
Technical Report TR-071005, Department of Computer Science, Florida State University, October 2007.

Flow-Sensitive Loop-Variant Variable Classification in Linear Time

Yixin Shou Robert van Engelen∗

Deptartment of Computer Science
Florida State University
Tallahassee, FL 32306

{shou,engelen}@cs.fsu.edu

Johnnie Birch
Deptartment of Computer Science
University of Texas at San Antonio

San Antonio, TX 78249
birch@cs.utsa.edu

Abstract

This paper presents an efficient algorithm for classifying generalized induction variables and
flow-sensitive loop-variant variables that have arbitrary conditional update patterns along mul-
tiple paths in a loop nest. Variables are recognized and translated into closed-form functions,
such as linear, polynomial, geometric, wrap-around, periodic, and mixer functions. The remain-
ing flow-sensitive variables (those that have no closed forms) are bounded by tight bounding
functions on their value sequences by bounds derived from our extensions of the Chains of Re-
currences (CR#) algebra. The classification algorithm has a linear worst-case execution time
in the size of the SSA region of a loop nest. Classification coverage and performance results for
the SPEC2000 benchmarks are given and compared to other methods.

1 Introduction

Induction variables (IVs) [1, 10, 12, 13, 14, 23] are an important class of loop-variant variables whose
value progressions form linear, polynomial, or geometric sequences. IV recognition plays a critical
role in optimizing compilers as a prerequisite to loop analysis and transformation. For example,
a loop-level optimizing compiler applies array dependence testing [23] in loop optimization, which
requires an accurate analysis of memory access patterns of IV-indexed arrays and arrays accessed
with pointer arithmetic [9, 21]. Other example applications are array bounds check elimination [11],
loop-level cache reuse analysis [3], software prefetching [2], loop blocking, variable privatization, IV
elimination [1, 10, 12, 22], and auto-parallelization and vectorization [23].

The relative occurrence frequency in modern codes of flow-sensitive loop-variant variables that
exhibit more complicated update patterns compared to IVs is significant. The authors found that
9.32% of the total number of variables that occur in loops in CINT2000 are conditionally updated
and 2.82% of the total number of variables in loops in CFP2000 are conditionally updated. By
contrast to IVs, these variables have no known closed-form function equivalent. As a consequence,
current IV recognition methods fail to classify them. The result is a pessimistic compiler analysis
outcome and lower performance expectations.

Closer inspection of the SPEC2000 benchmarks reveals that value progressions of all of these
flow-sensitive loop-variant variables can be bounded with tight bounding functions that are de-
fined over the loop iteration space. Typically a pair of linear lower- and upper-bound functions on

∗Supported in part by NSF grant CCF-0702435.

1

variables that have conditional increments suffices for simple cases, such as conditionally updated
counters. However, more complicated cases do exist in these benchmarks, where variables have mul-
tiple “discordant” updates along different paths in the loop body. Bounding the value progressions
of these variables has the advantage of increased loop analysis coverage. Bounding also significantly
alleviates loop analysis accuracy problems in the presence of unknowns. Most compilers will simply
give up on loop analysis and optimization when a single variable with a recurrence in a loop has an
unknown value progression. With the availability of tight functional (i.e. iteration-specific) bounds
on variables, analysis and optimization can continue. For example, in [7, 20] it was shown that cur-
rent dependence analysis methods can be extended to handle such functional bounds. We believe
this approach can also strengthen methods for array bounds check elimination, loop-level cache
reuse analysis, software prefetching, and loop restructuring optimizations that require dependence
analysis.

Efficient automatic classification of flow-sensitive variables has two challenges to overcome:

• How to symbolically construct accurate bounding functions on the value progressions of vari-
ables that are conditionally updated, conditionally reinitialized, and more generally, exhibit
multiple coupled assignments in the branches of a loop body?

• How reduce the search cost for flow-sensitive variables across all branches in a loop nest when
loops may have an exponentially growing number of control flow paths?

To collect coupled variable update operations in a loop, search methods that use loop body path
enumeration can be used. However, full path enumeration requires an exponential number of steps
to complete in the worst case. Furthermore, the use of bounds should be restricted to the necessary
cases only. This means that the “traditional” form of IVs in loops should still be classified as
linear, polynomial, and geometric. Thus, speed of a classification algorithm can only be traded in
for accuracy of classifying flow-sensitive variables that have (multiple) conditional updates in loops.

This paper presents a linear-time flow-sensitive loop-variant variable analysis algorithm based
on the method by Gerlek et al. [10] and the CR# (CR-sharp) algebra [19]. The contributions of
this paper are:

• A systematic classification approach based on new CR# algebra extensions to analyze a large
class of loop-variant variables “in one sweep” without the need for a-priori classification and
recurrence solvers.

