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Abstract

The specification of the sporadic server real-time scheduling policy in the IEEE POSIX standard is defective, and needs to
be corrected. Via experiments using a POSIX sporadic server implementation under Linux, as well as simulations, we have
shown and confirmed previously unreported defects. We propose and demonstrate a corrected sporadic server formulation
that eliminates these defects without any change to the API or any significant increase in implementation complexity.

1 Introduction

During the late 1980’s and early 1990’s, a major initiative was undertaken to disseminate then-recent technological devel-
opments in real-time systems into widespread practice through programming language and operating system standards. One
success of this effort was the inclusion of support for preemptive fixed-task-priority scheduling policies in the IEEE POSIX
standard application program interface (API) for operating system services. That standard has since been rolled into the Unix
standard of the Open Group[9] and is implemented by Linux and many other operating systems. However, as advances have
continued to be made in the understanding of real-time scheduling, very little has been done to update the POSIX standard.

In this paper, we make a case for the need to correct the SCHED SPORADIC scheduling policy specification in the existing
POSIX real-time scheduling standard. We show that the current specification has several critical technical flaws, argue for the
importance of correcting these flaws, and provide specific suggestions for how they may be corrected.

The SCHED SPORADIC policy is important because it is the only scheduling policy supported by the POSIX standard that
enforces an upper bound on the amount of high-priority execution time that a thread can consume within a given time interval.
As such, it is the only standard scheduling policy that is potentially suitable for compositional schedulability analysis of an
“open” real-time system in the sense of [6], and the only one that is suitable as the basis for a virtual computing resource
abstraction for compositional analysis of a hierarchical scheduling scheme such as those studied in [18, 15, 12, 5, 2, 16].

The SCHED SPORADIC policy is a variation on the sporadic server scheduling concept, originally introduced by Sprunt,
Sha, and Lehoczky [17]. Conceptually, a sporadic server has execution time budget, which it consumes while it executes at
a given server priority, and which is replenished according to a rule that approximates the processor usage of a conceptual
set of sporadic tasks with a given period. The intent is that the worst-case behaviors of the server – both the minimum level
of service it provides and the maximum amount of processor time it consumes – can be modeled by an equivalent periodic

∗Corrects minor errors in the sporadic server pseudo-code.



task, whose worst-case execution time is equal to the server budget and whose period is equal to the server period. We call
this property the periodic task analogy.

This alleged equivalence of a sporadic server to a periodic task is often cited in the literature. For example, [5] says that
“Sprunt proved that in the worst-case the interference due to a Sporadic Server is equivalent to that of a simple Periodic
Server”, and [15] says “in the worst case, a child reserve [implemented as a sporadic server] behaves like a classical Liu and
Layland periodic task”.

Unfortunately, the original formulation of the sporadic server scheduling algorithm published in [17] – commonly called
the SpSL sporadic server – violates the above assertions. A defect in the replenishment rules allows a thread to consume more
processor time than the allegedly-equivalent periodic task. We do not know for certain who first discovered this defect. One
of us, who is cited as a source in [1], first learned of it from Raj Rajkumar. It is also described in [14].

Several proposals for correcting this defect have been published, including one in [1], several variations in [14], and an
adaptation for deadline scheduling in [8]. In particular, the formulation of the sporadic server scheduling policy in the POSIX
standard was widely believed to have corrected this defect. For example, [1] says: “The POSIX sporadic server algorithm
(PSS) provides an effective and safe solution that does not allow any budget overruns”.

Believing the POSIX sporadic server to be correct, we proposed in prior work [11] that the device driver processing of
incoming and outgoing network traffic be executed by a thread that is scheduled using the SCHED SPORADIC policy. Our
original experiments with a tick-based implementation of the scheduling policy suggested that the performance would be
improved by finer-grained management of time. However, in follow-up experiments using finer-grained time measurement,
we were surprised to see that the server’s actual processor utilization was significantly higher than that of a periodic task
with the same budget and period. When we looked for the cause of this anomalous behavior, we discovered two flaws in the
POSIX specification, which we believe need urgent attention.

To that end, this paper demonstrates the following facts:

1. The POSIX sporadic server algorithm’s replenishment rules suffer from an effect that we call “premature replenish-
ment”. We provide an example in which this defect allows a server to use an average of 38 percent more execution
time than the analogous periodic task.

2. The POSIX sporadic server algorithm also suffers from an unreported defect, which we call “budget amplification”.
This defect allows a server to use arbitrarily close to 100 percent of the processor time, regardless of how small the
server’s budget may be.

