
A Behind-the-Scenes Story on
Applying Cross-Layer Coordination to Disks and RAIDs

Jin Qian and An-I Andy Wang

Florida State University, {qian, awang@cs.fsu.edu}

Abstract

Coordinating storage components across abstraction
layers has demonstrated significant performance gains.
However, when applied near the physical storage, this
approach relies on exposing and exploiting low-level
hardware characteristics, perhaps a large number of
them, to cope with complex modern disks and RAIDs
to apply such an approach.

Through clean-room implementations and validations
of prior research on track-aligned accesses and its
incorporation in RAIDs, as well as through experiments
with our proposed queue coordination in RAIDs, we
confirmed that cross-layer coordination can indeed
yield high performance gains. On the other hand, the
effective use of cross-layer coordination involves
overcoming several challenges: (1) developing efficient
and automated ways to extract and exploit hardware
characteristics due to rapidly evolving disks, (2)
fostering a greater understanding of the legacy storage
data path, so that we can better predict the benefits of
low-level optimizations and their intertwined
interactions, and (3) inventing efficient and automated
ways to tune the low-level parameters.

1 Introduction

Disk-based storage has been a system-wide
performance bottleneck for the past three decades.
One major limiting factor is how disks are represented
and accessed by the operating system. Disks are
generally presented as a sequence of blocks, thus
abstracting away their details (e.g., variable number of
sectors per track). Disks within a RAID (redundant
arrays of independent disks) are presented as a single
virtual disk, so that an operating system can access a
RAID or a disk with the same mechanisms.

While these abstraction layers ease modular software
development, they also hide, and in many cases hinder,
opportunities for performance optimizations. For
example, disks within a RAID are largely unaware of
the existence of other disks, thereby delaying requests
that span multiple disks due to the lack of coordination.

An orthogonal way to present disk-based storage to the
operating system is to reveal the underlying hardware
details, such that a high-level system component can
make more informed decisions based on more global

details. Applications of this cross-layer coordination
have demonstrated significant performance
improvements in disk storage [McKusick et al. 1984;
Matthews et al. 1997; Carnes et al. 2000; Lumb et al.
2000; Schindler et al. 2002; Schmuck and Haskin 2002;
Nugent et al. 2003; Schindler et al. 2004; Schlosser et al.
2005; Sivathanu et al. 2005]. The success of these
optimizations also suggests that further exploitation of
additional low-level disk details can yield promising
performance gains.

To investigate the possibility of more such performance
benefits, we explored the use of low-level controls of
disks and RAIDs with respect to allocation, access
granularity, and scheduling. In particular, we
attempted clean-room implementations and validations
of the track-aligned extents work [Schindler et al. 2002]
(i.e., track-aligned accesses to a disk) and a track-
aligned RAID. We also proposed and implemented a
way to coordinate disk queues within a RAID.

To our surprise, applying the cross-layer coordination
approach involves decisions of greater intricacy than
we originally thought, especially considering the
quickly evolving physical characteristics of modern
disks and associated hardware. Thus, we report our
experience to the research community to better
understand the low-level decisions required to apply
such an approach to modern disks and RAIDs.

2 Background

Software RAIDs: In a software RAID under Linux, a
request is first sent to a multi-device driver (e.g., RAID-
5), which is responsible for gathering, remapping, and
forwarding requests to individual disks within the
RAID. The multi-device driver also reorders, merges,
and splits requests as needed to improve overall
performance. The request queue associated with the
RAID device driver can be plugged at times, so that the
pending requests in the queue wait for additional
requests for some time to increase the opportunities for
effective reordering. The queue can also be
unplugged when forwarding requests to underlying per-
disk device drivers.

The per-disk software device driver handles vendor-
specific details of hard disks, and is associated with a
request queue. Therefore, each device driver

independently schedules and optimizes its disk
performance, without coordinating with other disks.

Cross-layer coordination: Cross-layer coordination
has been increasingly explored in the storage arena, and
it has demonstrated significant performance
improvements. For example, by exposing the track
boundaries of disks, file systems and cache prefetching
can effectively allocate and access data in a track-
aligned manner [Schindler et al. 2002]. The file
system layer can also gain semantic knowledge of
specific applications (e.g., database) to optimize disk
layout [Sivathanu et al. 2005].

This paper focuses the application of this approach at
the levels of disks and RAIDs. In particular, we will
examine the decisions involved in coordinating
allocation granularity, data access alignment, and IO
scheduling policies across storage layers.

Figure 2.1: A software RAID-5 with four disks.
Each request is sent to a RAID-5 multi-device layer,
which splits (as needed) and forwards the request(s)
to per-disk device drivers. Within the RAID-5, Ap
is the parity for A1, A2, and A3. Bp is the parity for
B1, B2, and B3, and so on.

3 Goals and Approaches

Our research goals are (1) to unravel behind-the-scenes
design decisions involved to exploit low-end details and
controls of modern disks and RAIDs, and (2) to
understand the various implications of applying such an
approach.

Since understanding the cross-layer approach near
physical storage involves intimate interactions with
specific hardware characteristics, implementations and
empirical measurements are required to learn first-hand
lessons. To assure positive outcomes, we began with
the proven optimization of track-aligned extents (i.e.,
track-aligned disk accesses) and its derivative RAID for
our clean-room implementations. Since track
alignment addresses policies regarding storage
allocation and access granularity, we also experimented

with scheduling policies by exploring our proposed
method of coordinating queues within a RAID. The
intent is to draw generalized lessons from various ways
of exploiting low-level hardware details.

