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Abstract  

   

Modern day voting systems have come under much scrutiny in recent years. Whetherdue to a 
malfunction in an election, or through analysis by outside parties, errors in these systems are continually 
rising to the surface. The drive to meet consumer demand sometimes works in conflict with the need for 
thorough design and testing.  

The internet provides unparalleled channels of communication to far reaching places. This 
characteristic, along with the internet's presence everywhere in modern countries, presents an attractive 
medium through which to use an electronic voting system.  

Everyone Counts is an organization that has tried to implement a system whose appeal is two-fold: 
the utilization of the internet to allow voters to vote from the comfort of their homes, and the secure and 
private handling of the sensitive issues that are associated with voting in general. The vote casting applet 
used in the Everyone Counts (E1C) system achieves these two goals in many ways. 

An improvement to the vote checking mechanism is proposed. This change would add a degree of 
verifiability that the vote was received-as-cast. The applet showed few weaknesses, however, because the 
scope of this review only encompassed the vote casting applet, an overall system review would need to be 
performed before a truly definitive opinion could be formed.  
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I. History of Cryptographic Voting Protocols  

    A. Introduction 

 This report documents our review of the electronic voting system knows as “Everyone Counts” or 
E1C. The E1C system is a cryptography-based system, which represents a new paradigm in elections. 
Because this system represents a dramatic departure from present voting systems in the United States, 
we begin our review by describing three well-known cryptographic voting systems. 

    B. Chaum/Neff's Scheme  

    There are many cryptographic voting systems documented in the literature. In this section, we highlight 
two seminal systems recommended by David Chaum[6] and Andrew Neff [3]. Chaum and Neff's protocols 
share the same structure: election initialization, ballot preparation, ballot tabulation, and election 
verification. Before the election, a set of election trustees are chosen that will participate in the election 
initialization phase by deciding on critical information to be used in the election process. The trustees must 
be from different groups, such that they have competing interests and are unlikely to collude. Ballot 
preparation begins when a voter arrives at the polling station and ends with the vote being cast. Each vote 
is cast in a private booth on a Direct Recording Electronic voting machine (DRE). The DRE then creates an 
electronic ballot that is sent to a public bulletin board, which is used as the "ballot box". Each ballot has a 
unique ballot sequence number (BSN) for use in auditing and verification, and has no information about 
how a person voted. The DRE prints a receipt that is used by the voter to confirm that the vote was cast, 
but the receipt cannot be used to determine the choices a voter made.  

The next phase, ballot tabulation, is where each trustee completes certain stages of a publicly 
verifiable multi-stage mix net to anonymize the ballots. When the ballots enter the mix net, they are 
stripped of their BSN, eliminating any connection between the identity of the voter and the ballot that they 
cast. The mix net takes a set of encrypted ballots and performs decryption operations on them, randomly 
orders them, and produces plain-text ballots. Each trustee may provide a proof which can be publicly used 
to confirm there was no foul play in the process.   
    With such a complex system, it was important to clearly state the objectives of the protocol with 
regards to security. Each vote should be cast as intended. This 
means that the submitted ballot correctly represents the voter's 
choices. The submitted ballot should, in turn, be counted as cast, 
which is when the election results accurately represent the 
ballots cast. The two previously mentioned characteristics should 
be verifiable and duplicate voting should be prevented. Finally, a 
voter should not be able to prove to a third party which 
candidate(s) they voted for, which contributes to coercion 
resistance. 
    There are four main types of threats: malicious DRE's, 
malicious bulletin boards and trustees, coercive parties, and 
honest participants whose ignorance is taken advantage of by a 
malicious third party. Malicious DRE's could result from a rebel 
programmer or people that have access to the machines before 
the election. Malicious bulletin boards and trustees could destroy 
ballots or make them useless by destroying decryption keys. 
Coercive parties seek to find a means to verify a voter's choices, 
and incompetent participants can be taken advantage of in many 
parts of the process. 
    In Andrew Neff's scheme, the process starts with the trustees 
generating a master public key using a distributed key generation protocol. This key is used in the 
encryption of ballots. The basic interaction between the voter and the DRE consists of 5 steps: the voter 
chooses the candidate to vote for, the DRE encrypts the ballot, the DRE commits to ballot, unique BSN is 
assigned, and voter decides if they want a receipt. The DRE creates a verifiable choice (VC) after the voter 

