Project-entropy:. A Metric to Understand Resource
Allocation Dynamics across Software Projects

Subhajit Datta
Department of Computer Science
Florida State University
Tallahassee, FL 32306-4530, USA
Email: sd05@fsu.edu

Abstract— Reliability of a software system, or the lack of
it, is often reflected in user satisfaction. Software development
organizations frequently need to reallocate resources amongst
projects to help satisfy user needs better. In this paper, we propose
the project-entropy metric to understand the dynamics of such
resource allocation across projects. Calculation of the metric is
illustrated through an example scenario; and we hypothesize on
the existence of an entropic limit for an organization. Open issues
and plans of future work are also outlined.

I. INTRODUCTION AND MOTIVATION

In a typical software development organization, many
projects run concurrently. Resources from a common resource-
pool are deployed to the projects, and redeployment of re-
sources from one project to another happens frequently. Often,
resources are diverted to a project with low user satisfaction
from a project that is at a relatively higher satisfaction level.
For several reasons, we can not ignore such situations as
mere symptoms of the ignorance of Brooks’ Law [2], which
mandates adding people to an already late project will only
make it later. The troubled project may be fetching customer
dissatisfaction for issues unrelated to schedule. The diverted
resources may not just be people; for example, more servers
running larger suits of automated regression tests can help
fix issues that were earlier being discovered only during user
acceptance tests. Besides, underlying assumptions as well as
the veracity of Brooks’ Law have been questioned for many
common scenarios [5], [4]. In terms of its ubiquity and utility,
reallocation of resources from one project to another within
an organization towards ensuring higher user satisfaction is an
interesting phenomenon. In this paper we present the project-
entropy metric to better understand the dynamics of such
resource flow and consider whether there is a limit beyond
which reallocation does not lead to enhanced user satisfaction.

Though it is difficult to find an universally accepted def-
inition of “software entropy”, the idea of entropy has been
invoked to understand the degradation of software with use
[1], its inherent complexity [3] etc. While we recognize the
value of these studies, this paper takes a more organizational
view of entropy in the software development context.

The notion of project-entropy is inspired by the thermody-
namic idea of entropy. Entropy is taken to represent disorder
and chaos; an antithesis to efforts that can lead to any orga-

Robert van Engelen
Department of Computer Science
Florida State University
Tallahassee, FL. 32306-4530, USA
Email: engelen@scs.fsu.edu

nized and favorable outcome. When projects start, plans look
perfect on paper. But with the progression of their life cycles,
disarray manifests, fuelled by unexpected risks, oscillating
requirements and a slew of other unforeseen realities. Project-
entropy helps us analyze the actions taken at an organizational
level to address the effects of this inevitable decay of order
across a set of projects. In the following sections, we explain
project-entropy further, illustrate its application through an
example and conjecture about the effects of its increase in
an organization.

II. PROJECT-ENTROPY

In the context of a project, we define satisfaction (F) as the
percentage of user acceptance tests succeeding per release,
and endeavor (E) as the resource-hours deployed per release.
(Resources are most frequently personnel, but they can also be
anything else needed for fulfilling project tasks, such comput-
ing equipment etc.) We assume the project follows the iterative
and incremental development methodology. A release is thus
an incremental launch of a subset of the project’s functionality
after an iteration of development; for users to test, use and
give their feedback. A user acceptance test succeeds when it
confirms that the aspect of the software system being tested
by users is functioning as per their expectations. Evidently, the
goal of the development organization is to distribute endeavor
such that satisfaction in each project is maximal.

We take our universe as the software development organiza-
tion. Each individual project running within the organization
is a system of interest. When endeavor flows from one project
to another, and AFE is the amount of endeavor transferred into
or out of a project which is at satisfaction level F, AP is the
change in project-entropy (P), which is given by,