The fundamental observation in track-aligned extents is
that an operating system generally accesses disks in
blocks, each containing multiple sectors. Therefore,
accessing a block can potentially cross a track boundary
and incur additional head positioning time to switch
tracks. By revealing and exploiting track boundaries
above the disk device driver interface, [Schindler et al.
2002] observes that when accessing near a track size of
information, aligned accesses according to the track
boundary can deliver 50% performance improvement.
This range of performance gain also relies on disks that
support zero-latency access, which allows the tail-end
of a requested track to be accessed before the beginning
of the requested track content [Worthington et al. 1995].

The same principle of exploiting low-level hardware
details can also be generalized to RAIDs. For instance,
when accessing a stripe of information, a RAID needs
to wait for the slowest disk in the RAID to complete its
service, which can incur the worst-case queuing, seek,
and rotational delays. Atropos [Schindler et al. 2004]
reduces the worst-case delays by applying track-aligned
accesses to disks to reduce the expected worst-case
rotational delay for accessing a stripe.

To address the worst-case queuing time among disks in
a RAID, we designed and implemented a way to
coordinate disk queues, with an aim for a striped
request to be sent to disks at approximately the same
time. This coordination can also potentially improve
the synchrony of disk head locations, ameliorating the
worst-case seek time among disks.

4 Recreating Track-aligned Extents

The three main tasks to duplicate the track-aligned
extents work are (1) finding the track boundaries and
the zero-latency access disk characteristics, (2) making
use of such information, and (3) verifying its
performance benefits. The hardware and software
experimental settings are summarized in Table 4.1.

Hardware/software Configurations
Processor Pentium D 830, 3GHz, 16KB L1 cache,

2x1MB L2 cache

Memory 128 MB or 2GB
RAID controller Adaptec 4805SAS
Disks tested Maxtor SCSI 10K5 Atlas, 73GB, 10K

 RPM, 8MB on-disk cache [Maxtor
 2004]
Seagate CheetahR 15K.4 Ultra320 SCSI,
 36GB, 8MB on-disk cache [Seagate
 2007]
Fujitsu MAP3367NC, 10K RPM, 37GB,
 with 8MB on-disk cache [Fujitsu 2007]

Operating system Linux 2.6.16.9
 File system Ext2 [Card et al. 1999]

Table 4.1: Hardware/software experimental
specifications.

4.1 Extracting Disk Characteristics

Simple request scanning: Since the reported
performance benefits for track alignments are high,
conceivably, a user-level program can observe timing
variations to identify track boundaries. A program can
incrementally issue reads, requesting one more sector
than before, staring from the 0th sector. As the request
size grows, the disk bandwidth should first increase and
then drop as the request size exceeds the size of the first
track (due to track switching overhead). The process
can then repeat, starting from the first sector of the
previously found track. The inefficiency of this
algorithm can be reduced via applying binary search.

To reduce disturbances introduced by various hardware
and software components of the disk data path, we used
DIRECT_IO flag to bypass the Linux page cache, and
we accessed the disk as a raw device to bypass the file
system. We used a modified aacraid driver code to
bypass the SCSI controller, and we used sdparm to
disable the read cache (RCD=1) and prefetch (DPTL=0)
of the disk.

As a sanity check, we also attempted to start all reads
from an arbitrary position of the 256th sector.
Additionally, we attempted to start each read with a
random sector between 0 and 512, with each
succeeding request size increasing by 1 sector (512
bytes). Figure 4.1.1 shows the resulting graph.

0
10
20
30
40
50
60
70

0 1000 2000 3000 4000 5000 6000 7000

Request size (sectors)

Bandwidth
(MB / sec)

Starting from the 0th sector 256th sector random sectors
Figure 4.1.1: Bandwidth comparison for different
read request sizes from different starting sectors on
a Maxtor disk.

Surprisingly, although the graph exhibits bandwidth
“cliffs,” the characteristic trends are not sensitive to the
starting location of requests, suggesting that those cliffs
are caused by sources of data misalignments other than
tracks. Some possibilities are transfer granularity of
the direct memory access (DMA) and the management
granularity of IO buffers. The graph also suggests the
presence of other optimizations that are not disabled.
For example, the high bandwidth before the first cliff
far exceeds our expected performance gain. Also, for
certain ranges of request sizes (e.g., between 1,000 and
1,500 sectors), the average bandwidth shows
multimodal behaviors.

To verify that those cliff locations are not track
boundaries, we wrote a program to access random cliff
locations with the access size of 512 sectors (256KB) as
indicated by the first cliff location. We ran multiple
instances of this program concurrently and perceived no
noticeable performance difference compared to the
cases where the accesses started with random sectors.

SCSI diagnostic commands: Unable to extract track
boundaries from a naive user-level program, we
resorted to SCSI SEND/RECEIVE DIAGNOSTIC
commands to map a logical block address (LBA) to a
physical track, surface, and sector number.1 However,
this sector-by-sector translation of large model drives is
very slow, and it took days to extract an entire 73-GB
Maxtor Atlas V drive. We modified the
sg_senddiag program in the Linux sg3_utils
package to speed up the extraction process, according
to the following pseudocode:

1. Extract from LBA 0 sector-by-sector until we detect

a track boundary (e.g., either track number or
surface number changes). Record LBA and the
physical address of the boundary. Store the track
size S.

2. Add track size S to the last known track boundary T

and translate S + T and S + T – 1.

a. If we detect a track change between S + T and S
+ T – 1, then S + T is a new boundary. Record
LBA and the physical address of the boundary.
Go to step 2.

b. If there is no change between S + T and S + T –

1, the track size has changed. Extract sector-
by-sector from the last known track boundary
until we detect a new track boundary. Record
LBA and physical address of the boundary.
Update the track size S. Go to step 2.

