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Abstract 
 
Coordinating storage components across abstraction 
layers has demonstrated significant performance gains.  
However, when applied near the physical storage, this 
approach relies on exposing and exploiting low-level 
hardware characteristics, perhaps a large number of 
them, to cope with complex modern disks and RAIDs 
to apply such an approach. 
 
Through clean-room implementations and validations 
of prior research on track-aligned accesses and its 
incorporation in RAIDs, as well as through experiments 
with our proposed queue coordination in RAIDs, we 
confirmed that cross-layer coordination can indeed 
yield high performance gains.  On the other hand, the 
effective use of cross-layer coordination involves 
overcoming several challenges: (1) developing efficient 
and automated ways to extract and exploit hardware 
characteristics due to rapidly evolving disks, (2) 
fostering a greater understanding of the legacy storage 
data path, so that we can better predict the benefits of 
low-level optimizations and their intertwined 
interactions, and (3) inventing efficient and automated 
ways to tune the low-level parameters. 
 
1  Introduction 
 
Disk-based storage has been a system-wide 
performance bottleneck for the past three decades.  
One major limiting factor is how disks are represented 
and accessed by the operating system.  Disks are 
generally presented as a sequence of blocks, thus 
abstracting away their details (e.g., variable number of 
sectors per track).  Disks within a RAID (redundant 
arrays of independent disks) are presented as a single 
virtual disk, so that an operating system can access a 
RAID or a disk with the same mechanisms. 
 
While these abstraction layers ease modular software 
development, they also hide, and in many cases hinder, 
opportunities for performance optimizations.  For 
example, disks within a RAID are largely unaware of 
the existence of other disks, thereby delaying requests 
that span multiple disks due to the lack of coordination. 
 
An orthogonal way to present disk-based storage to the 
operating system is to reveal the underlying hardware 
details, such that a high-level system component can 
make more informed decisions based on more global 

details. Applications of this cross-layer coordination 
have demonstrated significant performance 
improvements in disk storage [McKusick et al. 1984; 
Matthews et al. 1997; Carnes et al. 2000; Lumb et al. 
2000; Schindler et al. 2002; Schmuck and Haskin 2002; 
Nugent et al. 2003; Schindler et al. 2004; Schlosser et al. 
2005; Sivathanu et al. 2005].  The success of these 
optimizations also suggests that further exploitation of 
additional low-level disk details can yield promising 
performance gains. 
 
To investigate the possibility of more such performance 
benefits, we explored the use of low-level controls of 
disks and RAIDs with respect to allocation, access 
granularity, and scheduling.  In particular, we 
attempted clean-room implementations and validations 
of the track-aligned extents work [Schindler et al. 2002] 
(i.e., track-aligned accesses to a disk) and a track-
aligned RAID.  We also proposed and implemented a 
way to coordinate disk queues within a RAID. 
   
To our surprise, applying the cross-layer coordination 
approach involves decisions of greater intricacy than 
we originally thought, especially considering the 
quickly evolving physical characteristics of modern 
disks and associated hardware.  Thus, we report our 
experience to the research community to better 
understand the low-level decisions required to apply 
such an approach to modern disks and RAIDs. 
 
2  Background 
 
Software RAIDs:  In a software RAID under Linux, a 
request is first sent to a multi-device driver (e.g., RAID-
5), which is responsible for gathering, remapping, and 
forwarding requests to individual disks within the 
RAID.  The multi-device driver also reorders, merges, 
and splits requests as needed to improve overall 
performance.  The request queue associated with the 
RAID device driver can be plugged at times, so that the 
pending requests in the queue wait for additional 
requests for some time to increase the opportunities for 
effective reordering.  The queue can also be 
unplugged when forwarding requests to underlying per-
disk device drivers. 
 
The per-disk software device driver handles vendor-
specific details of hard disks, and is associated with a 
request queue.  Therefore, each device driver 



independently schedules and optimizes its disk 
performance, without coordinating with other disks. 
 
Cross-layer coordination:  Cross-layer coordination 
has been increasingly explored in the storage arena, and 
it has demonstrated significant performance 
improvements.  For example, by exposing the track 
boundaries of disks, file systems and cache prefetching 
can effectively allocate and access data in a track-
aligned manner [Schindler et al. 2002].  The file 
system layer can also gain semantic knowledge of 
specific applications (e.g., database) to optimize disk 
layout [Sivathanu et al. 2005]. 
 
This paper focuses the application of this approach at 
the levels of disks and RAIDs.  In particular, we will 
examine the decisions involved in coordinating 
allocation granularity, data access alignment, and IO 
scheduling policies across storage layers. 

 
Figure 2.1:  A software RAID-5 with four disks.  
Each request is sent to a RAID-5 multi-device layer, 
which splits (as needed) and forwards the request(s) 
to per-disk device drivers.  Within the RAID-5, Ap 
is the parity for A1, A2, and A3.  Bp is the parity for 
B1, B2, and B3, and so on. 
 