3. These defects can be corrected by modifications to the POSIX sporadic server specification, which are described in this
paper.

In support of the above, we report experiences with an implementation of the POSIX sporadic server in the Linux operating
system kernel, which clearly demonstrate the budget amplification effect on a task. We also report on simulations using
pseudo-random job arrivals that provide some insight into the likelihood of encountering the effects of the above two defects
in practice.

We additionally propose a change to the POSIX sporadic server specification to address a practical deficiency relating to
the inability to lower the priority of a sporadic server sufficiently when it is out of budget.

2 An Ideal Sporadic Server Model

The preemptive scheduling of periodic task systems is well understood and has been studied extensively, starting with the
pioneering work of [13] and the recursive response-time analysis technique of [10].

A periodic server is a mechanism for scheduling an aperiodic workload in a way that is compatible with schedulability
analysis techniques originally developed for periodic task systems. Aperiodic requests (jobs) are placed in a queue upon
arrival. The server activates at times t1, t2, . . . such that ti+1 − ti = Ts, where Ts is the nominal server period, and executes
at each activation for up to Cs, where Cs is the server budget. If the server uses up its budget it is preempted and its execution
is suspended until the next period. If the server is scheduled to activate at time t and finds no queued work, it is deactivated
until t+Ts. In this way the aperiodic workload is executed in periodic bursts of activity; i.e., its execution is indistinguishable
from a periodic task.

A primitive sporadic server is obtained from a periodic server by replacing the periodic constraint ti+1 − ti = Ts by
the sporadic constraint ti+1 − ti ≥ Ts. That is, the period is interpreted as just a lower bound on the separation between
activations. The sporadic constraint guarantees that the worst-case preemption caused by a sporadic task for other tasks is not



greater than that caused by a periodic task with the same worst-case execution time and period. In other words, the processor
demand function (and therefore a worst-case residual supply function for other tasks) of the server will be no worse than a
periodic task with period Ts and worst-case execution time Cs. That is, the periodic task analogy holds.

A primitive sporadic server has an advantage over a periodic server in greater bandwidth preservation; that is, it is able to
preserve its execution time budget under some conditions where a periodic server would not. If there are no jobs queued for
a sporadic server at the time a periodic server would be activated, the sporadic server can defer activation until a job arrives,
enabling the job to be served earlier than if it were forced to wait to be served until the next period of the periodic server.

An ideal sporadic server is a generalization based on a conceptual swarm of unit-capacity sporadic tasks, called “unit
servers” or just “units”, for short. The basis for this generalization is the observation that the worst-case analysis techniques
of [13] and [10] allow a set of periodic or sporadic tasks with the identical periods to be treated as if they were a single task,
whose execution time is the sum of the individual task execution times. That is, the worst-case interference such a swarm
of identical sporadic tasks can cause for other tasks occurs when all the tasks are released together, as if they were one task.
Although the worst-case interference for lower-priority tasks caused by such a swarm of sporadic servers remains the same
as for a single periodic server task, the average response time under light workloads can be much better. Indeed, studies have
shown that sporadic servers are able to achieve response times close to those of a dedicated processor under light workloads,
and response times similar to those of a processor of speed us = Cs/Ts under heavy loads.

Since the overhead of implementing a server as a swarm of literal unit-capacity sporadic servers would be very high,
published formulations of sporadic server scheduling algorithms attempt to account for processor capacity in larger chunks
of time, called replenishments. Each replenishment R may be viewed as representing a cohort of R.amt unit servers that are
eligible to be activated at the same replenishment time, R.time. For such a sporadic server formulation to satisfy the periodic
task analogy, the rules for combining unit servers into replenishments must respect the sporadic constraint.

Observation 1 If R represents a cohort of unit servers that were activated together at some time t and executed during a
busy interval containing t 1, the sporadic constraint will be satisfied so long as R.time ≥ t+ Ts.

Observation 2 The sporadic constraint is preserved if R.time is advanced to any later time.

Observation 3 The sporadic task constraint is preserved if a replenishment R1 is merged with a replenishment of R2 to
create a replenishmentR3 withR3.amt = R1.amt+R2.amt andR3.time = R1.time, provided thatR1.time+R1.amt ≥
R2.time.