Figure 1 
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makes their selections. The VC is an nXl matrix of ballot mark pairs (BMP) (see figure 1). The number n is 
the number of candidates and l is the security parameter. Each BMP is a pair of encrypted O's or 1's that 
are encrypted using the master public key that the trustees created during election initialization. The 
BMP's for chosen candidate Ci will all be of the form (0,0) or (1,1) on row i. All unchosen candidates shall 
have rows filled with BMP’s of form (0,1) or (1,0). Any departure from this standard indicates 
malfunctioning DRE's or foul play. Ideally, decrypted ballots will have 00 and 11 plaintext in the rows for 
selected candidates. 
    Verification of the VC consists of an interactive proof at the polling booth and comparing the voter's 
receipt to the bulletin board. The interactive proof provides a pledge bit p in the row of a chosen candidate 
and the voter chooses left or right bit and the DRE shows that the cipher text decrypts to p. The DRE also 
reveals the randomness used in the encryption. Because the voter can do this for l BMP’s, it at least 
convinces the voter that their receipt accurately confirms their ballot's correctness. The average voter will 
not likely be able to complete the verification process without the assistance of a person or special 
software. This may be possible later using the receipt. The DRE prints the pledges on the receipt and then 
it prints the user's challenge bit string, where 0 means left element and 1 means right element. 
   The ballot station software submits the ballot to the bulletin board management server, which posts the 
ballot to the bulletin board. The voter's choice Ci is opened according to the challenge entered. The DRE 
randomly generates challenge bit strings for all of the unchosen candidates and half-opens them as well, 
so that the OVC is an nXl matrix of bits that does not reveal the voter's selection. The voter checks that 
the challenge on the receipt matches the challenge entered. They also make sure that the candidates 
names appear in the correct order. Also, the voter can check that the OVC is on the bulletin board and 
that the hash matches. To prevent coercion or vote-buying, the voter may be able to specify challenges 

for the unchosen candidates as well. 
    A voter may choose between a basic or a detailed receipt. A 
detailed receipt contains the pledges, BSN, hash(VC), and 
challenges while the basic contains only the BSN and hash(VC). 
If a voter chooses a detailed receipt for a race, then they must 
choose a challenge and specify the unchosen challenges. 
    David Chaum's protocol is similar to Neff's, in principal, but 
differs in the verification implementation (see figure 2). Chaum's 
receipt is based on 2 layers of dot images that reveal the voter's 
choices when the 2 images are placed on top of each other. By 
themselves the images convey no information about the voter's 
ballot. The voter selects one of the layers to keep and that layer 
is printed on the receipt and sent to the bulletin board. The 
other layer is destroyed. The voter can verify that the 2 
transparencies form the correct ballot image. Also, with either 
one of the transparencies and a trustee's key, the other image is 
recoverable. It is possible that an image that is slightly altered 

may pass the visual inspection of the voter. In that case, the DRE would not accept the fake transparency 
because it would not decrypt to the original ballot. In the ballot images, each pixel has a type, pseudo-
random (P) or encrypted (E). In each transparency layer, the pixels are arranged in alternating order. 
Also, P pixels can only be on top of E pixels and vice versa. P pixels are generated using a pseudo-random 
stream that is based off of the trustee's keys and the BSN. E pixels are set so that the P pixel being put on 
top reveals a ballot pixel. 
    If there are several ways that a DRE can represent a voter's ballot, then the use of different formats 
may, in itself, be able to convey information. Since the bulletin board is public, a malicious individual could 
obtain information about how someone voted by the format that the ballot is displayed. A ballot that 
stores information about the voter in a subliminal channel affects privacy and enables vote coercion. This 
could be done through storing the time a vote was cast and a malicious observer recording the times 
voters leave a voting booth. A poll worker obtaining a voter's BSN has similar implications. The basic 
threat model is a malicious DRE colluding with an external party. This subliminal channel comes about as 
a result of the bulletin board being public. 
    Some of the cryptographic operations in Neff's scheme use random values. If the DRE chooses these 
values, then there is the possibility of a subliminal channel. A DRE may hide a bit, b, in the encryption of a 
message by encrypting the message, using a new random number each time, until the least significant bit 
of the encrypted message is b.[3] In Neff's scheme, the BMP uses El Gamal cipher text pairs where the 