• A new algorithm for classification of flow-sensitive variables, i.e. variables that are arbitrarily
updated in multiple branches of the loop body, with a running time that scales linearly with
the size of the code region of a loop nest.

• An implementation in GCC 4.1 of the classifier.

The remainder of this paper is organized as follows. In Section 2 we compare related work.
Section 3 gives CR# algebra preliminaries. Section 4 presents the linear time, flow-sensitive IV
classification algorithm based on the CR# algebra. In Section 5 results are presented using an im-
plementation in GCC 4.1. Performance results on SPEC2000 show increased classification coverage
with a very low running time overhead. Section 6 summarizes the conclusions.

2

+

j1

j2

j4

j3

+

22

0

j1

+

2

0

j2

2

j3

j4

i1

i2

+

1

1

*
+

j1

j2

j4

j3

+

32

0

j1

+

2

0

j2

0

j3

j4

loop
j1 = φ(0, j4)

if (. . .)
j2 = j1 + 2

else
j3 = j1 + 2

j4 = φ(j2, j3)
endloop

loop
i1 = φ(1, i2)
j1 = φ(0, j4)

if (. . .)
j2 = i1 ∗ 2

else
j3 = j1 + 2

j4 = φ(j2, j3)
i2 = i1 + 1

endloop

loop
j1 = φ(0, j4)

if (. . .)
j2 = j1 + 2

else
j3 = j1 + 3

j4 = φ(j2, j3)
endloop

loop
j1 = φ(0, j4)

if (. . .)
j2 = 0

else
j3 = j1 + 2

j4 = φ(j2, j3)
endloop

Closed-form
solution: Closed-form solution: Bounds: Bounds:
j1(I) = 2∗I j1(I) = 2∗I 2∗I ≤ j1(I) ≤ 3∗I 0 ≤ j1(I) ≤ 2∗I

(a) Syntactically (b) Semantically (c) Discordant (d) Conditional
equivalent equivalent updates re-initialization

updates updates

Figure 1: Loops with Flow-Sensitive Loop-Variant Variable Updates

2 Related Work

While the recognition of “traditional” forms of IVs is extensively described in the literature, there
is a limited body of work on methods to analyze more complicated flow-sensitive loop-variant
variables that have arbitrary conditional update patterns along multiple paths in a loop nest. We
compared this related work to our approach. To compare the capabilities of all of these approaches,
Figure 1 shows four example loop structures1 with a classification of their fundamentally different
characteristics.

The method by Gerlek, Stoltz and Wolfe [10] classifies IVs by detecting Strongly Connected
Components (SCCs) in a FUD/SSA graph using a variant of Tarjan’s algorithm [16]. Each SCC
represents an IV or a loop-variant variable. A collection of interconnected SCCs represent a set
of interdependent IVs. The IV classification proceeds by matching the update statement patterns
for linear, geometric, periodic, and polynomial IVs and by constructing the closed-form character-
istic function of each IV using a sequence-specific recurrence solver. Induction variable substitu-
tion (IVS) is then applied to replace induction expressions with equivalent closed-form functions.

1All examples in this report will be given in Single Static Assignment (SSA) form.

3

j1

+

1i1

i2

+

1

0

a[]

99 loop
i1 = φ(0, i2)
j1 = φ(99, i1)

a[j1 + 1] = . . .
. . .
i2 = i1 + 1

endloop

i1 = {0, 1, 2, 3, 4, . . .}
j1 = {99, 0, 1, 2, 3, . . .}

Figure 2: SCC of the SSA Form of an Example Loop with a Wrap-around Variable

The method suggests a sequence strengthening method to handle restricted forms of conditionally-
updated variables. However, the variables in Figure 1(a) and (c) would be loosely classified as a
monotonic variables, without identifying its linear sequence or bounds.

Loops with syntactic and semantically equivalent updates Figure 1(a,b) require aggressive sym-
bolic analysis and expression manipulation to prove equivalence of updates in branches. Haghighat
and Polychronopoulos [12] present a symbolic differencing technique to capture induction variable
sequences by applying abstract interpretation. Symbolic differencing with abstract interpretation
is expensive. They do not handle the classes of loops shown in Figure 1(c,d).

Wu et al. [24] introduce a loop-variant variable analysis technique that constructs a lattice of
monotonic evolutions of variables, which includes variables with discordant updates Figure 1(c).
However, her approach only determines the direction in which a variable changes and other infor-
mation such as strides are lost. Closed-form functions of IV progressions are not computed.