Proof
Suppose cohorts corresponding to R1 and R2 are activated at R1.time. Since unit servers are indistinguishable within
a cohort, we can assume that those of R1 execute first and so cannot complete sooner than R1.time + R1.amt. Since
R1.time + R1.amt ≥ R2.time, by the time R1 completes the replenishment time t2 will have been reached. So, none of
the unit servers in the combined R3 can activate earlier than if R1 and R2 are kept separate. 2

3 The POSIX Sporadic Server

The POSIX sporadic server policy specified in [9] superficially resembles the ideal model. A thread subject to this policy
has a native priority, specified by the parameter sched priority, a budget Cs specified by the parameter sched ss init budget,
and a period Ts specified by the parameter sched ss repl period. The thread has a numerical attribute, called the currently
available execution capacity, which abstracts a set of unit servers that are eligible for activation at a given time (because their
last activations are all at least Ts in the past), and a set of pending replenishments, which abstract sets of unit servers that are
not yet eligible for activation (because the last activation is less than Ts). If the POSIX specification were in agreement with
the ideal model, each replenishmentR would correspond to a cohort of units that executed within a busy interval of the server
and R.time would be earliest time consistent with Observation 1. However, the POSIX rules for handling replenishments fail
to enforce the sporadic constraint at the unit server level, and so break the periodic task analogy.

In this section we compare the POSIX sporadic server policy and its terminology to the ideal model described previously2.
These comparisons will be used to explain how the resulting defects occur.

1A busy interval is a time interval during which the processor is continually busy executing the server and tasks that cannot be preempted by the server.
2We regret that the page limit prevents us from reproducing the full specification from the POSIX standard [9], but it is available for free access at the

website of The Open Group.



3.1 Budget Amplification

POSIX differs from the ideal model by limiting a server’s execution “to at most its available execution capacity, plus the
resolution of the execution time clock used for this scheduling policy”. Some such allowance for inexact execution bud-
get enforcement is essential in a practical implementation. Typically budget enforcement latency can vary from zero to
the maximum of the timer latency and the longest non-preemptable section of the system calls that a server may perform.
POSIX seems to err in stating that when “the running thread ... reaches the limit imposed on its execution time ... the ex-
ecution time consumed is subtracted from the available execution capacity (which becomes zero).” The specified one-tick
enforcement delay mentioned above allows the server budget to become negative by one tick, and in reality, larger overruns
must be expected. POSIX allows for this elsewhere by stating that “when the running thread with assigned priority equal to
sched priority becomes a preempted thread ... and the execution time consumed is subtracted from the available execution
capacity ... If the available execution capacity would become negative by this operation ... it shall be set to zero”. POSIX
attempts to compensate for the downstream consequences of forgiving such overruns by specifying that if as a result of a
replenishment “the execution capacity would become larger than sched ss initial budget, it shall be rounded down to a value
equal to sched ss initial budget.” However, this is an oversimplification, which cannot be translated into the ideal model.

This oversimplification of the ideal model leads to the defect we refer to as budget amplification. That is, the size of a
replenishment can grow as it is consumed and rescheduled over time.

When an overrun occurs, the POSIX specification states that the available execution capacity should be set to zero and that
a replenishment should be scheduled for the amount of the time used since the activation time. At this point, the sporadic
server has used more units than it had. This increased amount is scheduled as a future replenishment. This would not be a
big problem as long as the sporadic server were charged for this amount of time. However, setting the execution capacity to
zero means that the overrun amount is never charged, thereby increasing the total capacity the server can demand within its
period.
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Figure 1. Budget amplification anomaly.

While POSIX attempts to diminish such effects by rounding the currently available execution capacity down to the initial
budget, this effort is not sufficient. Consider the example illustrated in Figure 1. Here the resolution for the execution time
clock is 1 time unit. At time 0, the server executes for two time units and schedules a replenishment of two time units
at time 20. At time 10, the server again begins execution, but at time 12 it has not completed executing and therefore is
scheduled to stop running at its high priority. The server is able to execute an additional time unit before actually being
stopped, as permitted in the POSIX specification. At time 13, a replenishment is scheduled at time 30 for the amount of
capacity consumed, which in this case is 3, and the available execution capacity is set to zero. Now, the sum of pending
replenishments is greater than the initial budget of 4, but within the leeway provided by the specification. This sequence
of receiving one time unit of additional execution capacity repeats with the intervals of server execution beginning at 20,
30, 40, and 50. By the time the replenishment for the execution interval beginning at 30 is scheduled, the sum of pending
replenishments is 2 time units greater than the initial budget. If this scenario continues each overrun will contribute an
increase the total execution time available to the sporadic server. As long as each replenishment is below the maximum



Task Ci Ti Di

τ1 10 200 20
τ2 20 50 50
τ3 49 200 100

Table 1. Periodic task set for premature replenishment example.

budget, this amplification may continue. In this case, each replenishment can grow to at most 5 time units (4 due to the initial
budget limit and 1 for the permitted clock resolution).

