
Predictux: A Framework for Predicting Linux
Kernel Incremental Release Times

Subhajit Datta
Department of Computer Science

Florida State University
Tallahassee, FL 32306-4530, USA

Email: sd05@fsu.edu

Robert van Engelen
Department of Computer Science

Florida State University
Tallahassee, FL 32306-4530, USA

Email: engelen@scs.fsu.edu

Andy Wang
Department of Computer Science

Florida State University
Tallahassee, FL 32306-4530, USA

Email: awang@cs.fsu.edu

Abstract— Reliable software systems typically have a version
release mechanism that is well organized and documented. This
can be drawn upon to predict release timelines, which is helpful in
gauging the quality of the software development and maintenance
activity. In this paper we present initial results from developing
and applying Predictux – a decision-tree-based framework to
predict release times of Linux kernel versions. We compare
predictions from the framework with actual data and discuss
our future plans for refining Predictux further.

I. INTRODUCTION AND MOTIVATION

Reliability of a software system depends to a large extent
on the development time invested in a particular release.
Development time is influenced by a number of factors,
not the least of which is the initial estimate committed to
key stakeholders. Although sophisticated software estimation
techniques exist, their use is often too involved for quick
and reasonably accurate “ballpark” predictions of how long
a particular release is likely to take. We use release to mean a
subset of a software system’s functionality that is released to
users for testing, use, and feedback. In this paper, we present
Predictux, a decision-tree-based framework for predicting how
many days the next Linux kernel version will take to be
released, based on analyzing some parameters of its past
releases. Linux was chosen to apply and test the framework
since information regarding its releases are easily available in
the public domain [6], and its releases are organized through
log files and well-defined naming conventions etc.

Breiman et al.’s book Classification and Regression Trees
[1] gave wide visibility to the use of tree-like structures
in the process of knowledge discovery [3]. The decision-
tree approach described in [1] is commonly referred to as
the CART algorithm. “A Decision Tree is a tree-structured
plan of a set of attributes to test in order to predict the
output” [7]. Knab et al.’s paper presents a decision-tree-based
mechanism for predicting defect density using evolution data
extracted from the Mozilla open source web browser project
[5]. Izurieta and Bieman’s paper examines the evolution of
FreeBSD and Linux at the system and sub-system levels, by
studying the growth rate measures and plotting them against
release numbers, release calendar dates, and by code branches
[4]. We draw upon some of these ideas to explore whether
a decision-tree-based framework can help us predict Linux

kernel release times. The use of decision-trees was inspired by
the ease of understanding and interpreting them. In the next
few sections we describe Predictux, discuss its experimental
validation as well as open issues and future work.

II. THE PREDICTUX FRAMEWORK

Predictux is built around the hypothesis: Incremental release
times of Linux kernel version releases can be predicted through
a decision-tree model based on certain parameters of past re-
leases. The parameters of past releases considered are number
of files added, number of files changed, number of files deleted,
number of lines added, number of lines changed, number of
lines deleted – the predictor variables – and incremental time
in days between successive kernel versions of Linux, which
we will call incremental time – the target variable.

While designing and applying Predictux, we consider the
following strategy: Extract values of the predictor variables out
of the release logs, build a data set from it, use the data set for
building, pruning and learning of a decision-tree, predict the
values of the target variable using the decision-tree, and evalu-
ate the accuracy of the predicted versus actual data. Based on
this, the major functional areas of the framework are identified
as a pre-processor, which will parse release logs (a sample log
may be found at http://www.linuxhq.com/kernel/
v2.5/index.html), extract relevant information, and the
build data set; a decision-tree analyzer, which will build the
decision-tree, and make predictions using the tree. A set of
Java components were developed to serve as the pre-processor.
The data set was fed to the DTREG [2] software for building
the decision-tree, its subsequent pruning and learning and
for predicting the values of the target variable. The data set
consisted of 586 rows of data from Linux kernel release 1.0.0
to 2.5.75, containing the predictor variables mentioned earlier.
The whole decision-tree generated from the data set consisted
of 135 nodes, which was pruned to the one in Figure 1 to
predict the incremental times for the 20 releases from versions
2.6.20 to 2.6.1. The method used by DTREG to determine the
optimal tree size is V-fold cross validation [2]. We recognize
the fact that Linux versions we used to build the data set are
very different kernels. We make the assumption that even when
a piece of software goes through generations of changes, the
amount of work involved (which influences the incremental