Figure 2 Chaum's Image Verification 
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encryption is randomized. The Opened Verifiable Choice (OVC) shows half of the random values (see 
figure 1). The random encryption parameter w is revealed when one of the BMP are opened. If the DRE 
maliciously uses the same w for both of the pairs, then information can be stored in w. Much information 
can be conveyed through this attack. One way to deal with the randomness attacks is by designing 
protocols that don't rely on randomness. Chaum's protocols use deterministic primitives. Neff proposes the 
use of tapes that contain predetermined random numbers which the DRE would have to use. Then it would 
just need to be verified that the DRE actually used the bit from the tape. One way is if commitments were 
posted to the bulletin board, such that they could be compared to the values used by particular DRE's.[3] 
Also, trusted hardware was proposed as a possibility to supply the random bits, but the need to verify and 
monitor the hardware and software seems less desirable. 
    The ability to represent a voter's choice in multiple ways allows the DRE the ability to embed 
information in the particular configuration it chooses. Chaum's use of ballot images allows subliminal 
information to be stored in small modifications to the pixels.[3] Such a semantic channel is only useful 
after the mix net, since the information is stored in the plaintext ballot, whereas the random channels can 
be utilized immediately on the public bulletin board. One way of dealing with this attack is the use of 
standard ballot formats[3]. Any differ from the format would be kept off of the bulletin board, because one 
ballot could convey information compromising all of the ballots cast at a particular DRE. The order in which 
ballots appear on the bulletin board would also need to be standardized. Subliminal channels are a serious 
threat, because they bypass all security mechanisms in place. 
    It is generally accepted that humans unfamiliar with cryptography are likely to make mistakes and miss 
minor deviations when using it. Malicious parties can take advantage of this in a number of ways. A DRE 
could reorder the steps in Neff's scheme to find out if the voter wants a basic or detailed receipt. If the 
user chooses basic, then the DRE can choose whatever ballot it wants to send, since the receipt only 
prints the BSN and a hash of the VC. Also, if the DRE can reorder the steps of the protocol in such a way 
that the user tells the DRE the challenges they want to use before the DRE prints anything on the receipt, 
then the DRE can create a ballot for any candidate and place the challenge in the position that the voter 
expects. In Chaum's scheme the DRE could determine what transparency the voter wants, and then 
generate an opposing image to create a different ballot, meanwhile the voter sees the correct 
transparency.  

These attacks capitalize on ignorance or inattentiveness by the voter. Apathetic voters could enable 
a malicious poll worker to observe discarded receipts and use this information to tell a malicious DRE 
which ballots are ok to alter or delete, since they are not likely to be checked on the bulletin board.  