With this defect, by breaking the budget into small enough fragments a server can achieve an execution capacity arbitrarily
close to 100%.

3.2 Premature Replenishments

POSIX specifies that “a replenishment operation consists of adding the corresponding replenish amount to the available
execution capacity at the scheduled time”. This has the effect of maintaining a single activation time for all currently available
units. This is inconsistent with the ideal model, because it fails to preserve the minimum replenishment time (earliest next
activation time) of a replenishment (cohort of server units) if the server is in a busy period when a replenishment arrives. A
consequence is that a replenishment can arrive earlier than its required minimum offset from the previous arrival, resulting in
what we refer to as a premature replenishment.

Figure 2. Execution sequence showing a replenishment that occurs prematurely.



The following example illustrates the premature replenishment defect. Consider a task system with three periodic in-
dependent tasks, given a deadline-monotonic priority ordering and parameters (worst-case execution time, period, relative
deadline) shown in Table 1. Response time analysis [10] obtains a worst-case response time for task τ3 of 99 time units:

R3 =

⌈
99

200

⌉
C1 +

⌈
99

50

⌉
C2 + C3 = 10 + 2 · 20 + 49 = 99

Suppose task τ2 is a sporadic server serving aperiodic events. The sporadic server is given an execution capacity C2 = 20,
and a replenishment period T2 = 50. Under the ideal sporadic server model the worst-case response time of τ3 would be 99.
However, in the execution sequence shown in Figure 2, the response time of τ3 is 117 (and therefore its deadline is missed).
In this sequence, aperiodic events arrive at times {0, 40, 90}, with respective execution-time demands of {18, 20, 20}. Task
τ3 is activated at t = 0, while task τ1 is activated at t = 41. We can see that when the second aperiodic event arrives at t = 40,
the execution capacity of the sporadic server is above zero (its value is 2), so the activation time is recorded as 40, and the
aperiodic event starts to be processed. At time 41, τ1 preempts the execution of the sporadic server. When the replenishment
of the first chunk of execution time occurs at t = 50, 18 is added to the available execution capacity (1 unit at that time),
and the activation time remains unchanged (because the server is still active). This violates the ideal model, by effectively
merging a cohort of 18 units not permitted to activate until time 50 with a cohort of two units that activated at time 40. When
the aperiodic event is fully processed, a replenishment of 20 time units is scheduled to happen at t = 90. This allows the
service of three long aperiodic events to preempt task τ3, instead of the two that would happen in the ideal model.

3.3 Unreliable Temporal Isolation

POSIX specifies that when a sporadic server has exhausted its budget it is allowed to continue execution, albeit at a lower
(background) priority, specified by the parameter sched ss low priority. The apparent intent behind this feature is to allow a
server to make use of otherwise-idle time. This feature is compatible with the ideal model so long as sched ss low priority
is below the priority of every critical task.

POSIX specifies that each scheduling policy has a range of valid priorities, which is implementation defined. However,
the statement that the SCHED SPORADIC policy “is identical to the SCHED FIFO policy with some additional conditions” has
been interpreted by some to mean that the range of priorities for these two policies should be the same.

For example, in Linux the priorities for SCHED FIFO, SCHED SPORADIC, and SCHED RR are identical, while priorities
for SCHED OTHER are strictly lower. This means that a thread under any real-time policy can lock out all SCHED OTHER
threads. This is not right. There is no reason to assume that any threads in a system, regardless of their scheduling policy,
can afford to be starved out completely.

This problem has been recognized. The consequence is that the Linux kernel implements real-time throttling [19, 3], at
the expense of breaking POSIX compliance. Real-time throttling ensures that in a specified time period, the non-real-time
threads receive a minimum amount of time on the CPU. Once the budget for all real-time threads is consumed in the period
the CPU is taken away from the real-time threads to provide CPU time to the non-real-time threads. Real-time threads cannot
lockup the system, but the mechanism is very coarse. There is only one budget and period, defined system wide. The default
budget is 950 msec of real-time execution time per 1 second period. This means that any real-time thread can experience a
(rather large) preemptions of 5 msec.

4 Corrected Sporadic Server Algorithm

In this section we provide a corrected version of the POSIX sporadic server. We then go on to explain how this new version
corrects the defects mentioned previously.

