient against shoulder surfing”, In Proceedings of the 11th ACM
conference on Computer and communications security (CCS '04). ACM,
New York, NY, USA, 236-245. DOI=10.1145/1030083.1030116
http://doi.acm.org/10.1145/1030083.1030116

[38] T. Perkovic, M. Cagalj, and N. Rakic. “SSSL: shoulder surfing safe
login”, In Proceedings of the 17th international conference on Software,
Telecommunications and Computer Networks (SoftCOM'09). IEEE
Press, Piscataway, NJ, USA, 270-275.

[39] Alice Boit, Thomas Geimer, and Jorn Loviscach. “A random cursor
matrix to hide graphical password input”, In SIGGRAPH '09: Posters
(SIGGRAPH '09). ACM, New York, NY, USA, Article 41, 1 pages.
DOI=10.1145/1599301.1599342
http://doi.acm.org/10.1145/1599301.1599342

[40] Rohit Ashok Khot, Ponnurangam Kumaraguru, and Kannan Srinathan.
“WYSWYE: shoulder surfing defense for recognition based graphical
passwords”, In Proceedings of the 24th Australian Computer-Human
Interaction Conference (OzCHI '12), ACM, New York, NY, USA, 285-
294. DOI=10.1145/2414536.2414584
http://doi.acm.org/10.1145/2414536.2414584

[41] Rachna Dhamija and Adrian Perrig. “Deja; Vu: a user study using
images for authentication”, In Proceedings of the 9th conference on
USENIX Security Symposium - Volume 9 (SSYM'00), Vol. 9. USENIX
Association, Berkeley, CA, USA, 4-4.

[42] Mary Brown and Felicia R. Doswell. “Using passtones instead of
passwords”, In Proceedings of the 48th Annual Southeast Regional
Conference (ACM SE '10). ACM, New York, NY, USA, Article 82, 5
pages. DOI=10.1145/1900008.1900119
http://doi.acm.org/10.1145/1900008.1900119

[43] Andrea Bianchi, Ian Oakley, and Dong Soo Kwon. “The secure haptic
keypad: a tactile password system”, In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '10). ACM,
New York, NY, USA, 1089-1092. DOI=10.1145/1753326.1753488
http://doi.acm.org/10.1145/1753326.1753488

[44] Alain Forget, Sonia Chiasson, and Robert Biddle. “Shoulder-surfing
resistance with eye-gaze entry in cued-recall graphical passwords”, In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '10). ACM, New York, NY, USA, 1107-1110.
DOI=10.1145/1753326.1753491
http://doi.acm.org/10.1145/1753326.1753491

[45] Julie Thorpe, P. C. van Oorschot, and Anil Somayaji. “Pass-thoughts:
authenticating with our minds”, In Proceedings of the 2005 workshop on
New security paradigms (NSPW '05). ACM, New York, NY, USA, 45-
56. DOI=10.1145/1146269.1146282
http://doi.acm.org/10.1145/1146269.1146282

[46] Nitesh Saxena and James H. Watt. “Authentication technologies for the
blind or visually impaired”, In Proceedings of the 4th USENIX
conference on Hot topics in security (HotSec'09). USENIX Association,
Berkeley, CA, USA, 7-7.

[47] T. Dierks, E. Rescorla. "The Transport Layer Security (TLS) Protocol,
Version 1.2", August 2008.

[48] Mason, Andrew G. “Cisco Secure Virtual Private Network”. Cisco
Press, 2002, p. 7.

[49] Marc Shapiro. "Structure and Encapsulation in Distributed Systems: the
Proxy Principle", In Proceedings of the 6th IEEE International
Conference on Distributed Computing Systems (ICDCS), Cambridge
MA (USA), May 1986.

[50] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: the
second-generation onion router”, In Proceedings of the 13th conference
on USENIX Security Symposium (SSYM'04), Vol. 13. 2004 USENIX
Association, Berkeley, CA, USA, 21-21.

[51] Do Not Track. "Do Not Track - Universal Web Tracking Opt Out",
http://donottrack.us. Retrieved 4/2014

[52] Adblock Plus. "Adblock Plus : About", https://adblockplus.org/en/about.
Retrieved 4/2014

[53] Evidon, Inc. "About Ghostery", https://www.ghostery.com/en/about.
Retrieved 4/2014

[54] Braden Kowitz and Lorrie Cranor. “Peripheral privacy notifications for
wireless networks”, In Proceedings of the 2005 ACM workshop on
Privacy in the electronic society (WPES '05). ACM, New York, NY,
USA, 90-96. DOI=10.1145/1102199.1102217
http://doi.acm.org/10.1145/1102199.1102217

[55] Sunny Consolvo, Jaeyeon Jung, Ben Greenstein, Pauline Powledge,
Gabriel Maganis, and Daniel Avrahami. “The Wi-Fi privacy ticker:
improving awareness & control of personal information exposure on Wi-
Fi”, In Proceedings of the 12th ACM international conference on
Ubiquitous computing (Ubicomp '10). ACM, New York, NY, USA,
321-330. DOI=10.1145/1864349.1864398
http://doi.acm.org/10.1145/1864349.1864398.

[56] Simon Khalaf. “Apps Solidify Leadership Six Years into Mobile
Revolution,” Flurry, http://www.flurry.com/bid/109749/Apps-Solidify-
Leadership-Six-Years-into-the-Mobile-Revolution, 2014.

[57] Google, Inc. Google Glass. http://www.google.com/glass/start/

 15

[58] Rahul Raguram, Andrew M. White, Dibyendusekhar Goswami, Fabian
Monrose, and Jan-Michael Frahm. 2011. iSpy: automatic reconstruction
of typed input from compromising reflections. In Proceedings of the
18th ACM conference on Computer and communications security (CCS
'11). ACM, New York, NY, USA, 527-536.
DOI=10.1145/2046707.2046769
http://doi.acm.org/10.1145/2046707.2046769

[59] Erika McCallister, Tim Grance, Karen Scarfone. Guide to Protecting the
Confidentiality of Personally Identifiable Information (SP 800-122).
National Institute of Standards and Technology,
http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf

[60] Android Developers, Android Debug Bridge.
https://developer.android.com/tools/help/adb.html