There is also a danger that the DRE may perform operations that the voter is aware of, but that the 
voter cannot prove to a third party. Such attacks are: using invalid signatures to make receipts appear 
forged, printing the wrong machine id so as to deflect attention or even ignoring voter input all together. 
These attacks could be mitigated in a number of ways. Random auditing would cut down on the ability of 
DRE's to behave abnormally, and voter education stressing the importance of keeping receipts would also 
help. Other methods include using preprinted receipt paper and the use of trusted hardware to verify the 
DRE signature. 
    Sometimes detection of an attack is easy, but the recovery is difficult. This is the case with some of the 
Denial of Service (DoS) attacks that are possible on this system. Ballot duplication is where a malicious 
DRE submits multiple ballots with a valid BSN. This is easy to detect, but we do not know which ones are 
valid. Another attack is ballot stealing, where a DRE submits a ballot with its own choices and a valid BSN 
while printing an invalid BSN on the voter's receipt. Perhaps the most serious attack is when a malicious 
bulletin board erases a trustee's key, thus rendering the encrypted ballots useless. Selective DoS is when 
a malicious DRE or individual triggers a DoS attack to support a candidate that is losing in a particular 
precinct. The simplest and most impractical solution would be to allow all of the cheated voters to re-vote, 
or to redo the entire election. A much more appealing mitigation strategy is the use of a Voter Verified 
Paper Audit Trail (VVPAT). VVPAT is a paper record that a voter could verify before the ballot is cast, and 
that is placed into a ballot box for use in auditing or recounts. This seems to be the best solution, but it is 
not without its downfalls which are left to be discussed another time. 
     Under-specification is an issue with regards to several different components in these protocols. The 
bulletin board is a major part of the system. The data storage must be stored securely and free from 
mechanical failure. Also, every viewer should see the same copy of the bulletin board. It is possible that 
the bulletin board could display different versions to voters based on what the voter is expecting to see, 
while the real state of the election is hidden. It is also suggested that the architecture of the bulletin board 
be specified by both Neff and Chaum. The assignment of BSN's through smartcard use or counter 
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implementations would counteract several of the previously mentioned attacks as well. Several of the 
attacks manipulated what appeared on the DRE's screen to trick the voter. Consequently, specification of 
the user interface would be helpful as well. Finally, the tallying software is a key piece of the puzzle. If all 
of the trustees use the same software then a single programmer could have wide-reaching impact, 
whereas if all of the trustees use different software, interfacing becomes an issue. Neither Neff nor Chaum 
specify the tallying software. [3] 
    After evaluation of these 2 protocols, there are several questions that arise and deserve further 
investigation. The presence of subliminal channels in cryptographic protocols would be a valuable problem 
to address, as well as the security model for the mix net. Perhaps the most difficult issue is how to deal 
with the human factor in the protocols. With the wide range of abilities that voter's possess, how should 
voter education be structured to produce the most effectiveness? Overall, Neff's and Chaum's protocols 
are an improvement over many other voting systems because of the ability to verify the record of the vote 
on the bulletin board while still maintaining coercion resistance. The presence of weaknesses is not totally 
disconcerting since there are a variety of ways to mitigate their danger. The main issues to be confronted 
are that ballots on the bulletin board must be unique and there needs to be an organized method of 
mitigating the problem of the human component.  
   