3  Goals and Approaches 
 
Our research goals are (1) to unravel behind-the-scenes 
design decisions involved to exploit low-end details and 
controls of modern disks and RAIDs, and (2) to 
understand the various implications of applying such an 
approach.  
 
Since understanding the cross-layer approach near 
physical storage involves intimate interactions with 
specific hardware characteristics, implementations and 
empirical measurements are required to learn first-hand 
lessons.  To assure positive outcomes, we began with 
the proven optimization of track-aligned extents (i.e., 
track-aligned disk accesses) and its derivative RAID for 
our clean-room implementations.  Since track 
alignment addresses policies regarding storage 
allocation and access granularity, we also experimented 

with scheduling policies by exploring our proposed 
method of coordinating queues within a RAID.  The 
intent is to draw generalized lessons from various ways 
of exploiting low-level hardware details.  
 
The fundamental observation in track-aligned extents is 
that an operating system generally accesses disks in 
blocks, each containing multiple sectors.  Therefore, 
accessing a block can potentially cross a track boundary 
and incur additional head positioning time to switch 
tracks.  By revealing and exploiting track boundaries 
above the disk device driver interface, [Schindler et al. 
2002] observes that when accessing near a track size of 
information, aligned accesses according to the track 
boundary can deliver 50% performance improvement. 
This range of performance gain also relies on disks that 
support zero-latency access, which allows the tail-end 
of a requested track to be accessed before the beginning 
of the requested track content [Worthington et al. 1995]. 
 
The same principle of exploiting low-level hardware 
details can also be generalized to RAIDs.  For instance, 
when accessing a stripe of information, a RAID needs 
to wait for the slowest disk in the RAID to complete its 
service, which can incur the worst-case queuing, seek, 
and rotational delays.  Atropos [Schindler et al. 2004] 
reduces the worst-case delays by applying track-aligned 
accesses to disks to reduce the expected worst-case 
rotational delay for accessing a stripe. 
 
To address the worst-case queuing time among disks in 
a RAID, we designed and implemented a way to 
coordinate disk queues, with an aim for a striped 
request to be sent to disks at approximately the same 
time.  This coordination can also potentially improve 
the synchrony of disk head locations, ameliorating the 
worst-case seek time among disks. 
 
4  Recreating Track-aligned Extents 
 
The three main tasks to duplicate the track-aligned 
extents work are (1) finding the track boundaries and 
the zero-latency access disk characteristics, (2) making 
use of such information, and (3) verifying its 
performance benefits. The hardware and software 
experimental settings are summarized in Table 4.1. 
 
 
 
 
 
 
 

Hardware/software Configurations 
Processor Pentium D 830, 3GHz, 16KB L1 cache, 

2x1MB L2 cache 



Memory 128 MB or 2GB 
RAID controller Adaptec 4805SAS 
Disks tested Maxtor SCSI 10K5 Atlas, 73GB, 10K  

  RPM, 8MB on-disk cache [Maxtor   
  2004] 
Seagate CheetahR 15K.4 Ultra320 SCSI,  
  36GB, 8MB on-disk cache [Seagate  
  2007] 
Fujitsu MAP3367NC, 10K RPM, 37GB,  
  with 8MB on-disk cache [Fujitsu 2007] 

Operating system Linux 2.6.16.9 
  File system Ext2 [Card et al. 1999] 

Table 4.1: Hardware/software experimental 
specifications. 
 
4.1  Extracting Disk Characteristics 
 
Simple request scanning: Since the reported 
performance benefits for track alignments are high, 
conceivably, a user-level program can observe timing 
variations to identify track boundaries.  A program can 
incrementally issue reads, requesting one more sector 
than before, staring from the 0th sector.  As the request 
size grows, the disk bandwidth should first increase and 
then drop as the request size exceeds the size of the first 
track (due to track switching overhead).  The process 
can then repeat, starting from the first sector of the 
previously found track.  The inefficiency of this 
algorithm can be reduced via applying binary search. 
 
To reduce disturbances introduced by various hardware 
and software components of the disk data path, we used 
DIRECT_IO flag to bypass the Linux page cache, and 
we accessed the disk as a raw device to bypass the file 
system.  We used a modified aacraid driver code to 
bypass the SCSI controller, and we used sdparm to 
disable the read cache (RCD=1) and prefetch (DPTL=0) 
of the disk. 
 
As a sanity check, we also attempted to start all reads 
from an arbitrary position of the 256th sector. 
Additionally, we attempted to start each read with a 
random sector between 0 and 512, with each 
succeeding request size increasing by 1 sector (512 
bytes).  Figure 4.1.1 shows the resulting graph.   
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Figure 4.1.1:  Bandwidth comparison for different 
read request sizes from different starting sectors on 
a Maxtor disk. 
 