AFE

III. AN EXAMPLE SCENARIO

Let us consider an example scenario with reference to
Figure 1. A software development organization has three
projects running, A, B, and C. Table I shows the units of
satisfaction of the three projects at times 73, and T,. At
Ty, 21 units of endeavor are moved from C (at F = 73)
to B (at F' = 27). Thus for the whole organization, the

s
£ A
£ 2 —
L o
= C =
©
2] — e
2 .
= B Entropic
2 A &i | — limit?
-% e C Flow of
> — o —— endeavor
3, Flow of
2 B endeavor
[—
Increasing
project-entropy
T, T, Time
Fig. 1. Flow of Endeavor across Projects and the Entropic Limit
TABLE I
organizations. We are in the process of extending the simple
SATISFACTION LEVELS FOR PROJECTS A, B, C AT TIMES T > T'1
i i i example outlined earlier to cover more involved scenarios and
— P rOJSCGC‘ AP m]ze;t B|P roj%a ¢ conducting further case studies. We also expect empirical data
=41
(=T, 35 66 54 to indicate the relationship between endeavor and satisfac-

project-entropy increases by 21/27 — 21/73 = 0.49 units.
Similarly, at 75, if 35 units of endeavor are moved from A
(at F' = 85) to C (at I’ = 54), the project-entropy increases
by 35/54 —35/85 = 0.24 units. So the net increase in project-
entropy for the organization is 0.49 + 0.24 = 0.73 units. As
endeavor is diverted from a project at higher satisfaction to one
at lower satisfaction, project-entropy invariably increases for
the organization. What does this increase in project-entropy
mean at the organizational level?

Endeavor is moved from a project at a higher satisfaction
level to one at a lower level with the expectation that satis-
faction will increase in the latter. This is likely to work well
during the earlier iterations; but as projects go deeper into their
life cycles, reallocation of endeavor slowly loses its capacity
to increase satisfaction. This can depend on many factors:
circumstances of a long running project may present a steeper
adjustment curve to redeployed resources, low satisfactions
for two long may already have prejudiced users so that no
amount of positive results appeal to them any more, frequent
realignment of resources may have adversely affected team
synergy etc. But these factors may just as well be mitigated up
to a limit by organizational capability and maturity, adherence
to processes and best practices, experienced and talented
personnel etc. Based on the discussions so far, and general
observation of the ways of software organizations that have
several projects running simultaneously, we put forward the
following hypothesis: For given set of projects in an orga-
nization, there exists a level of project-entropy — an entropic
limit — beyond which reallocation of endeavor amongst the
projects will not result in significant increase in satisfaction.
Recognizing the entropic limit will help organizations plan
their resource allocations with more purpose and effect.

IV. OPEN ISSUES AND FUTURE WORK

The hypothesis proposed above needs to be validated in
the light of empirical data across a range of projects and

tion. The underlying assumption of diverting endeavor to a
troubled project is that it will enhance satisfaction. From our
experience, this correlation seems to hold (till the entropic
limit, as we hypothesize). But is satisfaction linked linearly
to endeavor, or is there a more complex relationship? Also,
we have worked with the formula for the change in project-
entropy. It would be helpful to be able to measure the entropy
of a project, irrespective of endeavor being added or taken
away from it. Will a definition of project entropy along the
lines of P = klog(W') — again, inspired by thermodynamics
— where k is an project constant and W relates to the
combinations of situations in a project that influences project-
entropy, withstand empirical validation? Another question of
interest is whether project-entropy is correlated in any way to
a reliability measure such as Mean-Time-To-Failure (MTTF)
of the software system developed by the project. We seek to
address these questions through our ongoing and future work.

V. CONCLUSION

This paper introduces and illustrates the use of the project-
entropy metric to understand the dynamics of allocating re-
sources across software projects. We also forwarded a hypothe-
sis regarding the limit to which resource reallocation enhances
user satisfaction and outlined plans for further empirical vali-
dation of our ideas.

REFERENCES

[1] BIANCHI, A., CAIVANO, D., LANUBILE, F., AND VISAGGIO, G. Evalu-
ating software degradation through entropy. In METRICS '01: Proceed-
ings of the 7th International Symposium on Software Metrics (Washing-
ton, DC, USA, 2001), IEEE Computer Society, p. 210.

BROOKS, F. P. The Mythical Man-Month: Essays on Software Engineer-
ing, 20th Anniversary Edition. Addison-Wesley, 1995.

HARRISON, W. An entropy-based measure of software complexity. [EEE
Trans. Softw. Eng. 18, 11 (1992), 1025-1029.

MCCONNELL, S. Brooks’ law repealed. IEEE Softw. 16, 6 (1999), 6-8.
RAYMOND, E. S. The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly, 2001.

(2]
(3]

(4]
[5]