 
C. Prêt a Voter  
 
   
        The Prêt a Voter scheme presents a simpler approach to voting, when compared to Chaum and 
Neff’s schemes. In Prêt a Voter, ballots consist of a sheet which can be separated into left and right-hand 
pieces. A randomly ordered candidate list is placed on the left, while a voting grid for the user's choice is 
placed on the right side. At the bottom of the right-hand strip is a random-looking code that is used during 
tabulation to determine the left hand candidate order. After marking the appropriate place on the right 
strip, the voter separates the 2 sides and destroys the left side. The right side is then scanned, the code 
at the bottom is recorded, and the voter keeps the right strip as a receipt. The votes are posted to a WBB 
so that voters can see that their receipt is stored correctly. When the votes are counted, a group of tellers, 
acting together, decrypt the ordering of the candidates using their individual keys. Three areas of concern 
are: incorrect cryptographic values on the right strip, transmission errors of the receipt to the WBB, and 
teller errors during decryption [5]. 
    Chaum's and Neff's protocols had significant concerns in the area of subliminal channels, where Prêt a 
Voter avoids such problems by design. The ballot reader never learns the voter's choice, so it has no 
valuable information to convey. As long as the left strip is destroyed before the right side is scanned, it is 
unlikely the reader could obtain any information. Random subliminal channels are not a problem since the 
cryptographic operations take place when the forms are created, long before a voter makes a choice. 
Semantic subliminal channels are addressed through the way a vote is recorded as a cell number and the 
cryptographic number (onion) [5]. Ballot forms could be a subliminal channel, but there is no information 
that would be valuable to convey in this way. As in Chaum's scheme random partial checking is used to 
prevent collusion between the tellers. A key part of the security of the system is the fact that the 
authorities can commit to the cryptographic material before the election and the forms could be randomly 
audited for well-formedness. 
    A viable threat could be the posting of duplicate ballots or the posting of ballots with invalid onions. 
There also could be significant damage if a failure occurs during the mix net that destroys a large number 
of ballots. A possibility is to replace decryption with re-encryption. Separating the mix and decryption 
would simplify key management because the mix tellers would not possess private keys. A failed mix teller 
could easily be replaced. This has the added benefit that the mix and audit could be independently re-run. 
This approach still does not protect against the corruption of the decryption tellers' key, but threshold 
encryption schemes have been proposed as way of mitigating this threat.  
    The issue of recovery from an attack could be partially solved through the use of a VVPAT. However, 
VVPAT presents issues of voter privacy. Encrypted receipts may prevent this problem. Also, the use of 
discarded receipts could be addressed by auditors randomly checking the WBB using the VVPAT, thus 
eroding confidence that discarded receipts represent unchecked ballots. There should also be machines 
available to the voters, that verify the signature on their receipt, in order to prevent a DRE from printing 
invalid signatures to discredit a voter. Finally, as stated before, a robust storage system is necessary for 
the WBB. 
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    The Doll Matching attack [3] in Chaum's scheme is when a voter is unable to catch changes to the dolls 
through visual inspection. The use of bar codes is suggested in [3] to address this issue. If the bar codes 
do not line up then the voter would know that the vote has been tampered with. This attack is not 
applicable to Neff's scheme or Prêt a Voter. 
    An attack that is specific to Prêt a Voter is chain voting [5]. This occurs when a malicious individual 
obtains a form outside of the polling station. The individual then catches a voter before they enter the 
polling station and tells them to cast that ballot for a particular candidate and emerge with a new ballot. 
This approach is effective because the forms are a controlled resource. The coercer's power comes from 
their knowledge of the association between the onion and a particular candidate order. To counteract this, 
a scratch-strip could be placed over the onion until an official observes it is intact and oversees its removal 
when casting the ballot [5]. A method of scanning scratch-strips with a laser to obtain the information 
beneath it has been suggested as a means of circumventing this measure and needs to be addressed. The 
use of the scratch-strip also mitigates the threat of double-voting. 
    The knowledge of the correlation between candidate orderings and their respective onions is the main 
information that needs protection. One approach is that no single authority should have access to all 
onions and candidate lists, because this information could be leaked in a number of ways. Also, the 
correctness of the said correlation on the ballots is protected by the fact that the authorities commit to it 
and it is randomly audited. Distributed ballot form construction is one way to achieve this protection. A 
group of ballot clerks perform an encryption mix on a large set of El Gamal onions, producing a permuted, 
random set of onions. The last clerk produces 2 re-encryptions for each onion. Each onion pair is then 
printed on the ballots, one on each side. The right onion is covered with a scratch strip and the left onions 
are sent to the tellers, who send back candidate lists that correspond to the left-hand onion. The lists are 
printed on the forms and the left onion is destroyed, leaving only the covered right onion. Random audits 
of the process could be performed to ensure its correctness to an acceptable degree.  

The last avenue that this correlation could be obtained is through a voter retaining the left strip of 
the ballot after they leave the polling station. Thus, the enforced destruction of the left strip is a necessary 
step. This could be achieved in a number of ways which include: the destruction of the strip in the 
presence of an election official, the availability of decoy left hand strips, and the candidate lists being 
printed on a scratch strip that covers the onion.  
    A voter may verify the ordering of their ballot by submitting the onion to the tellers. The tellers then 
return the associated ordering of candidates. It must be the case that, once a form's order is checked, 
that the form is prevented from being used again. Since the onion/ordering association is known, a 
malicious coercer could verify a person voted correctly on the WBB using that ballot. The previously 
mentioned scratch-strip implementation would prevent this from happening. 
    The Prêt a Voter scheme takes a different approach than the protocols developed by Chaum and Neff. 
The use of "dumb" DRE’s is useful in avoiding the problems with subliminal channels seen in the other two 
schemes. However, it is vital that the threat present in chain voting is addressed in order for the system 
to be successful. The simplified approach seen in Prêt a Voter is desirable and shows promise as a viable 
secure voting scheme. 
         