Surprisingly, although the graph exhibits bandwidth 
“cliffs,” the characteristic trends are not sensitive to the 
starting location of requests, suggesting that those cliffs 
are caused by sources of data misalignments other than 
tracks.  Some possibilities are transfer granularity of 
the direct memory access (DMA) and the management 
granularity of IO buffers.  The graph also suggests the 
presence of other optimizations that are not disabled. 
For example, the high bandwidth before the first cliff 
far exceeds our expected performance gain.  Also, for 
certain ranges of request sizes (e.g., between 1,000 and 
1,500 sectors), the average bandwidth shows 
multimodal behaviors. 
 
To verify that those cliff locations are not track 
boundaries, we wrote a program to access random cliff 
locations with the access size of 512 sectors (256KB) as 
indicated by the first cliff location. We ran multiple 
instances of this program concurrently and perceived no 
noticeable performance difference compared to the 
cases where the accesses started with random sectors. 
 
SCSI diagnostic commands: Unable to extract track 
boundaries from a naive user-level program, we 
resorted to SCSI SEND/RECEIVE DIAGNOSTIC 
commands to map a logical block address (LBA) to a 
physical track, surface, and sector number.1  However, 
this sector-by-sector translation of large model drives is 
very slow, and it took days to extract an entire 73-GB 
Maxtor Atlas V drive. We modified the 
sg_senddiag program in the Linux sg3_utils 
package to speed up the extraction process, according 
to the following pseudocode: 
 
1.  Extract from LBA 0 sector-by-sector until we detect 

a track boundary (e.g., either track number or 
surface number changes).  Record LBA and the 
physical address of the boundary.  Store the track 
size S. 

 
2.  Add track size S to the last known track boundary T 

and translate S + T and S + T – 1.  
 

a. If we detect a track change between S + T and S 
+ T – 1, then S + T is a new boundary.  Record 
LBA and the physical address of the boundary.  
Go to step 2. 

 
b.  If there is no change between S + T and S + T – 

1, the track size has changed.  Extract sector-
by-sector from the last known track boundary 
until we detect a new track boundary. Record 
LBA and physical address of the boundary. 
Update the track size S. Go to step 2. 

 
                                                           
1 We did not use Dixtrac [Schindler and Ganger 1999] for the 
purpose of clean-room implementation and validation. 



3.  If sector reaches the end of disk in step 2, exit. 
 
Through this mechanism, we extracted information not 
always documented by vendors’ datasheets and 
manuals [Maxtor 2004; Fujitsu 2007; Seagate 2007] in 
about 7 minutes. 
 
First, the LBA mapping to the physical track number is 
not monotonic (Figure 4.1.2). For the Maxtor drive, 
LBA 0 starts on track 31 of the top surface and 
increases outward (from the disk spindle) to track 0, 
and then LBA continues from the bottom surface of 
track 0 inward to track 31.  Next, the LBA jumps to 
track 63 of the bottom surface growing outward to track 
32, and then switches back to the top surface’s track 32 
and continues inward to track 63. The pattern repeats. 

 
Figure 4.1.2:  Non-monotonic mapping between 
LBA and track numbers. 
 
Variants of this serpentine numbering scheme 
[Anderson 2003] are observed in Seagate [2007] and 
Fujitsu [2007] drives as well.  One can conjecture this 
numbering scheme in relation to the elevator and 
scanning-based IO schedulers.  In terms of 
performance characteristics, one might expect 
additional timing variations due to the track numbering 
system, in addition to track boundaries. 
 
Second, the number of sectors contained in each track is 
different between the top and bottom surfaces, even for 
the same track number.  For example, for a Maxtor 
drive, a track on the top surface of track 0 may contain 
1,144 sectors, and the bottom surface of the track 0 may 
contain 1,092 sectors.  One explanation is that certain 
sectors are spares.  By having spares within each track, 
bad sectors can be remapped without introducing 
additional seek delays. In the context of track alignment, 
this finding implies additional bookkeeping for each 
disk surface. 
 
Third, the track size differs even for the same disk 
model from the same vendor.  In a batch of 6 Maxtor 
10K V drives purchased at the same time, we found 4 
different LBA numbering schemes (Table 4.1.1). The 
implication is that track extraction cannot be performed 
once per disk model. It potentially needs to be 
performed on every disk.  Track size differs even in 
the same zone on the same surface, though rarely and 

only slightly.  We saw that some tracks begin on their 
second sectors, that is, LBA skips the first sector of that 
track.  Due to all these irregular anomalies, we are no 
longer able to calculate track boundary with zone 
information but have to extract all tracks. 
 

Serial number Surface 0, outer most 
track 

Surface 1, outer most 
track 

J20 Q3 CZK 1144 sectors 1092 sectors 
J20 Q3 C0K 1092 sectors 1144 sectors 
J20 Q3 C9K 1092 sectors 1144 sectors 
J20 TK 7GK 1025 sectors 1196 sectors 
J20 TF S0K 1060 sectors 1170 sectors 

J20 TF MKK 1060 sectors 1170 sectors 
Table 4.1.1:  Different Track Sizes of Maxtor 10K 
V Drives. 
 