1 We did not use Dixtrac [Schindler and Ganger 1999] for the
purpose of clean-room implementation and validation.

3. If sector reaches the end of disk in step 2, exit.

Through this mechanism, we extracted information not
always documented by vendors’ datasheets and
manuals [Maxtor 2004; Fujitsu 2007; Seagate 2007] in
about 7 minutes.

First, the LBA mapping to the physical track number is
not monotonic (Figure 4.1.2). For the Maxtor drive,
LBA 0 starts on track 31 of the top surface and
increases outward (from the disk spindle) to track 0,
and then LBA continues from the bottom surface of
track 0 inward to track 31. Next, the LBA jumps to
track 63 of the bottom surface growing outward to track
32, and then switches back to the top surface’s track 32
and continues inward to track 63. The pattern repeats.

Figure 4.1.2: Non-monotonic mapping between
LBA and track numbers.

Variants of this serpentine numbering scheme
[Anderson 2003] are observed in Seagate [2007] and
Fujitsu [2007] drives as well. One can conjecture this
numbering scheme in relation to the elevator and
scanning-based IO schedulers. In terms of
performance characteristics, one might expect
additional timing variations due to the track numbering
system, in addition to track boundaries.

Second, the number of sectors contained in each track is
different between the top and bottom surfaces, even for
the same track number. For example, for a Maxtor
drive, a track on the top surface of track 0 may contain
1,144 sectors, and the bottom surface of the track 0 may
contain 1,092 sectors. One explanation is that certain
sectors are spares. By having spares within each track,
bad sectors can be remapped without introducing
additional seek delays. In the context of track alignment,
this finding implies additional bookkeeping for each
disk surface.

Third, the track size differs even for the same disk
model from the same vendor. In a batch of 6 Maxtor
10K V drives purchased at the same time, we found 4
different LBA numbering schemes (Table 4.1.1). The
implication is that track extraction cannot be performed
once per disk model. It potentially needs to be
performed on every disk. Track size differs even in
the same zone on the same surface, though rarely and

only slightly. We saw that some tracks begin on their
second sectors, that is, LBA skips the first sector of that
track. Due to all these irregular anomalies, we are no
longer able to calculate track boundary with zone
information but have to extract all tracks.

Serial number Surface 0, outer most
track

Surface 1, outer most
track

J20 Q3 CZK 1144 sectors 1092 sectors
J20 Q3 C0K 1092 sectors 1144 sectors
J20 Q3 C9K 1092 sectors 1144 sectors
J20 TK 7GK 1025 sectors 1196 sectors
J20 TF S0K 1060 sectors 1170 sectors

J20 TF MKK 1060 sectors 1170 sectors
Table 4.1.1: Different Track Sizes of Maxtor 10K
V Drives.

Track boundary verifications: To verify the track
information extracted via the SCSI diagnostic
commands, we wrote a program to measure the elapsed
time to access 64 sectors of data with shifting offsets
from random track boundaries. The use of 64 sectors
eases the visual identifications of track boundaries. We
measured tracks only from the top surface within the
first zone of a Maxtor disk, so we can simplify our
experiment by accessing mostly a track size of 1,144
sectors.

0
2
4
6
8

10
12
14

0 1144 2288

Offset from track boundaries (sectors)

Elapsed time
(msec)

Figure 4.1.3: Elapsed time to access random 64
sectors, starting from different offsets from SCSI-
command-extracted track boundaries on a Maxtor
drive. The track size is 1,144 sectors.

Figure 4.1.3 confirms our extracted track boundaries.
Each data point represents the time to access a 64-
sector request starting from a randomly chosen sector
offset from a track boundary. The 6-msec range of
timing variation reflects the rotation-delay variations
for a 10,000 RPM drive. The average elapsed time of
accessing 64 sectors across a track boundary is 7.3
msec, compared to 5.7 msec for not crossing the track
boundaries. Interestingly, the difference of 1.6 msec is
much higher than the track switching time of 0.3 to 0.5
msec [Maxtor 2004]. We also verified this extraction
method with other vendor drives. The findings were
largely consistent.

Zero-latency feature verification: Since the range of
performance gain by track-aligned access depends on
whether a disk can access the information within a track
out-of-order, we performed the tests suggested in

[Worthington et al. 1995]. Basically, we randomly
picked two consecutive sectors, read those sectors in
the reverse LBA order, and observed the timing
characteristics. This test was performed with various
caching options on.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Access time (msec)

Percentage of
accesses

Fujitsu 1st access
Fujitsu 2st access
Maxtor 1st access
Maxtor 2nd access
Seagate 1st access
Seagate 2nd access

Figure 4.1.4: CDF of disk access times for
accessing random sets of two consecutive LBAs in
the reverse order.

As shown in Figure 4.1.4, with a Maxtor drive, for 50%
of the time the second request is served from the cache,
indicating the zero-latency capability. (We did not
observe correlations between the chosen sectors and
whether the zero-latency feature is triggered.) In
contrast, the other two drives always need to wait for a
3- to 6-msec rotational delay before serving the second
sector request. For the remaining paper, we will use
the Maxtor drives.

4.2 Exploiting Track Boundaries

The track boundary information can be exploited at
different levels.

User level: One possibility is to create a user program
to make use of this track information. The mechanism
is similar to the disk defragmentation process. Instead
of moving file blocks to reduce the level of
fragmentation, we can move blocks to align with track
boundaries. This approach avoids kernel
modifications and can make files smaller than a track
not crossing track boundaries, and files larger than a
track aligned to track boundaries.

Unfortunately, this approach needs to overcome many
tricky design points. For example, certain blocks are
referenced from many places (e.g., hardlinks).
Moving those blocks requires tracking down and
updating all references to the block being moved.
Such information might not be readily available. Also,
we need to consider conditions where a system might
crash amid our disk layout reorganization process.
Finally, similar to defragmentation, data blocks can
become miss-aligned after a period of time (e.g., files
being added and deleted). It is necessary to re-align
data periodically. The overhead of performing such
periodic tasks may outweigh the performance benefits.