II. The E1C system  

 
   Before addressing E1C, we emphasize that this review is an academic exercise. An important component 
of this review is discovery of voting system technology. Thus, this report should not be seen as a definitive 
system or security review of E1C, but rather provides only our review insights in the overall discovery 
process. 
    The previous systems discussed all depend on human interaction with a highly customized and 
regulated computer in a very organized and secure environment. A poll worker can physically verify that 
the person is who they say they are by looking at picture identification and by verifying highly personal 
knowledge that the person has. All of this is possible because of an assumption that voters can physically 
travel to a central polling station to vote.  These do not deal with voters whom are disabled or may be 
overseas and still would like to cast their vote. In the United States, these individuals cast paper 
"absentee" ballots. Website voting systems provide a new absentee ballot solution.  
    The Everyone Counts solution is to use a java applet as the vote casting mechanism. The applet is 
downloaded to the voter's computer and the selection portion of the voting process can be run with the 
internet disconnected, so as to deter monitoring by an outside party.  

Along with the applet come the appropriate ballots for the voter's district and the certificates for 
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the transmission of the vote. The submission of votes to a centralized server creates vulnerabilities to 
Denial-of-Service attacks for website voting. E1C attempts to deal with this by offering a version of the 
E1C system that uses a Peer-To-Peer (P2P) network as the backbone of the vote submission process (see 
Figure 5). A vote is encrypted by the applet and then submitted to a distributed network, and it may even 
be submitted multiple times to achieve redundancy. The applet then provides a receipt to the voter that 
can be used with a vote verification service at a later time to ensure that the vote was cast, captured, and 
counted correctly. After votes are sent to the network, several private “receiver” servers are used to poll 
the network for votes and download new votes found.  After votes are downloaded from the network, they 
are then sent to a central tabulating server to be recorded.  
     
III. Overview of Applet functionality  
      
    The main focus of this project was reviewing the applet source for possible weaknesses and verification 
of aforementioned security mechanisms. When the applet is downloaded from the server, it is customized 
with the appropriate candidate lists and certificates for the voter who is receiving it. The program either 
has the voter enter their credentials (voter id, personal id, date of birth), or these values are already 
loaded through a prior credential acquisition. Then, the applet takes the voter through a series of screens 
where they vote for particular 
candidates by using the 
graphical interface, until all voter 
selections are complete. Then 
the software hashes the user 
credentials, including the 
password, and uses this to 
create a receipt. The receipt is 
then encrypted with the vote 
and put on the network. The 
network sends a response back 
indicating success or 
failure. Upon success the user 
obtains the receipt. This 
is where the job of the applet is 
finished and the server side of the process takes over.  

The voter can be confident that the process worked by checking one of several verification 
sites. The password that the voter entered into the applet was hashed with the credentials and encrypted 
with the vote. This means that if the receipt shown on the website matches the receipt that the voter 
possesses then there can be confidence that the vote was decrypted correctly by the server.  Since the 
applet is prepackaged and signed, there is sufficient confidence that the voter will receive an unaltered 
copy of the applet with the correct certificates.  The voter has the option of completing the ballots while 
the computer is not connected to the internet. This would be desirable since there is a possibility for 
surveillance by a third party if the computer is connected. This leaves the cryptographic operations and 
the communication with the server as the main areas of concern.  
   
A. Initialization of the Applet  
   
    An important aspect of using the applet is that the different ballots can be generated before the 
election. After the voter’s credentials are authenticated by the applet download site, a jar file is sent to the 
voter that contains the Election Returning Official’s (ERO) certificate and all of the ballots, in addition to 
the applet. The details on how exactly the user is authenticated and the layout of the download page has 
not been provided for this review, so no critique is provided here. However, it should be noted that this is 
an important part of the system. The distribution of the credentials used to log in needs to be reasonably 
secure. In past implementations of this system, pins were distributed through paper mail with a high 
degree of success. This instance, however had all of the voter's in the same country, whereas the same 
security may not be achievable in a distributed environment where voters are spread over different 
countries, much less, continents.  
 

