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Abstract—We have designed and implemented a new proto-
col for wireless mesh networks called Practical Opportunistic
Routing (POR). In this report, we document our finding about
the complexity of the routing problem in POR. We prove that
the routing problem is NP-hard by reducing a slightly modified
version of the MAX-2-SAT problem to the optimal routing
problem in POR.

I. PRELIMINARIES

We have proposed a new packet forwarding and routing
protocol for wireless mesh networks called Practical Oppor-
tunistic Routing (POR) [2]. As we have mainly focused on
the practical design and implementation of POR in [2], in this
report, we document our findings about the theoretical routing
problem in POR. We begin with a brief review of the routing
metric in POR; the details can be found in [2].

Suppose the path is (v1, v2, ..., vL). Any POR path must
satisfy the feedback constraint; that is, any node on the path
must be able to receive from its next hop node to ensure the
correct reception of possible feedbacks from its downstream
nodes. POR considers both the forward cost for sending
data and backward cost for sending feedback. The path cost
calculation is carried out iteratively, starting from the node
closest to the destination. Therefore, when calculating the
cost of the path, the forward and backward costs of path
(vi, vi+1, ..., vL) are known for 2 ≤ i ≤ L, denoted as Cvi

and Bvi , respectively.

A. Path Cost in a Given State

Suppose the links involving v1 are in a certain set of states
denoted as τ .

1) Forward Cost: The forward cost of the path is denoted
as Cτ

v1 , which is defined as the consumed air time in data
transmission in order to deliver a unit size block to the
destination when the links are in state τ . We denote the BRR
of link v1 → vi at rate ρj as µρj ,τ

i . We use Cτ
v1,ρj

to denote the
air time consumed to deliver a unit size block to vL following
path (v1, v2, ..., vL), under the condition that v1 transmits at
rate ρj . We have

Cτ
v1,ρj

=

1
ρj

+
∑L

i=2 µ
ρj

i

∏L
t=i+1(1− µ

ρj

t )Cvi

1−
∏L

i=2(1− µ
ρj

i )
. (1)

Cτ
v1

is Cτ
v1,ρ∗ if ρ∗ has the minimum cost among all rates.

2) Backward Cost: The backward cost at v1 is denoted
as Bτ

v1 and defined as the consumed air time in feedback
transmission in order to deliver a packet to the destination.

We let

γi =
µρ∗,τ
i

∏L
t=i+1(1− µρ∗,τ

t )

1−
∏L

i=2(1− µρ∗,τ
i )

.

The backward cost is calculated according to

Bτ
v1 = γ2Bv2 +

L∑
i=3

γi[Bvi + (1− µρ∗,τ
2 )η2 +

i∑
t=3

ηt] (2)

where ηt denotes air time vt uses to send one feedback,
which can be calculated according to the rate vt uses to send
feedback and the simplifying assumption that each feedback
frame contains exactly 8 feedbacks.

B. Path Cost in Multiple States

We find in our experiments that the links can be in multiple
states. As a response, the rate selection algorithm can converge
to different data rates. The cost of a path is simply the
weighted average of the path costs in each individual set of
states, where the weight of a set is the probability that the
links are in this particular set of states.

II. NP-HARDNESS PROOF

Our proof is based on a modified version of the MAX-
2-SAT problem [1]. In the original version of MAX-2-SAT
problem, N binary variables and S clauses are given where
each clause contains exactly two literals in the or operation,
where a literal is either a binary variable or the negation of the
variable. The goal is to find an assignment of the binary values
of the variables such that maximum number of clauses are
satisfied. We define a similar MAX-2-SAT problem in which
the operation inside the clause is and as the AMAX-2-SAT
problem.

Theorem 1: The AMAX-2-SAT problem is NP-hard.
Proof: Given any instance of the original MAX-2-SAT

problem, we create an instance of the AMAX-2-SAT problem
as follows. For any variable xi, create two types of shadow
variables denoted as x1

i to x3
i and y1i to yGi , where G > 100S.

For notational simplicity, we also use x0
i to denote xi. We refer

to x0
i to x3

i the set-1 variables and y1i to yGi the set-2 variables
for xi. For each pair of set-2 variables yui and yvi , create two
clauses: (¬yui ∧¬yvi ) and (yui ∧yvi ). For each xt

i and yui where
0 ≤ t ≤ 3 and 1 ≤ u ≤ g, create two clauses (¬xt

i ∧ ¬yui )
and (xt

i ∧ yui ), where 10S < g < G
10 . Group all clauses in the

MAX-2-SAT instance according to the variables in the clauses;
clauses involving the same two variables belong to the same
group. Clearly, each group contains at most 4 clauses. Give
indices to the clauses in the same group; for example, for



the clauses involving xi and xj , (¬xi ∨ ¬xj), (¬xi ∨ xj),
(xi ∨ ¬xj), (xi ∨ xj) are indexed as 0, 1, 2, 3 and denoted
as Ci,j

0 to Ci,j
3 , respectively. Convert each or clause in the

MAX-2-SAT instance to 3 clauses in the and form such that
one of the and clauses will be true if the original clause is
true. Then, replace the variables in the converted and clauses
with the shadow variables, e.g., xi in Ci,j

t is replaced with xt
i.