Recent work by several authors [6, 15, 17, 18] incorporates the Chains of Recurrences (CR)
algebra [25] for IV recognition and manipulation. The use of CR forms eliminates the need for
a-priori classification, pattern matching, and recurrence solvers. All of these approaches use a vari-
ation of an algorithm originally proposed by Van Engelen [18] to construct CR forms for IVs. The
primary advantage of these methods is the manipulation of CR-based recurrence forms rather than
closed-form functions, which gives greater coverage by including the recognition and manipulation
of IVs that have no closed forms.

An extensive loop-variant variable recognition approach based on CR forms is presented in [20].
The approach captures value progressions of all types of conditionally-updated loop-variant vari-
ables Figure 1(a-d). The method uses full path enumeration on Abstract Syntax Tree (AST) forms.
The algorithm has an exponential worst-case complexity due to the complexity of path enumeration.

The class of re-initialized variables Figure 1(d) and wrap-around variables shown in Figure 2
are special cases of “out-of-sequence variables” (OSV), which take a known sequence but have
exceptional “out-of-sequence” restart values that occur at certain, but compile-time unpredictable,
events in the loop iteration space. Even though the relative percentage of these types of variables in
benchmarks is low (0.55% in CINT2000 and to 0.62% in CFP2000), their classification is important
to enable loop restructuring [12]. The common wrap-around variable is a special case of an OSV:
it is assigned a value outside the loop for the first iteration and then takes the value sequence
of another IV for the remainder of the iterations. Wrap-around variables can cascade: any IV
that depends on the value of a wrap-around variable is itself a wrap-around variable of one order
higher [10] (two iterations with out-of-sequence values). Wrap-around variables are recognized by
methods described in [6, 10, 12, 18].

4

By contrast to these methods, the approach presented in this paper enables analysis of coupled
loop-variant variables in multiple SCCs Figure 1(a-b) (both formed by conditional and uncondi-
tional flow) in “one sweep” and constructs lower- and upper-bounding functions for flow-sensitive
variables Figure 1(c-d).

3 Preliminaries

This section briefly introduces Chains of Recurrences (CR). For more details, see [4, 18, 25].

3.1 The CR Notation and Algebra

The CR notation and algebra was introduced by Zima [25] and later extended by Bachmann [4]
and Van Engelen [18]. A basic recurrence Φi is of the form:

Φi = {ϕ0,�1, f1}i
which represents a sequence of values starting with an initial value ϕ0, updated in each iteration
over a uni-distant grid by operator �1 (either + or ∗) and stride value f1. When f1 is constant,
the sequence is either linear (� = +) or geometric (� = ∗). When f1 is a non-constant function in
CR form then we have a chain of recurrences:

Φi = {ϕ0,�1, {ϕ1,�2, {ϕ2, · · · ,�k, {ϕk}i}i}i}i
which is usually written in flattened form

Φi = {ϕ0,�1, ϕ1,�2, · · · ,�k, ϕk}i
Any discrete real- or complex-valued function can be represented by a CR, assuming that the
stride function ϕk = fk(i) is sufficiently expressive. For constant ϕk, the CR notation represents
polynomials, exponentials, factorials, and trigonometric functions (exponentials in the complex
domain). The value sequences of three example CR forms is illustrated below:

iteration i = 0 1 2 3 4 5 . . .

{2,+, 1}i value sequence = 2 3 4 5 6 7 . . .
{1, ∗, 2}i value sequence = 1 2 4 8 16 32 . . .
{1, ∗, 1

2}i value sequence = 1 1
2

1
4

1
8

1
16

1
32 . . .

{0,+, 0,+, 1}i value sequence = 0 0 1 3 6 10 . . .
{1, ∗, 2,+, 1}i value sequence = 1 2 6 24 120 720 . . .
{0,+, 1, ∗, 2}i value sequence = 0 1 3 7 15 31 . . .

The semantics of the one-dimensional CR form is defined by the pseudo-code loop template shown
in Figure 3. The loop computes the value sequence val[i] of the CR form Φi = {ϕ0,�1, · · · ,�k, ϕk}i
for i = 0, . . . , n using variables crj initialized with the (symbolic) CR coefficients.

For example, the value sequence of the CR form {1, ∗, 1,+, 1}, where cr0 = cr1 = ϕ2 = 1, is
computed for n = 5 as follows:

iteration i = 0 1 2 3 4 5
val[i] = 1 1 2 6 24 120
cr0 = 1 2 6 24 120 2880
cr1 = 2 3 4 5 6 7
ϕ2 = 1 1 1 1 1 1

5

cr0 = ϕ0

cr1 = ϕ1

: = :
crk−1 = ϕk−1

for i = 0 to n−1
val[i] = cr0

cr0 = cr0 �1 cr1

cr1 = cr1 �2 cr2

: = : : :
crk−1 = crk−1 �k ϕk

endfor

Figure 3: Semantics of the CR Form Φi = {ϕ,�1, · · · ,�k, ϕk}i Expressed as a Loop Template

During each iteration i, the value at val[i] is set to cr0, cr0 is set to cr0 ∗ cr1, and cr1 is set to
cr1 + ϕ2, thereby producing the well-known factorial sequence val[i] = i!.