File system level: We can mark certain sectors as bad
(e.g., modify the bad-block list before running a file
system creation program) so a file system cannot
allocate blocks that consist of sectors across track
boundaries. However, this method alone does not
prevent a near-track-size file being allocated across two
tracks. This approach also anticipates some
bandwidth loss when a single process tries to access
multi-track files due to unused sectors. However,
when a system is under multiple concurrent streams, the
performance benefits of accessing fewer tracks when
multiplexing among IO streams can outweigh the
performance loss due to unused sectors.

The Linux ext2 file system uses pre-allocation [Card et
al. 1999] to reserve a default of 7 blocks adjacent to the
block just requested. To allocate files based on tracks,
we imported the boundary block list into the kernel so
that file system components could use track information.
For the ease of validation, we modified the ext2 pre-
allocation routine to allocate in tracks (or up to a track
boundary, which is marked as a bad block by the file
system creation program). One clear disadvantage of
this approach is over-allocation, but the unused space
can be later returned to the system. However, should
the system anticipate mostly track-size accesses, we are
less concerned with the wasted space. For instance,
database and multimedia applications can adjust their
access granularity accordingly.

With the aid of this list, we can also change the read-
ahead to perform prefetch on a track basis. Even
though files are track-aligned, benefits can hardly show
up without a track-based access pattern. Linux
readahead not only uses a small prefetch window
(default 128KB, compared with around 500KB track
size) but also adjusts the window dynamically based on
the hit ratio. As a result, several prefetch requests are
needed to read the entire track, which can incur
additional rotational delay and diminish the benefits of
track alignment. Especially, requests to different files
can be interleaved and cause both additional rotational
delay and seek, further lowering the efficiency.

Implementation: We used the track boundary list
extracted by the SCSI diagnostic commands as the bad-
block list input for the mke2fs program, which marks
all these blocks, so that they will not be allocated to
files. We also put this list in a kernel module along
with two functions. One initializes and reads the list
from user space. The other is used by different kernel
components to find a track boundary after a given
position. For optimization, we implemented binary
search in this function.

There are two places in the kernel making use of the
search function. First, pre-allocation looks for the first
block of a track (the block right after a track boundary)

and then allocates this track to a requesting file. The
end of a track (the next boundary) can be identified by a
used block marked by mke2fs so that the pre-
allocation ends properly. One implication is that
individual file systems need to be modified to benefit
from track alignments. Second, when a readahead
starts a new prefetch window, it drops all prefetching
requests that exceed the track boundary.

4.3 Verification of the Performance Benefits

Bonnie: We chose a widely used benchmark called
Bonnie [Bray 1996], which is unaware of the
underlying track-alignment mechanisms. Bonnie
consists of many phases, stressing the performance of
character and block IOs amidst sequential and random
access patterns. The two phases of our interests are
the sequential write and read. The sequential write
phase creates a 1-GB file, which exceeds our 128-MB
memory limit, and reads it sequentially. We enabled
SCSI cache, disk caching, and prefetch to better reflect
normal usage. Each experiment was repeated 10 times,
analyzed at a 90% confidence interval.

0
10
20
30
40
50
60
70
80
90

Write Read

Bandwidth
(MB / sec)

Track-aligned
Normal

Figure 4.3.1: Bandwidth comparisons between
conventional and track-aligned accesses to a single
disk, when running the Bonnie benchmark.

Figure 4.3.1 shows the expected 3% slowdown for a
single stream of sequential disk accesses, where
skipped blocks that cross track boundaries can no
longer contribute to the bandwidth.

0
5

10
15
20
25
30
35
40
45

Track-aligned Track-aligned,
no on-disk
prefetch

Normal Normal, no on-
disk prefetch

Time (sec)

Figure 4.3.2: Speed comparisons between
conventional and track-aligned accesses to a single
disk, diffing two 512MB files with 128MB of RAM.

We also ran a diff program (from GNU diffutils
2.8.1) to compare two 512-MB large files via
interleaved reads between two files, with the –speed-

large-files option. Without this option, diff
will try to read one entire file into the memory and then
the other file and compare them if memory permits,
which nullifies our intent of testing interleaved reads.
We have two settings: the normal and the track-
aligned case. Figure 4.3.2 shows that track-aligned
accesses are almost twice as fast as the normal case.
In addition, we observed that disk firmware prefetch
can violate the track-aligned prefetch issued from the
file system readahead, as disk firmware prefetch has no
regard for track boundaries. Disabling on-disk
prefetch further speeds up track-aligned access by
another 8%. Therefore, for subsequent experiments,
we disabled disk firmware prefetch for track-aligned
accesses.

Since track-aligned extents excel in handling concurrent
accesses, we conducted an experiment that involves
concurrent processes issuing multimedia-like traffic
streams at around 500KB/sec. We used 2GB for our
memory size. We wrote a script that increases the
number of multimedia streams by one after each second,
and the script records the startup latency of each new
stream. Each emulated multimedia streaming process
first randomly selects a disk position and sequentially
accesses the subsequent blocks at the specified
streaming rate. We assumed that the acceptable
startup latency is around 3 seconds, and the program
terminates once the latency reaches 3 seconds.

0

0.5

1

1.5

2

2.5

3

10 100

Number of request streams

Startup latency
(sec)

Track-aligned
Large-readahead
Normal

Figure 4.3.3: Startup latency comparisons of
conventional I/O requests, requests with a one-track
prefetch window, and track-aligned requests on a
single disk, with a varying number of multimedia-
like request streams.