Each server S has a replenishment queue S.Q, which may contain a maximum of S.max repl replenishments. Each
replenishment R has time R.time and an amount R.amt. The queue S.Q is ordered by replenishment time, earliest first.
The sum of the replenishment amounts is equal to the server’s initial budget

S.budget =
∑

R∈S.Q

R.amt

A server is in foreground mode, competing for processor time at S.foreground priority or in background mode, com-
peting at S.background priority. Whenever S is in foreground mode, its execution time is accumulated in the variable



S.usage. The currently available execution capacity of the server is computed as

S.capacity =

{
0 if S.Q.head.time > Now
S.Q.head.amt− S.usage otherwise

S is in foreground mode whenever S.capacity > 0, and should perform a BUDGET CHECK as soon as possible after the
system detects that S.capacity ≤ 0 (the server may change to background mode). To detect this condition promptly, event
S.exhaustion is queued to occur at time Now + S .capacity whenever S becomes a running task at its foreground priority.
The system responds to event S.exhaustion by updating S.usage with the amount of execution time used at the foreground
priority since the last update and then executing BUDGET CHECK (Figure 3).

BUDGET CHECK

1 if S .Capacity ≤ 0 then
2 while S .Q .head .amt ≤ S .usage do

� Exhaust and reschedule the replenishment
3 S .usage ← S .usage −S .Q .head .amt
4 R ← S .Q .head
5 S .Q .pop
6 R.time ← R.time +S .Period
7 S .Q .add(R)
8 if S .usage > 0 then � S .usage is the overrun amt.

� Budget reduced when calculating S .capacity
� Due to overrun delay next replenishment
� Delay cannot be greater than S .Q .head .amt (while loop condition)

9 S .Q .head .time ← S .Q .head .time +S .Usage
� Merge front two replenishments if times overlap 3

10 if S .Q .size > 1 and
S .Q .head .time +S .Q .head .amt ≥ S .Q .head .next .time then

11 a← S .Q .head .amt
12 b← S .Q .head .time
13 S .Q .pop � remove head from queue
14 S .Q .head .amt ← S .Q .head .amt +a
15 S .Q .head .time ← b
16 if S .capacity = 0 then � S .Q .head .time > Now
17 S .priority ← S .background priority
18 if ¬S .is blocked then
19 S .replenishment .enqueue(S .Q .head .time)

Figure 3. Pseudo-code for budget over-run check.

The system also calls BUDGET CHECK when S is executing in foreground mode and becomes blocked or is preempted,
after cancelation of event Q .exhaustion . If S blocks while in foreground mode, after BUDGET CHECK the system executes
procedure SPLIT CHECK (Figure 4).

If S goes into background mode while it is not blocked (in BUDGET CHECK) or if it becomes unblocked while in back-
ground mode (in UNBLOCK CHECK) event S .replenishment is queued to occur at time S .Q .head .time . The system re-
sponds to event S .replenishment by setting S .priority to S .foreground priority , which may result in S being chosen to
execute next.

If S becomes unblocked the system executes procedure UNBLOCK CHECK, shown in Figure 5.

3The following if code block is modified from the original paper. Danish et al. provided the necessary corrections [4].



SPLIT CHECK4

1 if S .usage > 0 and S .Q .head .time ≤ Now then
2 remnant ← S .Q .head .amt −S .Usage
3 � R is a new replenishment data structure
4 R.time ← S .Q .head .time
5 R.amt ← S .usage
6 if S .Q .size = S .max Repl then

� Merge remnant with next replenishment
7 S .Q .pop
8 if S .Q .size > 0 then
9 S .Q .head .amt ← S .Q .head .amt + remnant

10 else
11 R.amt ← R.amt + remnant
12 else

� Leave remnant as reduced replenishment
13 S .Q .head .amt ← remnant
14 S .Q .head .time ← S .Q .head .time +S .usage

� Schedule replenishment for the consumed time
15 R.time ← R.time +S .period
16 S .Q .add(R)
17 S .usage ← 0 5

Figure 4. Pseudo-code for conditionally splitting a replen-
ishment.

4.1 Correcting for Budget Amplification

In [8] a solution for blocking effects caused by a deadline sporadic server is provided, where overruns will be charged
against future replenishments. This mechanism is adapted to allow our modified sporadic server to properly handle overruns
and inhibit the budget amplification effect.

Recall that amplification occurs when a replenishment is consumed in its entirety with some amount of overrun. This
overrun amount is added to the replenishment and scheduled at a time in the future. The POSIX sporadic server is never
charged for the overrun time because a negative budget is immediately set to zero.