Fig. 1. The pruned decision-tree

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Releases

In
cr

em
en

ta
l t

im
e 

(d
ay

s)

Actual 
Predicted

Fig. 2. Incremental times of Linux kernel releases 2.6.20 to 2.6.1: Actual
and Predicted

release times) to evolve the software can still be predicted
using our set of parameters.

III. EXPERIMENTAL VALIDATION

The predicted and actual incremental times for the 20
releases are shown in Figure 2. Figure 3 shows the percent
deviation – calculated as, (Predicted incremental time - Actual
incremental time)/ Predicted incremental time * 100% – 16 out
of 20 (80%) of the predictions that lie within ±45%. These
have a mean deviation of 30%. 14 out of these 16 (70% of
the total) predicted incremental times are within ±40% of
deviation, and have a mean deviation of 27%.

IV. OPEN ISSUES AND FUTURE WORK

The Predictux framework in its current form has a number
of limitations. We use a data set with only 586 rows to build
and train the decision-tree, which can be enhanced to include
more release data. Moreover, we take parameters such as the
number of files changed etc. as predictor variables without
considering the actual functionality introduced or modified by
the changes in the files. We are also not considering patches
in the analysis even as sometimes major bug-fixing takes

-50%

-25%

0%

25%

50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Releases

P
er

ce
nt

 d
ev

ia
tio

n 

Fig. 3. Percent deviation between predicted and actual incremental times

place through them, which affect the timing of subsequent
releases. To address some of these concerns, we are in the
process of developing an efficient and reliable natural language
processing tool which will automatically read change logs,
understand the scope and context of the specific changes
that lead to a new release, and refine the predictor variables
based on such understanding. We are also examining how our
approach compares to other prediction techniques; whether
Predictux can be extended to become a general purpose pre-
diction framework by applying it on other software systems;
and whether we need to consider additional predictor variables
which reflect issues such as developer skill, organizational
maturity, problem domain etc. which may influence the timing
of a system’s releases. Another question of interest is whether
reliability data of past releases – such as Mean-Time-Between-
Failures – can serve as effective predictor variables for future
release times.

V. CONCLUSION

In this paper, we have presented the decision-tree based
Predictux framework for predicting the incremental release
times of the Linux kernel version releases. 70% of the total 20
predictions for Linux kernel releases from 2.6.20 to 2.6.1 are
within ±40% of the actual incremental release times, with a
mean deviation of 27%. Our ongoing and future work is aimed
at increasing the prediction accuracy by refining Predictux,
as well as exploring the framework’s application on other
software systems.

REFERENCES

[1] BREIMAN, L., FRIEDMAN, J., STONE, C. J., AND OLSHEN, R. Clas-
sification and Regression Trees, new ed ed. Chapman and Hall/CRC,
1984.

[2] DTREG. Dtreg: Software for predictive modeling and forecasting.
http://www.dtreg.com/, 2008.

[3] GROTH, R. Data Mining: Building Competitive Advantage. Prentice Hall
PTR, 1999.

[4] IZURIETA, C., AND BIEMAN, J. The evolution of freebsd and linux. In
ISESE ’06: Proceedings of the 2006 ACM/IEEE International Symposium
on Empirical Software Engineering (New York, NY, USA, 2006), ACM
Press, pp. 204–211.

[5] KNAB, P., PINZGER, M., AND BERNSTEIN, A. Predicting defect
densities in source code files with decision tree learners. In MSR ’06:
Proceedings of the 2006 International Workshop on Mining Software
Repositories (New York, NY, USA, 2006), ACM Press, pp. 119–125.

[6] LINUXHQ. Linuxhq: The linux information headquarters. http://
www.linuxhq.com/, 2008.

[7] MOORE, A. Decision trees: A tutorial. http://www.autonlab.
org/tutorials/dtree.html, 2007.