Figure 4.3.3 shows that the original disk can support up
to 130 streams with the startup latency within 3 seconds.
A track-size readahead window can reduce the latency
at 130 streams by 30%, while the track-aligned access
can reduce the latency by 55%.

5 Track-aligned RAIDs

One natural step to generalize the notion of exposing
and exploiting the hardware characteristics of a single
disk is to construct RAIDs with track-aligned accesses.
However, recall in Section 4.1 that the track sizes can
differ even for the same disk model from the same
vendor. One immediate implication is that each disk
in a RAID needs to be scanned one after another on a
machine to extract track boundaries.

Another implication is that there are different ways to
form stripes. For one, we can just construct stripes
with tracks of different sizes. Although this scheme
can work with RAID-0, it does not load balance well
and work well with other RAID levels. For example,
RAID-5 parity is generated via XORing chunk units
(units of data striping) of the same size. Suppose we
want the chunk unit to be set to the size of a track.
Should we use the largest track size as the chunk unit,
some disks need to use 1+ tracks to form a chunk. Or,
we can use the smallest track size as the chunk unit,
leading to unused sectors for disks with larger track
sizes.

Intriguingly, we observed that RAID levels that involve
parity can interact poorly with prefetching in the
following way. Take RAID-5 as an example. At the
file system level, prefetching one track from each non-
parity disk involves a prefetching window that is the
size of a track multiplied by the number of disks that
does not contain the parity information. However, as
a RAID redirects the contiguous prefetching requests
from the file system level, the actual forwarded track-
size prefetching requests to individual disks are
fragmented, since reads in RAIDs do not need to access
the parity information.

Another poor interaction is the Linux plug and unplug
mechanisms associated with disk queues and multi-
device queues. These mechanisms are designed to
increase the opportunities for data reordering by
introducing artificial forwarding delays at times (e.g., 3
msec), and do not respect track boundaries. Therefore,
by making these mechanisms aware of track boundaries,
combined with all prior considerations, we were finally
able to make individual disks in a RAID-5 to access in
a track-aligned manner.

5.1 Implementation

We modified Linux software RAID-5 to implement the
track-aligned accesses. To overcome the
heterogeneous track sizes, we used the plug/unplug
mechanisms to enforce track-aligned accesses. By
doing so, chunk sizes and striping mechanisms become
more independent of disks with different track sizes.

We inserted a piece of code in the Linux software
RAID-5 make_request function. When an IO

request arrives, this function translates the RAID virtual
disk address into individual disk addresses. We then
monitored the translated requests to see if they were
requests that cross track boundaries. The unplug
functions for individual disk queues were then
explicitly invoked to issue track-aligned requests.

To prevent the RAID-5 parity mechanisms from
fragmenting track-size prefetching requests to
individual disks, we modified RAID-5. Whenever the
parity holding disk in a stripe was the only one not
requested for that stripe, we filled in the read request
for that disk and passed it down with all others. When
this dummy request was completed, we simply
discarded the data. The data buffer in Linux software
RAID-5 is pre-allocated at initialization, so this
implementation does not cause additional memory
overhead.

5.2 Verification of Performance Benefits

We compared the base case RAID-5 with a track-
aligned RAID-5 with 5 disks, and a chunk size of 4KB.
For the Bonnie benchmark, we used a 1-GB working
set with 128MB of RAM. Figure 5.1 shows that the
write bandwidth for the three system settings falls
within a similar range due to buffered writes.
However, for read bandwidth, the track-aligned RAID-
5 outperforms the conventional one by 57%.

The diff experiment compared between two 512-MB
files with 128MB of RAM. Figure 5.2 shows that the
track-aligned RAID-5 can achieve a 3x factor speedup
compared to the original RAID-5.

For the multimedia-like workload with 2GB of RAM,
the track-aligned RAID-5 demonstrates a 3.3x better
scaling in concurrency than the conventional RAID-5,
where a RAID-5 with a readahead window comparable
to the track-aligned RAID-5 contributes only less than
half of the scaling improvement. The latency
improvement of track-aligned RAID-5 is particularly
impressive considering that the original RAID-5 was
expected to degrade in the latency characteristics when
compared to the single-disk case, due to the widening
timing variance of disks and the need to wait for the
slowest disk for striped requests. Track-aligned
accesses reduce the worst-case rotational timing
variance and can realize more benefits of parallelism.

0
20

40
60
80

100
120

140
160

Write Read

Bandwidth
(MB / sec)

Track-aligned RAID-5

RAID-5 with a large
readahead
RAID-5

Figure 5.1: Bandwidth comparisons of the track-
aligned RAID-5, a RAID-5 with a prefetch window
of 4 tracks, and the original RAID-5, running
Bonnie with 1GB working set and 128MB of RAM.

0

5

10

15

20

25

30

35

40

45

Track-aligned
RAID-5

RAID-5 with a
large readahead

RAID-5

Elapsed time
(secs)

Figure 5.2: Elapsed time comparisons of the track-
aligned RAID-5, a RAID-5 with a prefetch window
of 4 tracks, and the original RAID-5, when running
diff comparing two 512MB files.

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

Number of request streams

Startup latency
(sec)

Track-aligned RAID-5
Large readahead
RAID-5

Figure 5.3: Startup latency comparisons of the
track-aligned RAID-5, a RAID-5 with a prefetch
window of 4 tracks, and the original RAID-5, with a
varying number of multimedia-like request streams.

6 Coordinated I/O Scheduler

Track-alignment mainly addresses the allocation and
access granularity aspects. Another aspect of the
storage handling concerns IO scheduling.