A simple fix would be to just allow the currently available execution capacity to become negative. This prevents the
amplification effect by keeping the capacity plus replenishments equal to the initial budget, thereby limiting execution within
a server period to at most the initial budget plus the maximum overrun amount. However, since the replenishment is larger
by the overrun amount, the server is still not being properly charged for the overrun.

To handle this overrun properly, the time used will be charged against a future replenishment. To be clear, we are not
preventing the overrun from occurring, only once it does occur, future overruns of the same size will be prevented from
accumulating and only permitted to occur once per interval of continuous server execution.

In the BUDGET CHECK procedure, the compensation for an overrun is handled. An overrun has occurred when the sum of
the replenishment amounts with times less than or equal to the current time exceed the server’s current usage (S.usage). This
overrun amount is charged against future replenishments as if that time has already been used. The while loop starting at line 2
of BUDGET CHECK iterates through the replenishments, charging as needed until the S.usage is less than the replenishment
at the head of the S.Q. At this point, the overrun amount will remain in S.usage. Therefore, when the next replenishment
arrives it will immediately be reduced by the amount in S.usage according to the calculation of S.capacity. This prevents
the POSIX amplification effect by ensuring that overrun amounts are considered borrowed from future replenishments.

4Pseudo-code for the procedure has been changed from its originally published form to account for minor errors.
5This line of pseudo-code was added to the originally published version. Danish et al. provided the necessary corrections [4].



UNBLOCK CHECK

� Advance earliest activation time to now
1 if S .capacity > 0 then
2 if S .priority 6= S .foreground priority then
3 S .priority ← S .foreground priority
4 S .Q .head .time ← Now

� Merge available replenishments
5 while S .Q .Size > 1 do
6 a← S .Q .head .amt
7 if S .Q .head .next .time ≤ Now +a− S .Usage then
8 S .Q .pop � remove head from queue
9 S .Q .head .amt ← S .Q .head .amt +a

10 S .Q .head .time ← Now 6

11 else
12 exit
13 else
14 S .replenishment .enqueue(S .Q .head .time)

Figure 5. Pseudo-code for unblocking event.
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Figure 6. Postponing replenishments after an overrun.

The intervals of sporadic server execution that correspond to a given replenishment are spaced apart by the server’s period.
This spacing allows lower priority tasks to receive execution time. However, when there is an overrun, the time between such
intervals may shrink. For instance, consider Figure 6a. The execution of τ1 fits nicely between the two intervals of server
execution. However, if an overrun occurs in the first execution interval of τss, the time meant for τ1 is occupied, forcing τ1
to start execution later. Since the next replenishment of τss arrives during the execution of τ1, τss is permitted to preempt τ1.
This further postpones the completion of τ1 causing a missed deadline as illustrated in Figure 6b.

The overrun time used during the interval of execution corresponding to the first replenishment is borrowed from the
second one. This time was used early. If this time is borrowed, the borrowed units should be taken from the front of the next
available replenishment. That is, the time of the next replenishment should be postponed by the overrun amount. This is done
in line 9 of the BUDGET CHECK procedure. With this postponement we see that in Figure 6c, τ1 is able to meet its deadline.

4.2 Correcting the Premature Replenishments

Premature replenishments occur when one or more unit-capacity servers violate the sporadic constraint. The POSIX
sporadic server experiences premature replenishments due to its simplified tracking of activation times. When a replenishment
arrives, it is immediately merged with any replenishment that has an activation time less than or equal to the current time.

6This line of pseudo-code was added to the originally published version. Danish et al. provided the necessary corrections [4].



This may result in invalid merging of replenishment cohorts, allowing a replenishment to be used earlier than the earliest
activation time that would be consistent with the sporadic constraint.

To maintain the sporadic constraint, we must ensure that each cohort be separated by the server’s period (Ts). In the
corrected algorithm, replenishments can be totally or partially consumed. If the entire replenishment is consumed, the
replenishment time is set to R.time + S.Period (line 6 of BUDGET CHECK). When only a portion of time is used, the
replenishment must be split resulting in distinct replenishments. This is performed in the SPLIT CHECK procedure. Only the
used portion is given a new time, Ts in the future (line 8). As these replenishments are maintained distinct and each usage is
separated by at least Ts, the worst-case interference is correctly limited in the fashion consistent with the ideal model.

The number of replenishments to maintain over time can become very large. To help minimize this fragmentation the
corrected algorithm allows merging of replenishments in accordance with Observation 3. This is done in lines 11-13 of the
BUDGET CHECK procedure. Here if the replenishment at the head of the queue overlaps with the next in the queue, they will
be merged.