Track boundary verifications: To verify the track 
information extracted via the SCSI diagnostic 
commands, we wrote a program to measure the elapsed 
time to access 64 sectors of data with shifting offsets 
from random track boundaries. The use of 64 sectors 
eases the visual identifications of track boundaries. We 
measured tracks only from the top surface within the 
first zone of a Maxtor disk, so we can simplify our 
experiment by accessing mostly a track size of 1,144 
sectors.   
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Figure 4.1.3:  Elapsed time to access random 64 
sectors, starting from different offsets from SCSI-
command-extracted track boundaries on a Maxtor 
drive.  The track size is 1,144 sectors. 
 
Figure 4.1.3 confirms our extracted track boundaries.  
Each data point represents the time to access a 64-
sector request starting from a randomly chosen sector 
offset from a track boundary. The 6-msec range of 
timing variation reflects the rotation-delay variations 
for a 10,000 RPM drive. The average elapsed time of 
accessing 64 sectors across a track boundary is 7.3 
msec, compared to 5.7 msec for not crossing the track 
boundaries. Interestingly, the difference of 1.6 msec is 
much higher than the track switching time of 0.3 to 0.5 
msec [Maxtor 2004].  We also verified this extraction 
method with other vendor drives. The findings were 
largely consistent. 
 
Zero-latency feature verification: Since the range of 
performance gain by track-aligned access depends on 
whether a disk can access the information within a track 
out-of-order, we performed the tests suggested in 



[Worthington et al. 1995].  Basically, we randomly 
picked two consecutive sectors, read those sectors in 
the reverse LBA order, and observed the timing 
characteristics. This test was performed with various 
caching options on. 
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Figure 4.1.4:  CDF of disk access times for 
accessing random sets of two consecutive LBAs in 
the reverse order. 
 
As shown in Figure 4.1.4, with a Maxtor drive, for 50% 
of the time the second request is served from the cache, 
indicating the zero-latency capability.  (We did not 
observe correlations between the chosen sectors and 
whether the zero-latency feature is triggered.) In 
contrast, the other two drives always need to wait for a 
3- to 6-msec rotational delay before serving the second 
sector request.  For the remaining paper, we will use 
the Maxtor drives. 
 
4.2  Exploiting Track Boundaries 
 
The track boundary information can be exploited at 
different levels. 
 
User level: One possibility is to create a user program 
to make use of this track information.  The mechanism 
is similar to the disk defragmentation process.  Instead 
of moving file blocks to reduce the level of 
fragmentation, we can move blocks to align with track 
boundaries.  This approach avoids kernel 
modifications and can make files smaller than a track 
not crossing track boundaries, and files larger than a 
track aligned to track boundaries. 
 
Unfortunately, this approach needs to overcome many 
tricky design points.  For example, certain blocks are 
referenced from many places (e.g., hardlinks).  
Moving those blocks requires tracking down and 
updating all references to the block being moved.  
Such information might not be readily available.  Also, 
we need to consider conditions where a system might 
crash amid our disk layout reorganization process.  
Finally, similar to defragmentation, data blocks can 
become miss-aligned after a period of time (e.g., files 
being added and deleted).  It is necessary to re-align 
data periodically.  The overhead of performing such 
periodic tasks may outweigh the performance benefits. 
 

File system level: We can mark certain sectors as bad 
(e.g., modify the bad-block list before running a file 
system creation program) so a file system cannot 
allocate blocks that consist of sectors across track 
boundaries. However, this method alone does not 
prevent a near-track-size file being allocated across two 
tracks.  This approach also anticipates some 
bandwidth loss when a single process tries to access 
multi-track files due to unused sectors.  However, 
when a system is under multiple concurrent streams, the 
performance benefits of accessing fewer tracks when 
multiplexing among IO streams can outweigh the 
performance loss due to unused sectors. 
 
The Linux ext2 file system uses pre-allocation [Card et 
al. 1999] to reserve a default of 7 blocks adjacent to the 
block just requested.  To allocate files based on tracks, 
we imported the boundary block list into the kernel so 
that file system components could use track information.  
For the ease of validation, we modified the ext2 pre-
allocation routine to allocate in tracks (or up to a track 
boundary, which is marked as a bad block by the file 
system creation program).  One clear disadvantage of 
this approach is over-allocation, but the unused space 
can be later returned to the system.  However, should 
the system anticipate mostly track-size accesses, we are 
less concerned with the wasted space.  For instance, 
database and multimedia applications can adjust their 
access granularity accordingly.  
 
With the aid of this list, we can also change the read-
ahead to perform prefetch on a track basis.  Even 
though files are track-aligned, benefits can hardly show 
up without a track-based access pattern.  Linux 
readahead not only uses a small prefetch window 
(default 128KB, compared with around 500KB track 
size) but also adjusts the window dynamically based on 
the hit ratio.  As a result, several prefetch requests are 
needed to read the entire track, which can incur 
additional rotational delay and diminish the benefits of 
track alignment.  Especially, requests to different files 
can be interleaved and cause both additional rotational 
delay and seek, further lowering the efficiency. 
 