Linux 2.6 supports a number of IO schedulers, namely,
noop, deadline, anticipatory [Iyer and Druschel 2001],
and complete fairness queue (CFQ). Their main
purposes include (1) gathering and merging small
adjacent IO requests into one large contiguous request,
and (2) reordering requests so that they can enforce

different IO priorities. For example, a deadline-based
scheduler maintains one sorted list based on a request’s
block address and another FIFO list based on the
request arrival time. When it is time to send the
request to a disk, the scheduler will consider the block
distance from the previous block request as well as the
expiration time of the current request (i.e., arrival time
plus the maximum waiting time) to choose the next
request. CFQ additionally considers the IO budgets of
each process, similar to a CPU scheduler.

Although per-disk schedulers are effective when
operating in isolation, they are largely unaware of other
schedulers when a single RAID request involves
multiple disks, leading to missed optimization
opportunities. As a result, a striped request may wait
longer because one of the disks decides to serve other
requests before the striped request. Therefore, if we
can coordinate different schedulers to serve a striped
request at around the same time, we can reduce the
worst-case latency by having disk heads and request
queues in better synchrony.

6.1 Design Space

One way to coordinate per-disk queues is to make each
queue aware of other queues via explicit messaging.
Therefore, whenever a queue changes its state, the
queue will also inform other queues of its changed
status. The downside of this coordination is poor
scaling. As the number of disks increases, the number
of synchronization messages grows quadratically.

A centralized coordination approach is to associate an
IO’s request priority with arrival time. By doing so, a
striped request will have similar priority values when
being processed by the per-disk queue. However, the
downside of the time-based coordination is the
difficulty of incorporating time into the computation of
request priority, knowing that the time value is not
bounded by a range. Therefore, as time elapses, the
priority computation will eventually be overtaken by
the weighting of the time value.

A third approach leverages the length of per-disk
queues for synchronization, which the value is bounded.
The rationale is that if one of the disks is very busy at
the moment, it makes little sense for other disks to
serve this striped request early. Therefore, all requests
in a stripe can be set with a priority associated with the
maximum of all disk queue lengths. Should other
requests arrive on disks with shorter queues, they can
be served before the striped request. Alternatively, we
can set all requests of a stripe to a priority associated

with the minimum of all disk queue lengths, so that
striped requests are served at the earliest possible time.

6.2 Implementation

We extended the CFQ scheduler to take various disk
queue lengths into consideration when computing the
IO priority for various requests. At the RAID layer,
before forwarding requests that belong to a stripe, the
maximum queue length is computed based on the
number of pending requests in per-disk queues. Then,
within the per-disk CFQ scheduler, the relative block
distance between the current and the previous request
(computed in the cfq_choose_req function) is
adjusted by the maximum queue length left shifted by a
weight factor.

)(

)max(

max

max 1

WeightQLenDistDist

QLenQLenQLen

blockblock

DiskDisk N

<<+=

= Κ

The maximum relative block distance is determined by
the size of the hard drive. In our case, about 19
million blocks for the 73-GB Maxtor drive. The
maximum possible queue length is defined by
BLKDEV_MAX_RQ in Linux, which is 128 by default.
Therefore, for the queue length to have an influence
equal to that of the block distance, we need the weight
factor to be set to around 16 when the system is under a
heavy concurrent load.

6.3 Performance Evaluation

Figure 6.3.1 summarizes the performance of
coordinated queues in relation to RAID-5 and track-
aligned accesses. Intriguingly, coordinated queues
improved the concurrency scaling by a factor of only
1.2x, while the track-aligned RAID improved scaling
by a factor of 3.3x. Also, when the track-aligned
RAID-5 was combined with coordinated queues, no
significant performance differences were observed.

0

0.5

1

1.5

2

2.5

3

1 31 61 91 121 151 181

Number of request streams

Startup latency
(sec)

Track-aligned RAID-5

Track-aligned RAID-5
with coordinated queues
RAID-5 with coordinated
queues
RAID-5

Figure 6.3.1: Startup latency comparisons of the
track-aligned RAID-5, the track-aligned RAID-5
with coordinated queues, the original RAID-5 with

coordinated queues, and the original RAID-5, with a
varying number of multimedia-like request streams.

Since the chosen weight for the coordinated queues can
affect the performance, we conducted a sensitivity
analysis by varying the weight from 10 to 30 for the
same scaling experiment. Figure 6.3.2 shows that the
startup latency CDF variation is generally within 10%.

Puzzled by the limited combined benefits between the
track-aligned RAID-5 and the coordinated queue, we
plotted the moving average of the disk head distance
among five disks, for various schemes. Intriguingly,
Figure 6.3.3 shows that the track-aligned RAID-5
actually synchronizes disk heads better than the
coordinated queues due to two possible reasons. First,
the plugging and unplugging mechanisms used to honor
track boundaries actually interact with the scheduling of
striped requests. Second, our implementation of the
track-aligned RAID-5 also requests the parity
information on reads, reducing the chances of
divergence for disk head locations.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 1 2 3 4 5 6 7 8 9 10
Startup latency (sec)

Percentage of
accesses

10
12
14
16
18
20
22
24
26
28
30

Figure 6.3.2: Startup latency CDF comparisons of
different weights used for coordinated queues, with
a varying number of multimedia-like request
streams.

0
0.5

1
1.5

2
2.5

3
3.5

4

0 50 100 150 200

Time (sec)

Head distance
(million sectors)

Track-aligned RAID-5

Track-aligned RAID-5 +
coordinated queues
Coordinated queues

RAID-5

Figure 6.3.3: Disk head location deviation (10
seconds moving average) comparisons of the track-
aligned RAID-5, the track-aligned RAID-5 with
coordinated queues, the original RAID-5 with
coordinated queues, and the original RAID-5, with a
varying number of multimedia-like request streams.