Multi-variate CRs (MCR) are CRs with coefficients that are CRs in a higher dimension [4].
Multi-dimensional loops are used to evaluate MCRs over grids.

The power of CR forms is exploited with the CR algebra: its simplification rules produce CRs
for multivariate functions and functions in CR form can be easily combined. Below is a selection
of CR algebra rules2:

c ∗ {ϕ0,+, f1}i ⇒ {c∗ϕ0,+, c∗f1}i
{ϕ0,+, f1}i ± c ⇒ {ϕ0 ± c,+, f1}i

{ϕ0,+, f1}i ± {ψ0,+, g1}i ⇒ {ϕ0 ± ψ0,+, f1 ± g1}i
{ϕ0,+, f1}i ∗ {ψ0,+, g1}i ⇒ {ϕ0∗ψ0,+, {ϕ0,+, f1}i∗g1+{ψ0,+, g1}i∗f1+f1∗g1}i

CR rules are applicable to IV manipulation. For example, suppose i is a loop counter with CR
{0,+, 1}i and j is a linear IV with CR {j0,+, 2}i which has a symbolic unknown initial value j0.
Then expression i2 + j is simplified to

{0,+, 1}i ∗ {0,+, 1}i + {j0,+, 2}i ⇒ {0,+, 1,+, 2}+ {j0,+, 2}i ⇒ {j0,+, 3,+, 2}i

The closed form function f of this CR is f(I) = j0 + I ∗ (I + 2), which is derived by the application
of the CR inverse rules defined in [17]. A lattice of CR forms for simplification and methods for IV
analysis is introduced in [19]. In [17] Van Engelen proved that the CR algebra as a term rewriting
system (TRS) is complete (confluent and terminating). Therefore, CR forms are normal forms of
the CR algebra TRS.

3.2 The CR# Algebra

The CR# (CR-sharp) algebra is an extension of the CR algebra with new operators, algebra rules,
and CR form alignment operations to derive CR bounding functions. The key idea is to replace
the � operator in a CR form with a selection operator while retaining the formal semantics of a
CR.

2See [17] for the complete list of CR algebra simplification rules.

6

3.2.1 The Delay Operator of the CR# Algebra

Delay operator # was introduced in the CR algebra as an extension (CR#) by Van Engelen in [19].

Definition 1 The delay operator # is a right-selection operation defined by

(x#y) = y for any x and y.

CRs with #-operators will be referred to as delayed CRs. The #-operator allows several initial
values to take effect before the rest of the sequence kicks in:

iteration i = 0 1 2 3 4 5 . . .

{9,#, 1,+, 2}i value sequence = 9 1 3 5 7 9 . . .
{1, ∗, 1,#, 2}i value sequence = 1 1 2 4 8 16 . . .

Delayed CRs are an essential instrument to analyze “out-of-sequence variables”.

3.2.2 CR# Alignment and CR# Bounds

To effectively analyze the value sequences of conditionally updated variables that are present in a
loop nest, new rules for CR# alignment and CR# bounds construction are introduced. Two or
more CR forms of different lengths or with different operations can be aligned for comparison.

Definition 2 Two CR forms Φi and Ψi over the same index variable i are aligned if they have the
same length k and the operators �j, j = 1, . . . , k, form a pairwise match.

For example, the CR {1,+, 1, ∗, 1} is aligned with the CR {0,+, 2, ∗, 2}i. The CR {1,+, 2}i is not
aligned with the CR {1, ∗, 2}i, because the operators differ. The CR {1,+, 2}i is not aligned with
the CR {1,+, 2,+, 1}i, because the lengths differ.

To align a (delayed) CR form of a mixed polynomial and geometric function to a longer (delayed)
CR form, + operators can be inserted. This allows for pairwise alignment of CRs by moving the ∗
operators to higher order CR coefficients.

Lemma 1 Let Φi = {a, ∗, r}i be a geometric CR form with initial value a and ratio r (r is invariant
of i). Then,

Φi = {a,+, a(r − 1),+, a(r − 1)2,+, · · · ,+, a(r − 1)m, ∗, r}i

for any positive integer m > 0.

Proof. The proof is by induction on m.

• For the base case m = 1 we show that {a, ∗, r}i = {a,+, a(r − 1), ∗, r}i in two steps.