Implementation: We used the track boundary list 
extracted by the SCSI diagnostic commands as the bad-
block list input for the mke2fs program, which marks 
all these blocks, so that they will not be allocated to 
files.  We also put this list in a kernel module along 
with two functions.  One initializes and reads the list 
from user space.  The other is used by different kernel 
components to find a track boundary after a given 
position.  For optimization, we implemented binary 
search in this function.  
 
There are two places in the kernel making use of the 
search function.  First, pre-allocation looks for the first 
block of a track (the block right after a track boundary) 



and then allocates this track to a requesting file.  The 
end of a track (the next boundary) can be identified by a 
used block marked by mke2fs so that the pre-
allocation ends properly.  One implication is that 
individual file systems need to be modified to benefit 
from track alignments.  Second, when a readahead 
starts a new prefetch window, it drops all prefetching 
requests that exceed the track boundary. 
 
4.3  Verification of the Performance Benefits  
 
Bonnie:  We chose a widely used benchmark called 
Bonnie [Bray 1996], which is unaware of the 
underlying track-alignment mechanisms. Bonnie 
consists of many phases, stressing the performance of 
character and block IOs amidst sequential and random 
access patterns.  The two phases of our interests are 
the sequential write and read.  The sequential write 
phase creates a 1-GB file, which exceeds our 128-MB 
memory limit, and reads it sequentially.  We enabled 
SCSI cache, disk caching, and prefetch to better reflect 
normal usage.  Each experiment was repeated 10 times, 
analyzed at a 90% confidence interval. 
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Figure 4.3.1: Bandwidth comparisons between 
conventional and track-aligned accesses to a single 
disk, when running the Bonnie benchmark. 
 
Figure 4.3.1 shows the expected 3% slowdown for a 
single stream of sequential disk accesses, where 
skipped blocks that cross track boundaries can no 
longer contribute to the bandwidth.  
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Figure 4.3.2: Speed comparisons between 
conventional and track-aligned accesses to a single 
disk, diffing two 512MB files with 128MB of RAM.  
 
We also ran a diff program (from GNU diffutils 
2.8.1) to compare two 512-MB large files via 
interleaved reads between two files, with the –speed-

large-files option.  Without this option, diff 
will try to read one entire file into the memory and then 
the other file and compare them if memory permits, 
which nullifies our intent of testing interleaved reads.  
We have two settings:  the normal and the track-
aligned case.  Figure 4.3.2 shows that track-aligned 
accesses are almost twice as fast as the normal case.  
In addition, we observed that disk firmware prefetch 
can violate the track-aligned prefetch issued from the 
file system readahead, as disk firmware prefetch has no 
regard for track boundaries.    Disabling on-disk 
prefetch further speeds up track-aligned access by 
another 8%.  Therefore, for subsequent experiments, 
we disabled disk firmware prefetch for track-aligned 
accesses.   
 
Since track-aligned extents excel in handling concurrent 
accesses, we conducted an experiment that involves 
concurrent processes issuing multimedia-like traffic 
streams at around 500KB/sec.  We used 2GB for our 
memory size.  We wrote a script that increases the 
number of multimedia streams by one after each second, 
and the script records the startup latency of each new 
stream.  Each emulated multimedia streaming process 
first randomly selects a disk position and sequentially 
accesses the subsequent blocks at the specified 
streaming rate.  We assumed that the acceptable 
startup latency is around 3 seconds, and the program 
terminates once the latency reaches 3 seconds. 
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Figure 4.3.3: Startup latency comparisons of 
conventional I/O requests, requests with a one-track 
prefetch window, and track-aligned requests on a 
single disk, with a varying number of multimedia-
like request streams. 
 
Figure 4.3.3 shows that the original disk can support up 
to 130 streams with the startup latency within 3 seconds.  
A track-size readahead window can reduce the latency 
at 130 streams by 30%, while the track-aligned access 
can reduce the latency by 55%. 
 
 
 
 
 
5  Track-aligned RAIDs 
 



One natural step to generalize the notion of exposing 
and exploiting the hardware characteristics of a single 
disk is to construct RAIDs with track-aligned accesses.  
However, recall in Section 4.1 that the track sizes can 
differ even for the same disk model from the same 
vendor.  One immediate implication is that each disk 
in a RAID needs to be scanned one after another on a 
machine to extract track boundaries. 
 
Another implication is that there are different ways to 
form stripes.  For one, we can just construct stripes 
with tracks of different sizes.  Although this scheme 
can work with RAID-0, it does not load balance well 
and work well with other RAID levels.  For example, 
RAID-5 parity is generated via XORing chunk units 
(units of data striping) of the same size.  Suppose we 
want the chunk unit to be set to the size of a track.  
Should we use the largest track size as the chunk unit, 
some disks need to use 1+ tracks to form a chunk.  Or, 
we can use the smallest track size as the chunk unit, 
leading to unused sectors for disks with larger track 
sizes. 
 