POSIX limits the number of replenishments into which the server capacity can be fragmented. The parameter sched ss max repl
defines the maximum number of replenishments that can be pending at any given time. There are very good pragmatic rea-
sons for this limit. One is that it allows pre-allocation of memory resources required to keep track of replenishments. Another
benefit is that it implicitly bounds the number of timer interrupts and context switches that replenishments can cause within
the server period. This effect can be translated into the ideal model using Observation 2 as follows: When the pending replen-
ishment limit is reached all server units with earliest-next-activation time prior to the next replenishment time are advanced
to the next replenishment time, effectively becoming part of the next replenishment/cohort. This action is performed in the
else block starting at line 6, of the SPLIT CHECK procedure.

4.3 Improving Temporal Isolation

SCHED SPORADIC should allow only the budgeted amount of CPU interference for any task on the system, not just
those tasks within a certain priority range. To achieve this, we propose that the allowable range of priorities for a server’s
background priority extend down to the lowest system priority, and further to include an extreme value so low that a thread
with that value can never run.

If a consensus for this cannot be achieved, the next best thing is to make it clear that implementations are permitted to
define the range of priorities for SCHED SPORADIC to extend below that of SCHED FIFO. In that case, it would help to provide
a new scheduling parameter to indicate that instead of switching to the background priority when it is out of budget, the server
should wait until its next replenishment. Adding this feature would require very little change to an existing scheduler, and it
would provide at least one portable way to write applications with temporal isolation.

We are convinced that supporting overlapping ranges of priorities is not very difficult. In our simulator, we implemented
SCHED SPORADIC alongside a variety of other scheduling policies, including earliest-deadline-first (EDF) and deadline
sporadic. We used a single range of 64-hit integer values to cover both static priorities and deadlines, reserving priority
ranges at the extreme low and extreme high ends, and interpreting the largest expressible value as “do not execute”. Of
course, such an implementation model needs remapping of values at the API in order to comply with POSIX, which interprets
numerically large values as higher fixed priorities, and requires a contiguous range of values for each policy.

5 Evaluation

This section presents our evaluation of the problems and the proposed solutions discussed above. This evaluation was
performed using an implementation in the Linux-2.6.28 operating system and through simulation.

It is perhaps an indication of the seriousness of the budget amplification effect that we discovered it accidentally, as users.
We were experimenting with a version of the Linux kernel that we had modified to support the SCHED SPORADIC policy.
The reason for using this policy was to bound the scheduling interference device driver threads cause other tasks [11]. Our
implementation appeared to achieve the desired effect. We noticed that the server was consuming more execution time than
its budget. We attributed these overruns to the coarseness of our sporadic server implementation, which enforced budget
limits in whole ticks of the system clock. Since the clock tick was much larger than the network message interarrival and
processing times, this allowed the execution behavior of the sporadic server under network device driver loads to be very
similar to that of a periodic server, and it was able to run over significantly in each period. We hoped that by going to a
finer-grained timer, we could both reduce the overrun effect and distinguish better between the sporadic and periodic servers.
Therefore, we tried using a different Linux implementation of the sporadic server, developed by Dario Faggioli [7], which



uses high-resolution timers. With a few refinements, we were able to repeat our prior experiments using this version, but
the server continued to run significantly over its budget – sometimes nearly double its allocated CPU bandwidth. After first
checking for errors in the time accounting, we analyzed the behavior again, and conjectured that the overruns might be due
to budget amplification. To test this conjecture, we modified the scheduler to allow the currently available execution capacity
to become negative, and observed the server CPU utilization drop down to the proper range.
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Figure 7. Budget amplification effect with varying number initial replenishments (empirical measurement).

As further verification, we conducted a simple structured experiment, using the Linux sporadic server implementation. A
sporadic server is given a period of 10 msecs and a budget of 1 msec. Two jobs arrive, with execution times of one-half the
budget and one-half the server period. The effect is to divide the budget into two replenishments. Immediately following
the second job arrival, more jobs arrive, with the same execution times as the initial jobs, at a rate that maintains a server
backlog for the duration of the experiment. The results are seen in the lower trace of Figure 7. Each replenishment, originally
one-half the budget, is able to increase to the size of the full budget, allowing the server to achieve double its budgeted CPU
utilization. The other traces in Figure 7 show what happens if the number of active replenishments before the start of the
overload is 4, 6, and 8. In principle, with sufficiently many initial fragments before the overload interval, the server CPU
utilization could reach nearly 100%. However, in our experiment, the increase in server utilization did not climb so quickly,
apparently due to the replenishments overlapping, causing merging of replenishments.