1. Consider a = 1. By the definition of the CR semantics in Section 3.1 the sequence
f [i] for {1, ∗, r}i and g[i] for {1,+, r−1, ∗, r}i are computed by the following two loop
templates:

7

cr0 = 1
for i = 0 to n–1
f [i] = cr0

cr0 = cr0 ∗ r
endfor

cr0 = 1
cr1 = r–1
for i = 0 to n–1
g[i] = cr0

cr0 = cr0 + cr1

cr1 = cr1 ∗ r
endfor

(a) For iteration i = 0, we find that f [0] = g[0]
(b) For iterations i = 1, . . . , n− 1, we find that

f [i] =
i−1∏
j=0

r

= ri

g[i] = 1 +
i−1∑
j=0

(r − 1)rj

= 1 +
i−1∑
j=0

r rj −
i−1∑
j=0

rj

= 1 +
i∑

j=1

rj −
i−1∑
j=0

rj

= ri

2. Consider a 6= 1. It follows from the CR algebra in [19] that {a, ∗, r}i = a{1, ∗, r}i and
a{1,+, r−1, ∗, r}i = {a,+, a(r−1), ∗, r}i, and therefore that

{a, ∗, r}i = a{1, ∗, r}i
= a{1,+, r − 1, ∗, r}i
= {a,+, a(r − 1), ∗, r}i

• Suppose the equation holds for k = m− 1. We have

Φi = {a,+, a(r − 1),+, a(r − 1)2,+, · · · ,+, a(r − 1)k, ∗, r}i

Because the “flat” CR form Φi is identical to a nested CR form [5, 26], we use the base case
to rewrite the tail part of the nested CR form as follows

{a,+, a(r−1),+, · · · ,+, a(r−1)k, ∗, r}i
= {a,+, a(r−1),+, · · · ,+, {a(r−1)k, ∗, r}i}i
= {a,+, a(r−1),+, · · · ,+, {a(r−1)k,+, a(r−1)k(r−1), ∗, r}i}i
= {a,+, a(r−1),+, · · · ,+, {a(r−1)k,+, a(r−1)k+1, ∗, r}i}i
= {a,+, a(r−1),+, · · · ,+, a(r−1)m−1,+, a(r−1)m, ∗, r}i

8

Thus, it follows from the induction hypothesis that

Φi = {a,+, a(r−1),+, a(r−1)2,+, · · · ,+, a(r−1)m, ∗, r}i.

�

Corollary 1 Let Φi = {ϕ0,�1, · · · ,�k−1, ϕk−1, ∗, ϕk}i such that ϕk is invariant of i. Then, any
number m > 0 of + operators can be inserted at the (k−1)th coefficient

Φi = {ϕ0,�1, · · · ,�k−1, ϕk−1,

+, ϕk−1(ϕk−1),+, ϕk−1(ϕk−1)2,+, · · · ,+, ϕk−1(ϕk−1)m︸ ︷︷ ︸
inserted , ∗, ϕk}i

without changing the value sequence of Φi.

A delay operator can be inserted in a CR form according to the following lemma.

Lemma 2 Let Φi = {ϕ0,�1, ϕ1,�2, . . . ,�k, ϕk}i be a (multivariate) CR form. Then,

Φi = {ϕ0,#,FΦi}i

where F is called the forward shift operator, defined by

FΦi = {ψ0,�1, ψ1,�2, . . . ,�k, ψk}i

with ψj = ϕj �j+1 ϕj+1 for j = 0, . . . , k−1 and ψk = ϕk.

Proof. The value sequence val[i] of CR form Φi = {ϕ0,�1, ϕ1,�2, . . . ,�k, ϕk}i for i = 0, ..., n− 1
is computed by the following CR loop template:

cr0 = ϕ0

cr1 = ϕ1

: = :
crk−1 = ϕk−1

for i = 0 to n−1
val[i] = cr0

cr0 = cr0 �1 cr1

cr1 = cr1 �2 cr2

: = : : :
crk−1 = crk−1 �k ϕk

endfor

After loop peeling, we obtain

9

cr0 = ϕ0

cr1 = ϕ1

: = :
crk−1 = ϕk−1

val[0] = cr0

cr0 = cr0 �1 cr1

cr1 = cr1 �2 cr2

: = : : :
crk−1 = crk−1 �k ϕk
for i = 1 to n−1

val[i] = cr0

cr0 = cr0 �1 cr1

cr1 = cr1 �2 cr2

: = : : :
crk−1 = crk−1 �k ϕk

endfor

After rewriting the initialization assignments, we have

s = ϕ0

cr0 = ϕ0 �1 ϕ1

cr1 = ϕ1 �2 ϕ2

: = :
crk−1 = ϕk−1 �k ϕk
val[0] = s
for i = 1 to n−1

val[i] = cr0

cr0 = cr0 �1 cr1

cr1 = cr1 �2 cr2

: = : : :
crk−1 = crk−1 �k ϕk

endfor

By using s as a wrap-around variable in the loop to sink val[0]=s back into the loop, we obtain