Intriguingly, we observed that RAID levels that involve 
parity can interact poorly with prefetching in the 
following way.  Take RAID-5 as an example.  At the 
file system level, prefetching one track from each non-
parity disk involves a prefetching window that is the 
size of a track multiplied by the number of disks that 
does not contain the parity information.  However, as 
a RAID redirects the contiguous prefetching requests 
from the file system level, the actual forwarded track-
size prefetching requests to individual disks are 
fragmented, since reads in RAIDs do not need to access 
the parity information.  
 
Another poor interaction is the Linux plug and unplug 
mechanisms associated with disk queues and multi-
device queues.  These mechanisms are designed to 
increase the opportunities for data reordering by 
introducing artificial forwarding delays at times (e.g., 3 
msec), and do not respect track boundaries.  Therefore, 
by making these mechanisms aware of track boundaries, 
combined with all prior considerations, we were finally 
able to make individual disks in a RAID-5 to access in 
a track-aligned manner. 
 
5.1  Implementation  
 
We modified Linux software RAID-5 to implement the 
track-aligned accesses.  To overcome the 
heterogeneous track sizes, we used the plug/unplug 
mechanisms to enforce track-aligned accesses.  By 
doing so, chunk sizes and striping mechanisms become 
more independent of disks with different track sizes. 
 
We inserted a piece of code in the Linux software 
RAID-5 make_request function. When an IO 

request arrives, this function translates the RAID virtual 
disk address into individual disk addresses.  We then 
monitored the translated requests to see if they were 
requests that cross track boundaries.  The unplug 
functions for individual disk queues were then 
explicitly invoked to issue track-aligned requests.  
 
To prevent the RAID-5 parity mechanisms from 
fragmenting track-size prefetching requests to 
individual disks, we modified RAID-5.  Whenever the 
parity holding disk in a stripe was the only one not 
requested for that stripe, we filled in the read request 
for that disk and passed it down with all others.  When 
this dummy request was completed, we simply 
discarded the data.  The data buffer in Linux software 
RAID-5 is pre-allocated at initialization, so this 
implementation does not cause additional memory 
overhead. 
 
5.2  Verification of Performance Benefits  
 
We compared the base case RAID-5 with a track-
aligned RAID-5 with 5 disks, and a chunk size of 4KB.  
For the Bonnie benchmark, we used a 1-GB working 
set with 128MB of RAM.  Figure 5.1 shows that the 
write bandwidth for the three system settings falls 
within a similar range due to buffered writes.  
However, for read bandwidth, the track-aligned RAID-
5 outperforms the conventional one by 57%.   
 
The diff experiment compared between two 512-MB 
files with 128MB of RAM.  Figure 5.2 shows that the 
track-aligned RAID-5 can achieve a 3x factor speedup 
compared to the original RAID-5. 
 
For the multimedia-like workload with 2GB of RAM, 
the track-aligned RAID-5 demonstrates a 3.3x better 
scaling in concurrency than the conventional RAID-5, 
where a RAID-5 with a readahead window comparable 
to the track-aligned RAID-5 contributes only less than 
half of the scaling improvement.  The latency 
improvement of track-aligned RAID-5 is particularly 
impressive considering that the original RAID-5 was 
expected to degrade in the latency characteristics when 
compared to the single-disk case, due to the widening 
timing variance of disks and the need to wait for the 
slowest disk for striped requests. Track-aligned 
accesses reduce the worst-case rotational timing 
variance and can realize more benefits of parallelism. 
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Figure 5.1:  Bandwidth comparisons of the track-
aligned RAID-5, a RAID-5 with a prefetch window 
of 4 tracks, and the original RAID-5, running 
Bonnie with 1GB working set and 128MB of RAM. 
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Figure 5.2:  Elapsed time comparisons of the track-
aligned RAID-5, a RAID-5 with a prefetch window 
of 4 tracks, and the original RAID-5, when running 
diff comparing two 512MB files.  
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Figure 5.3:  Startup latency comparisons of the 
track-aligned RAID-5, a RAID-5 with a prefetch 
window of 4 tracks, and the original RAID-5, with a 
varying number of multimedia-like request streams. 
 
6 Coordinated I/O Scheduler 
 
Track-alignment mainly addresses the allocation and 
access granularity aspects.  Another aspect of the 
storage handling concerns IO scheduling.   
 
Linux 2.6 supports a number of IO schedulers, namely, 
noop, deadline, anticipatory [Iyer and Druschel 2001], 
and complete fairness queue (CFQ). Their main 
purposes include (1) gathering and merging small 
adjacent IO requests into one large contiguous request, 
and (2) reordering requests so that they can enforce 

different IO priorities.  For example, a deadline-based 
scheduler maintains one sorted list based on a request’s 
block address and another FIFO list based on the 
request arrival time.  When it is time to send the 
request to a disk, the scheduler will consider the block 
distance from the previous block request as well as the 
expiration time of the current request (i.e., arrival time 
plus the maximum waiting time) to choose the next 
request.  CFQ additionally considers the IO budgets of 
each process, similar to a CPU scheduler.  
 