Figure 3 - P2P version of the E1C system 
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   When the applet is first opened, it either displays an authorization page or goes straight to the ballot, 
depending on whether or not the pin and date of birth (dob) values are already set. When the voter is 
authenticated, the server informs the applet which ballots to render. [7] After the voter has been 
autenticated, they can disconnect from the internet. This would reduce the threat posed to activity on the 
internet. The data structure for creating and storing the vote is created, and the public key is imported 
from the certificate that is in the jar file. Then the panels for displaying the ballots are generated, along 
with the panel for entering the user's password for use in the receipt. At this point, the interface has been 
created and is ready for input from the user.  
   
B. Completing the Ballot  
   
 
    The program flow of the applet is directed by a set of states and button clicks. The general idea is that 
the voter will complete a page and then click next, previous, or undo and depending on what state the 
applet is in currently, the applet will display the next page. If the authorization page is displayed, then the 
voter must enter their credentials and the applet will do some basic credential checks (not null, check 

digit). If these checks pass then the 
applet sends a hash of the salt (a 
predefined number hard coded into the 
applet), voter identification number (vin), 
personal identification number (pin), and 
date of birth (dob) to the server for 
authentication (see figure 4). The server 
replies with a string message that 
confirms success if the hash checks out. 
If anything else is returned then an error 
message is generated.  

   If no error is encountered, then the applet displays the first ballot. From here on the user simply selects 
the appropriate candidates and clicks the next button. This is repeated until all of the ballots have been 
completed, at which point the ballot is ready to be prepared for transmission to the server.  
   
C. Casting the Vote  
   
   
    After the voter has filled 
out all of the appropriate 
ballots, the next step is to 
prepare the vote to be 
sent to the server. First, 
the voter submits a 
password to the applet 
that is used in the later 
parts of the system to 
provide assurance that 
their vote was decrypted 
correctly. Then the states 
from all of the check boxes 
are recorded in a 
single string, which is 
called "flattening" the 
vote. After this, the applet 
hashes the salt, vin, pin, 
and dob, which is called 
the "base". The salt, vin, 
pin, and user-supplied 
password are also hashed 

Figure 4 Applet Credential Authentication Protocol 

Figure 5 E1C Applet vote submission protocol 
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and this serves as the receipt. The applet then encrypts the base, vin, receipt, and flattened vote using 
the public key acquired earlier from the certificate, and sends this to the server.  

The URL for the server is pre-loaded into the applet during initialization. Upon receipt of the 
encrypted vote object, the server stores the vote and signals the applet. Upon success the user is given 
either a simple or detailed receipt, and the applet closes. Decryption of the vote object and authentication 
of the voter credentials occurs offline at a later time to reduce reliance on the server. [7] The vote casting 
process is shown in Figure 5. Because the receipt is a hash of the credentials and the password that the 
user entered, the user can go to a receipt verification website at a later time and see that the same value 
is posted as is on their receipt. Since the receipt was encrypted with the vote string, if the server 
possesses the correct receipt, this means that, with a high probability, the server received the vote 
message that was sent by the voter. Also, since the voter will input personal credentials, such as vin, to 
look up the receipt, a correct value for the receipt also implies that the vin was correctly decrypted and 
also associated with the correct receipt. These two facts help to build confidence that the vote message 
was received unaltered.  
   
IV. Findings  
   
    We reiterate that the purpose of our review was to identify E1C system properties. In doing so, we 
noticed two potential weaknesses, which we report in this section.  
 