We first claim than set-2 variables for xi will take the same
values. This is because if there are certain variables taking
different values from the majority, by converting them to take
the same value as the majority, there will be an increase of at
least G−1 satisfied clauses among the clauses involving only
the set-2 variables. By so doing, there will be a decrease of at
most 4g satisfied clauses among the clauses involving one of
the set-2 variables and one of the set-1 variables. Therefore,
the set-2 variables must take the same value because G > 10g
in our construction. We next claim that the set-1 variables also
take the same value as the set-2 variables. This is because
if one set-1 variable takes a different value, by changing its
value, there will be an increase of g satisfied clauses among
the clauses involving one of the set-2 variables and one of
the set-1 variables. By so doing, there will be a decrease of
at most 3S satisfied clauses among the clauses involving only
the set-1 variables. Therefore, the set-1 variables must take the
same value because g > 10S in our construction.

Given any optimal solution in the constructed AMAX-2-
SAT instance, if there are N satisfied clauses among the
clauses involving only the set-1 variables, we can use the same
assignment and obtain N satisfied clauses in the MAX-2-SAT
instance, and vice versa.

We next introduce a new problem called the Distance-
Weighted MAX-2-SAT (DWM-2-SAT) based on the AMAX-
2-SAT problem. We define the distance weight of a clause
involving xi and xj as |i − j|. The DWM-2-SAT problem is
defined as: Given N binary variables indexed from 1 to N and
S and clauses with two literals, find an assignment such that
the sum of the weights of the satisfied clauses is maximized.

Theorem 2: The DWM-2-SAT problem is NP-hard.
Proof: Given any instance of the AMAX-2-SAT problem,

we construct an instance of the DWM-2-SAT problem as
follows. First, for any variable xi, create two shadow variables
denoted as xi+D1 and xi+D2, where D1 and D2 are large
constants, i.e., D1 > SN and D2 > S(D1+N)+D1. Then,
for any clauses in the AMAX-2-SAT instance involving xi and
xj , if i < j, replace xj with xj+D1. Also, introduce 4 shadow
clauses for each variable: (¬xi ∧ ¬xi+D2), (xi ∧ xi+D2),
(¬xi+D1 ∧ ¬xi+D2), and (xi+D1 ∧ xi+D2). Then, create
dummy variables to fill in the gaps of the indices; the dummy
variables are not in any clauses.

We first claim that xi and xi+D1 must take the same value in
the optimal solution for the constructed DWM-2-SAT instance.
Suppose this claim is not true and there is an optimal solution
in which xi and xi+D1 take different values. As a result,
exactly one of the shadow clauses for xi is satisfied. On
the other hand, if we change xi and xi+D1 to be the same
as xi+D2, between the shadow clauses, the weighted sum is
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Fig. 1. Constructed OPOR instance for a DWM-2-SAT instance with three
variables and three clauses: (x1 ∧ ¬x2), (x1 ∧ x3), and (¬x2 ∧ ¬x3).

increased by at least D2−D1. Among the original clauses, due
to the change of xi or xi+D1, the weighted sum is decreased
by at most S(D1 + N), which is still less than D2 − D1.
Therefore, this contradicts the fact that the solution is optimal.

We next claim that the optimal solution for the DWM-
2-SAT instance actually maximizes the number of satisfied
original clauses. To see this, consider two assignments denoted
as A1 and A2 which satisfy N1 and N2 original clauses,
respectively, where N1 > N2. The weighted sum of A1
among the original clauses is greater than N1D1, while the
weighted sum of A2 among the original clauses is less than
N2(D1 +N), which is less than N1D1 because D1 > SN
in our construction.

Theorem 3: The Optimal Practical Opportunistic Routing
(OPOR) problem is NP-hard.