s = ϕ0

cr0 = ϕ0 �1 ϕ1

cr1 = ϕ1 �2 ϕ2

: = :
crk−1 = ϕk−1 �k ϕk
for i = 0 to n−1

val[i] = s
s = cr0

cr0 = cr0 �1 cr1

cr1 = cr1 �2 cr2

: = : : :
crk−1 = crk−1 �k ϕk

endfor

10

To see that this sequence computation is equivalent to the sequence of {ϕ0,#,FΦi}i, we use the
definition of the forward shift operator F . The value sequence val[i] of CR form {ϕ0,#,FΦi}i is
computed by the CR template:

s = ϕ0

cr0 = ψ0 = ϕ0 �1 ϕ1

cr1 = ψ1 = ϕ1 �2 ϕ2

: = :
crk−1 = ψk−1 = ϕk−1 �k ϕk
for i = 0 to n−1

val[i] = s
s = s # cr0

cr0 = cr0 �1 cr1

cr1 = cr1 �2 cr2

: = : : :
crk−1 = crk−1 �k ϕk

endfor

Because the assignment s = s # cr0 is identical to s = cr0, the value computations are semantically
equivelent. Thus, this completes the proof that

Φi = {ϕ0,#,FΦi}i

�
To align two CR forms of unequal length, the shorter CR can be lengthened by adding dummy

operations as follows.

Lemma 3 Let Φi = {ϕ0,�1, ϕ1,�2, · · · ,�k, ϕk}i be a (multivariate) CR form, where ϕk is invari-
ant of i. Then, the following identities hold

Φi = {ϕ0,�1, ϕ1,�2, · · · ,�k, ϕk,+, 0}i
Φi = {ϕ0,�1, ϕ1,�2, · · · ,�k, ϕk, ∗, 1}i
Φi = {ϕ0,�1, ϕ1,�2, · · · ,�k, ϕk,#, ϕk}i

Proof. The proof immediately follows from the CR semantics defined in Section 3.1, because the
initial value of the induction variable crk for coefficient ϕk is set to ϕk and the value of crk is
unchanged in the loop (either by adding zero or multiplying by one, or by the operation crk # crk).
�

From Lemmas 1, 2, and 3 it follows that any two CR forms can be aligned. Consider for example

Φi = {1,#, 1,+, 2}i = {1,#, 1,+, 2, ∗, 1}i
Ψi = {1, ∗, 2}i = {1,#, 2, ∗, 2}i = {1,#, 2,+, 2, ∗, 2}i

Alignment allows comparisons to be made between pairwise CR coefficients to determine bounds.
By comparing the coefficients of two CR forms we can determine the min/max bounds of two CR
forms as defined as follows.

11

Definition 3 The minimum of two CR form is inductively defined by

min({ϕ0,#, f1}i, {ψ0,#, g1}i)={min(ϕ0, ψ0),#,min(f1, g1)}i
min({ϕ0,+, f1}i, {ψ0,+, g1}i)={min(ϕ0, ψ0),+,min(f1, g1)}i
min({ϕ0, ∗, f1}i, {ψ0, ∗, g1}i)

=

{min(ϕ0, ψ0), ∗,min(f1, g1)}i
if ϕ0>0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0

{min(ϕ0, ψ0), ∗,max(f1, g1)}i
if ϕ0<0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0

{ϕ0, ∗, f1}i if ϕ0<0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0
{ψ0, ∗, g1}i if ϕ0>0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0
{−max(|ϕ0|, |ψ0|), ∗,max(|f1|, |g1|)}i if f1<0 ∨ g1<0
⊥ otherwise

where the sign of the coefficients is determined using the monotonicity properties of the coefficients.
The maximum of two CR forms is inductively defined by

max({ϕ0,#, f1}i, {ψ0,#, g1}i)={max(ϕ0, ψ0),#,max(f1, g1)}i
max({ϕ0,+, f1}i, {ψ0,+, g1}i)={max(ϕ0, ψ0),+,max(f1, g1)}i

max({ϕ0, ∗, f1}i, {ψ0, ∗, g1}i)

=

{max(ϕ0, ψ0), ∗,max(f1, g1)}i
if ϕ0>0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0

{max(ϕ0, ψ0), ∗,min(f1, g1)}i
if ϕ0<0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0