To further understand the sporadic server anomalies, a simulator was developed. With the simulator we were able to
reduce the scheduling “noise” allowing us to focus on the problems associated with the POSIX definition of sporadic server
rather than those introduced by the hardware and Linux kernel. Figures 8 and 9 are from this simulator.

The effects of budget amplification can not only increase the total utilization over an entire run, but also the maximum
demand for execution time in any time window of a given size. (Here we consider “demand” to be the amount of time the
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Figure 8. Utilization in a given period-sized window (simulation study).

server is allowed to compete at its foreground priority.) A correctly operating sporadic server should have the same worst-case
demand as an equivalent periodic task.

So, if we consider a window of the server period in size, the maximum server demand in that window should not exceed
the execution time divided by the period.

Due to the budget amplification effect, this is not true for sporadic server. Figure 8 shows the amount of execution time
given to a sporadic server at its native priority (here the sporadic server is not allowed to run at background priority). This
experiment was performed using an exponential distribution of job execution times with a mean job execution time of 10
time units. The server’s period is 120 and the budget is 40. To demonstrate the budget amplification, there must be overruns.
Here each job is permitted to overrun 1 time unit, corresponding to the resolution of the execution time clock as defined
in the POSIX sporadic server. The interarrival times of jobs are also determined with an exponential distribution where the
mean arrival rate is adjusted to create an average workload as a percent of server capacity. So, for a workload of 100% the
mean interarrival time would be 120

4 = 30. The corrected sporadic server provides the expected maximum of 34% utilization
in a given window ( 40+1

120 ). The POSIX implementation however exceeds the maximum utilization drastically, clearly not
providing temporal isolation. (Over 100% of server capacity, it may be noticed that the maximum window utilization drops
slightly, apparently due to more frequent overlapping and merging of replenishments.)

To demonstrate the effect of premature replenishments Figure 9 graphs the combined capacity of the sporadic server and
a higher priority periodic task. The periodic task has a period of 141 and execution time identified by the value along the
x-axis. The sporadic server has a budget of 42 and a period of 100. The effect of the premature replenishment is not seen
until the execution time of the high priority periodic task increases above 57 time units. At this point the effect hits abruptly,
and the POSIX sporadic server is able to acquire 58 percent of the CPU. This is an increase of 38 percent from its budgeted
42 percent maximum and causes the CPU to become saturated. The corrected sporadic server is able to correctly limit the
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Figure 9. Effect of premature replenishments (simulation study).

CPU utilization, thereby allowing other tasks to run, despite the server overload.
Attempts were made to demonstrate this premature replenishment effect on random arrivals and execution times, however,

it appears that the effect does not occur often enough to be measured on a macroscopic scale. If, as this suggests, the
premature replenishment anomaly has a very low probability, it may be that this anomaly would only be a concern in a hard
real-time environment.

6 Conclusion

We have shown that the POSIX formulation of the SCHED SPORADIC scheduling policy suffers from several defects,
making it inadequate for its intended purposes. If a critical system is trusted to meet deadlines, based on a schedulability
analysis in which a SCHED SPORADIC server is modeled as periodic server model, the consequences could be serious.

One possible reaction to the existence of these defects is to dismiss the POSIX SCHED SPORADIC policy entirely. Some
have argued that POSIX should be extended to include other fixed-task-priority budget-enforcing policies [1] that have lower
implementation complexity. Others may argue that POSIX should be extended to include deadline-based scheduling policies,
which potentially allow deadlines to be met at higher processor utilization levels.

We do not believe that SCHED SPORADIC should be dismissed. There is a definite need for a standard scheduling policy
that enforces time budgets, now. This capability is essential for the safe composition of applications in an open system.
POSIX has no other such policy. The API for SCHED SPORADIC exists, and with proper semantics can serve the originally
intended purpose.

There is also a matter of time. The POSIX standard revision process is on a five-year cycle, and does not allow standardiza-
tion of specifications that have not already been tested in existing practice. Therefore, the addition of any such new policies



would be about five years off. In the mean time, there is an “interpretation” process for the existing standard that can be
applied to correct the SCHED SPORADIC specification sooner, perhaps within one year.

Therefore, we urge members of the real-time research and development community to support a corrective re-interpretation
of the semantics of the POSIX SCHED SPORADIC specification.
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