Proof: Given any instance of the DWM-2-SAT problem,
we construct an OPOR instance as follows. Assume there is
no partial packet. First, introduce a source node denoted as
w0. For any variable xi, create three nodes denoted as v0i ,
v1i , and wi. Create links from v0i to wi and from v1i to wi.
Also create links from wi−1 to v0i and from wi−1 to v1i . Such
links are referred to as main links and can only operate at
a specific rate with PRR of 1. The reverse direction of the
main links operate at a much higher data rate with PRR of 1.
There are overhearing links from a v-node to another v-node
depending on the DWM-2-SAT instance. Suppose i < j, there
is an overhearing link from v0i to v0j , from v0i to v1j , from v1i
to v0j , and from v1i to v1j if clauses (¬xi ∧ ¬xj), (¬xi ∧ xj),
(xi ∧ ¬xj), and (xi ∧ xj) are in the DWM-2-SAT instance,
respectively. The PRR of the overhearing link is denoted as β
which is a positive but very small number, e.g., β < N−100.
The reverse direction of an overhearing link has PRR of 0
over all rates. The goal is to find an optimal path from w0 to
wN . Fig. 1 shows an example of the construnction.

Given this construction, we make the following claims:

1) If wi is on the path, at least one between v0i and v1i
must appear immediately before wi, due to the feedback
constraint.

2) If v0i (or v1i ) is on the path, wi−1 must also be on the path
and appear immediately before it due to the feedback
constraint.

3) Every w-node is on the path. Clearly, wN must be on
the path. Suppose wi is not on the path and is the one
with the largest index. Therefore, neither v0i+1 nor v1i+1

is on the path. However, this contradicts that wi+1 is on
the path.

4) w-nodes appear on the path in order. If not, there must
exist a wi and wi+1 where wi+1 appears earlier than
wi on the path. Suppose v0i+1 appears before wi+1.
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However, this contradicts that wi must appear before
v0i+1.

5) In any path, between wi−1 and wi, there is exactly one
node, either v0i or v1i . Suppose there are more than one
node. Without loss of generality, suppose v0i is between
wi−1 and wi. If v0i appears immediately before wi, it
cannot send feedback to the node between itself and
wi−1 because it can only send feedback to wi−1. If v0i
appears immediately after wi−1, wi can send feedback
to its previous hop only when its previous hop is v1i ;
however, v1i cannot send feedback to its previous hop
because it can only send to wi−1 while v0i is between
them.

6) A path will always be in the form of
w0, v

x1
1 , w1, v

x2
2 , w2, ...wN where xi is a binary

number.

We note that the optimal path need only optimize the
forward cost because the feedback cost is small. We claim that
the optimal path is the one that maximizes the total number of
bypassed main links by the overhearing edges. We denote the
number of overhearing links originated at vxi as Ri. Among the
links, suppose the bth shortest overhearing link bypasses sib w-
nodes. Let Si =

∑Ri

b=1 s
i
b. We define di = Cvx

i
−[2(N−i)+1].

It is clear that di ≤ 0 and Cwi = Cvx
i+1

+1 = 2(N−i)+di+1.
Normalizing the data rate to 1, we have

Cvx
i

= 1 + (1− β)RiCwi

+

Ri∑
b=1

β(1− β)Ri−b[2(N − i) + 1− 2sib + di+sib
]

Therefore,

Cvx
i

< 1 + (1− β)Ri2(N − i) + (1− β)Ndi+1

+

Ri∑
b=1

β(1− β)Ri−b[2(N − i) + 1− 2sib].

As a result

di < (1− β)Ndi+1 + [1− (1− β)N ]− β(1− β)N2Si

As dN = 0, for i < N , based on simple induction, we have

di < (N − i)[1− (1− β)N ]− β
N∑
j=i

(1− β)(j−i+1)N2Sj

and therefore

d1 < N [1− (1− β)N ]− β(1− β)N
2

N∑
j=1

2Sj (3)

On the other hand,

Cvx
i

> (1− β)Ri [2(N − i) + 1] + di+1

+

Ri∑
b=1

β(1− β)Ri−b[2(N − i) + 1− 2sib + di+sib
],

therefore,

di > di+1 − β2Si + β

Ri∑
b=1

di+sib

We prove that

di > −β

N∑
j=i

2Sj − β2(N − i)N3,

which is clearly true when i = N . Suppose it is true till di+1.
For di, we note that

di > −β
N∑

j=i+1

2Sj − β2(N − i− 1)N3 − β2Si

−β

N∑
j=i+1

[β

N∑
t=j

2St]− β

N∑
j=i+1

β2(N − j − 1)N3

> −β

N∑
j=i

2Sj − β2(N − i)N3

Therefore,

d1 > −β
N∑
j=1

2Sj − β2N4 (4)

Considering Eq. 3 and Eq. 4, given any two paths, the one
with a larger

∑N
j=1 2Sj will have a lower cost.

It is then clear that an optimal solution for the constructed
OPOR instance leads to an optimal solution for the original
DWM-2-SAT instance because each overhearing link exploited
in the optimal path is a satisfied clause.
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