{ϕ0, ∗, f1}i if ϕ0>0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0
{ψ0, ∗, g1}i if ϕ0<0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0
{max(|ϕ0|, |ψ0|), ∗,max(|f1|, |g1|)}i if f1<0 ∨ g1<0
⊥ otherwise

Using this definition it is possible to construct bounding functions in CR form over sets of CRs.
Consider for example

min({1,#, 1,+, 2, ∗, 1}i, {1,#, 2,+, 2, ∗, 2}i)={1,#, 1,+, 2, ∗, 1}i
max({1,#, 1,+, 2, ∗, 1}i, {1,#, 2,+, 2, ∗, 2}i)={1,#, 2,+, 2, ∗, 2}i

Thus, the sequence of values of the CR form {1,#, 1,+, 2, ∗, 1}i provides a lower bound and the
sequence of values of the CR form {1,#, 2,+, 2, ∗, 2}i provides an upper bound on the two CRs.
This accurately captures the following behavior of the variable k (SSA variable k1) in the loop:

loop
j1 = φ(1, j2) // j1 = {1,+, 2}
k1 = φ(1, k4) // {1,#, 1,+, 2, ∗, 1} ≤ k1 ≤ {1,#, 2,+, 2, ∗, 2}

if (. . .)
k2 = j1 // update represented by {1,#, 1,+, 2}

else
k3 = 2 ∗ k1 // update represented by {1, ∗, 2}

j2 = j1 + 2 // update represented by {1,+, 2}
k4 = φ(k2, k3) // merge and align {1,#, 1,+, 2} and {1, ∗, 2}

endloop

12

4 Flow-Sensitive Loop-Variant Variable Classification

This section presents an algorithm to classify flow-sensitive loop-variant variables in linear time
based on CR forms. The algorithm has three parts: Collect-Recurrences, CR-Construction
and CR-Alignment-and-Bounds. These routines are described first, followed by an analysis of
complexity and accuracy.

4.1 Algorithms

4.1.1 Collect Recurrence Relations

The first phase of the algorithm is performed by Collect-Recurrences shown in Figure 4. The
routine computes the set of recurrence relations for a variable v defined in an assignment S and
this is repeated for each variable of a loop header φ-node. The algorithm visits each node in each
SCCs to compute sets of recurrence relations of loop-variant variables. The sets are cached at the
nodes for retrieval when revisited via a cycle, which ensures that nodes and edges are visited only
once.

The process is illustrated with an example code in SSA form and corresponding SCC shown in
Figures 5(a) and (b). The loop exhibits conditional updates of variable j. Starting from the loop
header φ-node j1, the algorithm follows the SSA edges recursively to collect the recurrence relations
for each SSA variable in the SCC. The φ function for j1 merges the initial value 0 outside the loop
and the update j7 inside the loop. Since conditional φ-node j7 merges two arguments j5 and j6,
to collect the recurrence sequence for j7, the recurrence sequences for j5 and j6 must be collected
first, which means j7 depends on j5 and j6. Thus, j5 was checked first for j7 and j4 was reached
by following the SSA edges from j5. The search continues until the starting loop header φ-node j1
is reached. The symbol j1 was returned and the recursive calling stops. Therefore, the recurrence
sequence for j2 can be obtained based on j1, which is j1 + 1. Similarly, based on this dependence
chain, the recurrences propagated for each SSA variable are shown in Figure 5(c).

Note that due to control flow variable j4 has two recurrences. Consequently, all variables
that depend on j4 have at least two recurrences. However, as the recurrences are propagated
they degenerate into lower and upper sequences to limit the algorithmic complexity. Finally, the
recurrence pair for loop header φ-node j1 is constructed with initial value 0 and bounding recurrence
sequences j1 + 4 and j1 + 6.

To compute the recurrences for variables in a multi-dimensional loop, the algorithm starts
with the analysis of the inner loop. More details with examples of multiple-dimensional loops are
discussed in later section.

4.1.2 Constructing CR Forms for Recurrences Relations

Algorithm CR-Construction(p) shown in Figure 6 converts recurrence relations of a variable
into CR form (the last step of the example shown in Figure 5(c)), where p denotes a recurrences
sequence pair with initial value v0 of variable v and recurrence sequence S. If variable v does not
appear in recurrence sequence S, then v is a conditionally reinitialized variable or wrap around
variable of any order.

To illustrate this process, consider a classic form of a wrap-around variable shown in Figure 2.