Although per-disk schedulers are effective when 
operating in isolation, they are largely unaware of other 
schedulers when a single RAID request involves 
multiple disks, leading to missed optimization 
opportunities.  As a result, a striped request may wait 
longer because one of the disks decides to serve other 
requests before the striped request.  Therefore, if we 
can coordinate different schedulers to serve a striped 
request at around the same time, we can reduce the 
worst-case latency by having disk heads and request 
queues in better synchrony. 
 
6.1  Design Space  
 
One way to coordinate per-disk queues is to make each 
queue aware of other queues via explicit messaging.  
Therefore, whenever a queue changes its state, the 
queue will also inform other queues of its changed 
status.  The downside of this coordination is poor 
scaling.  As the number of disks increases, the number 
of synchronization messages grows quadratically.   
 
A centralized coordination approach is to associate an 
IO’s request priority with arrival time.  By doing so, a 
striped request will have similar priority values when 
being processed by the per-disk queue.  However, the 
downside of the time-based coordination is the 
difficulty of incorporating time into the computation of 
request priority, knowing that the time value is not 
bounded by a range.  Therefore, as time elapses, the 
priority computation will eventually be overtaken by 
the weighting of the time value.   
 
A third approach leverages the length of per-disk 
queues for synchronization, which the value is bounded.  
The rationale is that if one of the disks is very busy at 
the moment, it makes little sense for other disks to 
serve this striped request early.  Therefore, all requests 
in a stripe can be set with a priority associated with the 
maximum of all disk queue lengths.  Should other 
requests arrive on disks with shorter queues, they can 
be served before the striped request.  Alternatively, we 
can set all requests of a stripe to a priority associated 



with the minimum of all disk queue lengths, so that 
striped requests are served at the earliest possible time.  
 
6.2  Implementation  
 
We extended the CFQ scheduler to take various disk 
queue lengths into consideration when computing the 
IO priority for various requests.  At the RAID layer, 
before forwarding requests that belong to a stripe, the 
maximum queue length is computed based on the 
number of pending requests in per-disk queues.  Then, 
within the per-disk CFQ scheduler, the relative block 
distance between the current and the previous request 
(computed in the cfq_choose_req function) is 
adjusted by the maximum queue length left shifted by a 
weight factor. 
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The maximum relative block distance is determined by 
the size of the hard drive.  In our case, about 19 
million blocks for the 73-GB Maxtor drive.  The 
maximum possible queue length is defined by 
BLKDEV_MAX_RQ in Linux, which is 128 by default. 
Therefore, for the queue length to have an influence 
equal to that of the block distance, we need the weight 
factor to be set to around 16 when the system is under a 
heavy concurrent load.   
 
6.3  Performance Evaluation  
 
Figure 6.3.1 summarizes the performance of 
coordinated queues in relation to RAID-5 and track-
aligned accesses.  Intriguingly, coordinated queues 
improved the concurrency scaling by a factor of only 
1.2x, while the track-aligned RAID improved scaling 
by a factor of 3.3x.  Also, when the track-aligned 
RAID-5 was combined with coordinated queues, no 
significant performance differences were observed.   
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Figure 6.3.1: Startup latency comparisons of the 
track-aligned RAID-5, the track-aligned RAID-5 
with coordinated queues, the original RAID-5 with 

coordinated queues, and the original RAID-5, with a 
varying number of multimedia-like request streams. 
 
Since the chosen weight for the coordinated queues can 
affect the performance, we conducted a sensitivity 
analysis by varying the weight from 10 to 30 for the 
same scaling experiment.  Figure 6.3.2 shows that the 
startup latency CDF variation is generally within 10%. 
 
Puzzled by the limited combined benefits between the 
track-aligned RAID-5 and the coordinated queue, we 
plotted the moving average of the disk head distance 
among five disks, for various schemes.  Intriguingly, 
Figure 6.3.3 shows that the track-aligned RAID-5 
actually synchronizes disk heads better than the 
coordinated queues due to two possible reasons.  First, 
the plugging and unplugging mechanisms used to honor 
track boundaries actually interact with the scheduling of 
striped requests.  Second, our implementation of the 
track-aligned RAID-5 also requests the parity 
information on reads, reducing the chances of 
divergence for disk head locations.   
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Figure 6.3.2:  Startup latency CDF comparisons of 
different weights used for coordinated queues, with 
a varying number of multimedia-like request 
streams. 
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Figure 6.3.3:  Disk head location deviation (10 
seconds moving average) comparisons of the track-
aligned RAID-5, the track-aligned RAID-5 with 
coordinated queues, the original RAID-5 with 
coordinated queues, and the original RAID-5, with a 
varying number of multimedia-like request streams. 
 
7  Lessons Learned 
 
Based on our clean-room implementations of the track-
aligned accesses and RAIDs, our duplication of results 



confirms the significant performance benefits that can 
be achieved by exposing and exploiting low-level disk 
details for high-level optimizations.  The validation of 
research results obtained five years ago also 
demonstrates the relative resiliency and applicability to 
several generations of disks.  Although the benefits of 
our proposed coordinated queues seem to be subsumed 
by the track-aligned accesses, their combined results 
show our limited understanding of the current data path 
and how disk allocation granularity, access alignment, 
and scheduling interact.  Additionally, we have 
experienced the following lessons first-hand. 
 