7 Lessons Learned

Based on our clean-room implementations of the track-
aligned accesses and RAIDs, our duplication of results

confirms the significant performance benefits that can
be achieved by exposing and exploiting low-level disk
details for high-level optimizations. The validation of
research results obtained five years ago also
demonstrates the relative resiliency and applicability to
several generations of disks. Although the benefits of
our proposed coordinated queues seem to be subsumed
by the track-aligned accesses, their combined results
show our limited understanding of the current data path
and how disk allocation granularity, access alignment,
and scheduling interact. Additionally, we have
experienced the following lessons first-hand.

First, the effectiveness of the cross-layer coordination
near the hardware level is only as good as our
understanding of modern disks, which is not necessarily
made available by vendors. This paper presents only a
fraction of graphs that we can explain. We have
encountered many more unknowns about modern disks
due to their multimodal behaviors, undocumented
features, and interactions with the disk controller, DMA,
memory manager, IO scheduling, and so on. Since
there is no bounding contract between the vendors and
the storage system designers other than the device
driver interface, cross-layer coordination of storage
system needs to be able to extract rapidly evolving disk
characteristics and exploit them automatically.

Second, it is difficult to guarantee homogeneous disk
behaviors even for the same model that are purchased
from the same batch and made by the same vendor. In
the case of using many disks, the extraction of hardware
characteristics might impose high (one-time) overhead,
depending on whether the extraction process can be
performed in parallel.

Finally, exploiting hardware characteristics and
coordinating parallel components is not a trivial task
due to the size of configuration space. Also,
optimizations tailored to one aspect (e.g., allocation
granularity) of the data-handling characteristics may
interact with other aspects (e.g., data alignment and
scheduling) in intricate ways. Thus, storage system
designers must have a good understanding of how
various mechanisms interact to achieve predictable
results. Unfortunately, such understanding is largely
missing due to the legacy complexity of the storage
data path. Unless optimization can bring sufficient
benefit to overpower various interactions, the combined
performance gains can deviate significantly from those
realized in isolation.

8 Related Work

Since the early file systems, storage designers have
realized the power of tailoring file system design to the
underlying disk characteristics. FFS [McKusick et al.
1984] exploits the spatial locality of accessing

consecutive and nearby blocks on disks to improve
performance. LFS [Matthews et al. 1997] exploits
both spatial locality for sequential writes and temporal
locality for nearby disk-block reads for performance
improvement.

Within recent years, cross-layer coordination with low-
level storage has begun to attract research attention.
In addition to the track-alignment, Lumb et al. [2000]
exploit the rotational bandwidth that can be extracted
during seeks in order to perform low-priority disk
requests. Sivathanu et al. [2003] and Sivathanu et al.
[2005] made low-level storage aware of the file systems
and database applications running above them, so the
data location policies could be optimized according to
the semantic knowledge of the file system and the
database data structures. Atropos [Schindler et al.
2004] stripes data across disks in a track-aligned
manner and supports two dimensional data structures
via efficient diagonal access to blocks on adjacent
tracks. Schlosser et al. [2005] exploit the low seek
time for nearby tracks in order to place
multidimensional data sets.

Exposing the use of many disks to the file-system level
leads to many parallel file system designs. For
instance, PVFS [Carnes et al. 2000] modifies the
semantics of file system calls to reduce disk contentions.
GPFS [Schmuck and Haskin 2002] performs file
striping and mirroring at the file system level to achieve
good load balancing and reliability.

The Conquest file system [Wang et al. 2002] shows that,
by exposing the use of memory storage medium to the
file-system level, tailored optimizations achieve a 3.5x
speedup compared to conventional memory caching.

In addition to file systems, disk queue performance can
be improved further by investigating underlying
hardware. For instance, Lo et al. [2005] discovered
that shortest-job-first scheduling of independent disks
in RAID-0 can interleave striped requests, which leads
to longer latency for each stripe to complete. They
propose a least-remaining-request-size-first strategy to
reduce latency.

Further, cross-layer coordination can be applied at
levels higher than the physical hardware to improve
performance. For example, Nugent et al. [2003]
provided bypass mechanisms for user-level applications
to directly control data storage locations on disks to
improve the chance of sequential accesses.

9 Conclusion

Through the clean-room duplication of the track-
aligned access and its incorporation in RAIDs, and
through exploring a proposed method to coordinate per-
disk queues in RAIDs, we have validated the
performance benefits achievable by applying the cross-
layer coordination technique to storage. However, we
also need to overcome the diversity of disk behaviors
and the size of design space to take advantage of
hardware details.

Therefore, for the cross-layer approach to become
broadly applicable at these levels, we need to overcome
rapid hardware evolution by inventing ways to obtain
hardware characteristics efficiently and exploit them
automatically. The cross-layer coordination approach
also prompts us to either develop a better understanding
of the legacy storage data path or simplify the data path
enough to make it understandable; otherwise, the
benefits of the end-point optimization can be potentially
reduced due to unforeseen interactions, or diffused due
to the need to explore a vast configuration space.

Acknowledgements

We thank Mark Stanovich and Adaptec for helping us
bypass some RAID controller features. We also thank
Peter Reiher, Geoff Kuenning, Sarah Diesburg,
Christopher Meyers, and Mark Stanovich for reviewing
early drafts of this paper. This research is sponsored
by NSF CNS-0410896. Opinions, findings, and
conclusions or recommendations expressed in this
document do not necessarily reflect the views of the
NSF, FSU, or the U.S. government.

References

[Anderson 2003] Anderson D. You Don’t Know Jack

about Disks. Storage. 1(4), 2003.
[Bray 1996] Bray T. Bonnie benchmark.

http://www.textuality.com/bonnie/download.html, 1996.
[Card et al. 1999] Card R, Ts’o T, Tweedie S.