    A. Server Identity Unverified  
   
    When the applet is sending the encrypted vote to the servers, it uses a predefined url with an appended 
instance id. After sending the vote, the output stream is closed to the server and an input stream is 

opened. The program then 
acquires a response from the 
server that is a boolean value 
representing successful 
transmission of the vote or not. 
Nowhere during this 
process does the applet verify 
the identity of the server. The 
same problem occurs in the 
initial stages of voting where 
the applet sends a hash of the 
user credentials to the server to 
authenticate the voter. 
This leaves the user vulnerable 
to a man-in-the-middle attack 
where a malicious individual 
may act as the server and send 
success messages back to the 
applets, meanwhile they may 
drop all votes.  
   This kind of attack would only 
be effective if a fairly large 
concentration of voters were 
present in one location. One 
possible scenario is an overseas 

military base. If a malicious individual were sniffing packets going to and from a military base during an 
election, it may be possible for such an individual to simply drop all outgoing packets that are identified as 
credential checks and return any random value and thus the credential authenticator would fail. This 
attack, however, would not be as effective as the previous attack because in the first, the voter doesn't 
ever know that anything went wrong.      
 

 

Figure 6 MITM Attack 
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    B. E1C Strengths. 
   
    All of the E1C cryptographic operations were completed using a third party package called 
BouncyCastle [4]. This package is widely used and is licensed under the MIT license. The applet is 
downloaded in a signed jar file that contains the public key for the ERO. The jar file is signed, which 
prevents tampering. The certificates are loaded directly into BouncyCastle Data Structures. All sensitive 
information is hashed and encrypted before it is sent to the server.  

Buffer overflows are a 
continual source of problems 
in applications written in C and 
C++. The choice of using java 
was also beneficial in that the 
risk of memory leaks and 
buffer overflows is mitigated 
through the use of garbage 
collection.  In past reviews, 
the main problems arise from 
trying to assure the voter that 
the vote was "recorded-as-
cast". Neff's scheme attempts 
to do this through the use of 
pledge bits and the OVC 
showing actual bits from the vote matrix. As stated previously, this opens up the vulnerability of 
subliminal channels. This vulnerability is not present in the E1C system because there is no displaying 
of information about the vote on the bulletin board.  
   
    C. Possible Improvements  
   
        A second possible weakness in the E1C scheme is in the use of the receipt. The receipt is a hash 
of the salt, vin, pin, and password. Although the correct display of this value provides a reasonable 
amount of confidence in the correct receipt of the vote, it could be stronger. The vote string is 

represented as a comma separated 
vector (csv). This means that a 
vote is designated by a ’1’ placed in 
between the corresponding set of 
commas, e.g. 1,,,,1,,1. For each 
race in an election there are n 
candidates. If, for each race, the 
candidates were numbered 1 
through n, this number could be 
called weightcandidate  and used as an 
integrity check. If the weight of the 
chosen candidate for each race was 
summed, a weighttotal would be 
obtained. For any race that the 
voter chooses not to vote in, a 
weight of zero would be used. This 
process is seen in Figure 7. Take 
this total weight and hash it with 
the hash of the salt, vin, pin, and 
password and give it to the user. 
Nothing needs to be changed about 
the vote message that is sent to 
the server. It should still be the 
same as in Figure 5. What is 
different is that the server will 
decrypt the message, calculate the 
total weight of the vote string, and 

Figure 7 Proposed Improvement 

Figure 8 Improvement Protocol 
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hash the total weight with the hash of the salt, vin, pin, and password that was sent with the vote 
string (see Figure 8). This new receipt can then be posted to the vote checking website. This now 
provides the voter with increased confidence in the system if the numbers match. It also still prevents 
the voter from proving how they voted because several different ballot voting patterns would add up to 
equal the same number. Even further security could be added by having several different candidate 
orderings on the ballots for each race.  
 
   
V. Conclusion  
   
    The system created by EveryoneCounts is well designed. The measures that were taken to ensure 
the security of the applet and the privacy of the voter are sound. The convenience of being able to 
download an applet in the privacy of your home is undeniable, and the confidence that is built through 
the vote checker website has the right goal in mind.  
    We found very few problems with the EveryoneCounts applet. The only detected weaknesses are 
related to the inherent problem of using the internet as the backbone for any system. Denial-of-Service 
and man-in-the-middle attacks are potential pitfalls. However, the man-in-the-middle attack requires a 
densely populated area of voters, which will greatly depend on the particular election.  
    We proposed a possible improvement to the vote checking system. The use of a vote weight is an 
integrity tool to verify the receipt of the vote as it was cast.  
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