First, the effectiveness of the cross-layer coordination 
near the hardware level is only as good as our 
understanding of modern disks, which is not necessarily 
made available by vendors.  This paper presents only a 
fraction of graphs that we can explain.  We have 
encountered many more unknowns about modern disks 
due to their multimodal behaviors, undocumented 
features, and interactions with the disk controller, DMA, 
memory manager, IO scheduling, and so on.  Since 
there is no bounding contract between the vendors and 
the storage system designers other than the device 
driver interface, cross-layer coordination of storage 
system needs to be able to extract rapidly evolving disk 
characteristics and exploit them automatically. 
 
Second, it is difficult to guarantee homogeneous disk 
behaviors even for the same model that are purchased 
from the same batch and made by the same vendor.  In 
the case of using many disks, the extraction of hardware 
characteristics might impose high (one-time) overhead, 
depending on whether the extraction process can be 
performed in parallel. 
 
Finally, exploiting hardware characteristics and 
coordinating parallel components is not a trivial task 
due to the size of configuration space.  Also, 
optimizations tailored to one aspect (e.g., allocation 
granularity) of the data-handling characteristics may 
interact with other aspects (e.g., data alignment and 
scheduling) in intricate ways.  Thus, storage system 
designers must have a good understanding of how 
various mechanisms interact to achieve predictable 
results.  Unfortunately, such understanding is largely 
missing due to the legacy complexity of the storage 
data path.  Unless optimization can bring sufficient 
benefit to overpower various interactions, the combined 
performance gains can deviate significantly from those 
realized in isolation.   

 
8  Related Work 
 
Since the early file systems, storage designers have 
realized the power of tailoring file system design to the 
underlying disk characteristics.  FFS [McKusick et al. 
1984] exploits the spatial locality of accessing 

consecutive and nearby blocks on disks to improve 
performance.  LFS [Matthews et al. 1997] exploits 
both spatial locality for sequential writes and temporal 
locality for nearby disk-block reads for performance 
improvement. 
 
Within recent years, cross-layer coordination with low-
level storage has begun to attract research attention.  
In addition to the track-alignment, Lumb et al. [2000] 
exploit the rotational bandwidth that can be extracted 
during seeks in order to perform low-priority disk 
requests.  Sivathanu et al. [2003] and Sivathanu et al. 
[2005] made low-level storage aware of the file systems 
and database applications running above them, so the 
data location policies could be optimized according to 
the semantic knowledge of the file system and the 
database data structures.  Atropos [Schindler et al. 
2004] stripes data across disks in a track-aligned 
manner and supports two dimensional data structures 
via efficient diagonal access to blocks on adjacent 
tracks.  Schlosser et al. [2005] exploit the low seek 
time for nearby tracks in order to place 
multidimensional data sets. 
 
Exposing the use of many disks to the file-system level 
leads to many parallel file system designs.  For 
instance, PVFS [Carnes et al. 2000] modifies the 
semantics of file system calls to reduce disk contentions. 
GPFS [Schmuck and Haskin 2002] performs file 
striping and mirroring at the file system level to achieve 
good load balancing and reliability.   
 
The Conquest file system [Wang et al. 2002] shows that, 
by exposing the use of memory storage medium to the 
file-system level, tailored optimizations achieve a 3.5x 
speedup compared to conventional memory caching.    
 
In addition to file systems, disk queue performance can 
be improved further by investigating underlying 
hardware.  For instance, Lo et al. [2005] discovered 
that shortest-job-first scheduling of independent disks 
in RAID-0 can interleave striped requests, which leads 
to longer latency for each stripe to complete. They 
propose a least-remaining-request-size-first strategy to 
reduce latency. 
 
Further, cross-layer coordination can be applied at 
levels higher than the physical hardware to improve 
performance.  For example, Nugent et al. [2003] 
provided bypass mechanisms for user-level applications 
to directly control data storage locations on disks to 
improve the chance of sequential accesses.   
 
 
9  Conclusion 
 



Through the clean-room duplication of the track-
aligned access and its incorporation in RAIDs, and 
through exploring a proposed method to coordinate per-
disk queues in RAIDs, we have validated the 
performance benefits achievable by applying the cross-
layer coordination technique to storage.  However, we 
also need to overcome the diversity of disk behaviors 
and the size of design space to take advantage of 
hardware details.  
 
Therefore, for the cross-layer approach to become 
broadly applicable at these levels, we need to overcome 
rapid hardware evolution by inventing ways to obtain 
hardware characteristics efficiently and exploit them 
automatically.  The cross-layer coordination approach 
also prompts us to either develop a better understanding 
of the legacy storage data path or simplify the data path 
enough to make it understandable; otherwise, the 
benefits of the end-point optimization can be potentially 
reduced due to unforeseen interactions, or diffused due 
to the need to explore a vast configuration space.   
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