Design and Implementation of the Second Extended
Filesystem. The HyperNews Linux KHG Discussion.
http://www.linuxdoc.org (search for ext2 Card Tweedie
design), 1999.

[Carnes et al. 2000] Carns PH, Ligon WB III, Ross
RB, Thakur R. PVFS: A Parallel File System For
Linux Clusters. Proceedings of the 4th Annual Linux
Showcase and Conference, Atlanta, GA, October 2000.

[Fujitsu 2007] MAP3147NC/NP MAP3735NC/NP
MAP3367NC/NP Disk Drives Product/Maintenance
Manual.
http://www.fujitsu.com/downloads/COMP/fcpa/hdd/dis
continued/map-10k-rpm_prod-manual.pdf, 2007.

[Iyer and Druschel 2001] Iyer S, Druschel P.
Anticipatory Scheduling: A Disk Scheduling
Framework to Overcome Deceptive Idleness in

Synchronous I/O. Proceedings of the 18th ACM
Symposium on Operating Systems Principles, 2001.

[Lo et al. 2005] Lo SW, Kuo TW, Lam KY.
Multi-disk Scheduling for Time-Constrained Requests
in RAID-0 Devices. Journal of Systems and Software,
76(3), pp. 237-250, 2005.

[Lumb et al. 2000] Christopher R. Lumb, Jiri
Schindler, Gregory R. Ganger, David F. Nagle, and
Erik Riedel. Towards Higher Disk Head Utilization:
Extracting Free Bandwidth from Busy Disk Drives.
Symposium on Operating Systems Design and
Implementation. USENIX Association, 2000.

[Matthews et al. 1997] Matthews JN, Roselli D,
Costello AM, Wang RY, Anderson TE. Improving
the Performance of Log-Structured File Systems with
Adaptive Methods. Proceedings of the 16th ACM
Symposium on Operating Systems Principles, pp. 238-
251, October, 1997.

[Maxtor 2004] Atlas 10K V Ultra320 SCSI Hard
Drive.
http://www.darklab.rutgers.edu/MERCURY/t15/disk.pd
f, 2004.

[McKusick et al. 1984] McKusick MK, Joy WN,
Leffler SJ, Fabry RS. A Fast File System for UNIX,
Computer Systems, 2(3), pp. 181-197, 1984.

[Nugent et al. 2003] Nugent J, Arpaci-Dusseau AC,
Arpaci-Dusseau RH. Controlling Your PLACE in the
File System with Gray-box Techniques. Proceedings
of the USENIX Annual Technical Conference, 2003.

[Patterson et al. 1988] Patterson DA, Gibson G,
Katz RH, A Case for Redundant Arrays of Inexpensive
Disks (RAID). ACM SIGMOD International
Conference on Management of Data, 1(3), pp.109-116,
1988.

[Saltzer et al. 1981] Saltzer JH, Reed DP, Clark DD.
End-to-End Arguments in System Design.
Proceedings of the 2nd International Conference on
Distributed Systems, 1981.

[Schindler and Ganger 1999] Schindler J, Ganger GR.
Automated Disk Drive Characterization. CMU SCS
Technical Report CMU-CS-99-176, December 1999.

[Schindler et al. 2002] Schindler J, Griffin JL,
Lumb CR, Ganger GR. Track-Aligned Extents:
Matching Access Patterns to Disk Drive Characteristics.
Proceedings of the 1st USENIX Conference on File and
Storage Technologies, 2002.

[Schindler et al. 2004] Schindler J, Schlosser SW,
Shao M, Ailamaki A, Ganger GR. Atropos: A Disk
Array Volume Manager for Orchestrated Use of Disks.
Proceedings of the 3rd USENIX Conference on File and
Storage Technologies, 2004.

[Schlosser et al. 2005] Schlosser SW, Schindler J,
Papadomanolakis S, Shao M, Ailamaki A, Faloutsos C,
Ganger GR. On Multidimensional Data and Modern
Disks. Proceedings of the 4th USENIX Conference on
File and Storage Technology, 2005.

[Schmuck and Haskin 2002] Schmuck F, Haskin R.
GPFS: A Shared-Disk File System for Large

Computing Clusters. Proceedings of the 1st
Conference on File and Storage Technologies, 2002.

[Seagate 2007] Product Manual: CheetahR 15K.4
SCSI.
http://www.seagate.com/staticfiles/support/disc/manual
s/enterprise/cheetah/15K.4/SCSI/100220456d.pdf, 2007.

[Sivathanu et al. 2003] Muthian Sivathanu, Vijayan
Prabhakaran, Florentina I. Popovici, Timothy E.
Denehy, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Semantically-Smart Disk Systems.
Proceedings of the 2nd USENIX Conference on File
and Storage Technologies, 2003.

[Sivathanu et al. 2005] Sivathanu M,
Bairavasundaram LN, Arpaci-Dusseu AC, Arpaci-
Dusseau RH. Database-Aware Semantically-Smart

Storage. Proceedings of the 4th USENIX Conference
on File and Storage Technologies, 2005.

[Wang et al. 2002] Wang AI, Kuenning GH, Reiher
P, Popek GJ. Conquest: Better Performance
Through a Disk/Persistent-RAM Hybrid File System,
Proceedings of the 2002 USENIX Annual Technical
Conference, June 2002.

[Worthington et al. 1995] Worthington BL, Ganger
GR, Patt YN, Wilkes J. On-line Extraction of SCSI
Disk Drive Parameters. ACM Sigmetrics Conference
on Measurement and Modeling of Computer Systems,
1995.