13

Algorithm Collect-Recurrences(v, S)
- input: program in SSA form, SSA variable v, and assignment S of the form var = expr
- output: recurrence sequence pair or recurrence sequence list

if expr is a variable x then
rec := Check(v,x) and store the pair (var, rec)
Return rec

else if expr is of the form x� y then
rec := Check(v,x) � Check(v,y) and store the pair (var, rec)
Return rec

else if expr is a loop header node φ(x,y) (x is defined outside the current loop and y is defined inside the current loop) then
I := Check(var,x) and Seq := Check(var,y)
Construct pair p := 〈var, (I, Seq)〉
Return p

else if expr is a conditional node φ(b1, · · · , bn) then
Check each branch of conditional φ node: B1 := Check(v, b1), · · ·,Bn := Check(v, bn)
Construct sequence list Seq := (B1, · · · , Bn)
Compute bound on Seq
if the length of the Seq list > Nthresh then Return ⊥
Store the pair (var, Seq)
Return Seq

else
Return ⊥

endif

Algorithm Check(v, x)
- input: loop header φ-node variable v and operand x
- output: recurrence sequence expression list

if x is loop invariant or constant then
Return x

else if x is an SSA variable then
if x is v then Return x
else if x has a CR form or recurrence Φ stored then

if Φ’s index variable loop level is deeper than current loop level then
Apply the CR#−1 rules to convert Φ to closed form f(I)
Replace I’s in f(I) with trip counts of index variables of the loop
Return f

else
Return Φ

endif
else if the loop depth where x located is lower than the loop depth where v located then

Return x
else

Return Collect-Recurrences(v, the statement S that defines x)
endif

endif

Figure 4: Collecting the Recurrence Relations from the SCCs of an SSA Loop Region

The CR forms are derived as follows, where j1 is a first-order wrap-around variable:

i1 : 〈i1, (0, i1 + 1)〉 ⇒ {0,+, 1}
j1 : 〈j1, (99, i1)〉 ⇒ {99,#, 0,+, 1}

j1 + 1 = {99,#, 0,+, 1}+ 1 = {100,#, 1,+, 1}

Now CR-Construction takes the pair 〈i1, (0, i1 + 1)〉 for variable i1 as the input. The CR form
for i1 is computed with rule (1) of the algorithm. Similarly, the CR form for j1 is computed based
on rule (5) of the algorithm. The application of the CR# algebra enables efficient manipulation
and simplification of expressions with wrap-around variables, such as the analysis of array subscript
j1 + 1 in Figure 2.

14

loop
j1 = φ(0, j7)
if (. . .)
j2 = j1 + 1

else
j3 = j1 + 2

j4 = φ(j2, j3)
if (. . .)
j5 = j4 + 3

else
j6 = j4 + 4

j7 = φ(j5, j6)
. . .

endloop

j1

j2

+

1

0

2

+

j3

j4

j5

+ +

j6

j7

3 4

var stored recurrence
j2 = j1 + 1
j3 = j1 + 2
j4 = φ(j2, j3)
⇒ [j1 + 1, j1 + 2]

j5 = j4 + 3
⇒ [j1 + 4, j1 + 5]

j6 = j4 + 4
⇒ [j1 + 5, j1 + 6]

j7 = φ(j5, j6)
⇒ [j1 + 4, j1 + 5, j1 + 6]
⇒ [j1 + 4, j1 + 6]

j1 = φ(0, j7)
⇒ φ(0, [j1 + 4, j1 + 6])
⇒ {0,+, 4}, {0,+, 6}

(a) SSA form (b) SCC from SSA (c) CR form derivation

Figure 5: Analysis of SSA φ-Node Join Points

4.1.3 CR Alignment and Bounds

To handle conditionally updated variables in a loop nest, we introduce an algorithm for CR align-
ment and bounds computation. The key idea is that two or more CR forms of different lengths
or with different operations can be aligned to enable pair-wise coefficient comparisons to efficiently
construct bounding functions on the combined sequences. The CR-based bounds are important to
determine the iteration-specific bounds on sequences as illustrated in Figures 1(c) and (d).

Algorithm CR-Alignment-and-Bounds shown in Figure 6 aligns multiple CRs and computes
bounding functions, which are two CR forms that represent lower- and upper-bound sequences.

Consider an example variable j1 which has three different recurrences due to control flow. The
input recurrence list pair for the algorithm CR-Alignment-and-Bounds is:

pl = 〈j1, (1, j1 + 3 → 2 ∗ j1 + 1 → 2 ∗ j1)〉

Algorithm CR-Construction computes CR forms for each recurrence in this list. We have
three different CR forms:

cr1 = {1,+, 3} = {1,+, 3, ∗, 1}
cr2 = {1,+, 2, ∗, 2} = {1,+, 2, ∗, 2}

cr3 = {1, ∗, 2} = {1,+, 1, ∗, 2}
where cr1, cr2, and cr3 are computed with rules (1), (3) and (2) in CR-Construction, respec-
tively. CR form cr1 is aligned using Lemma 3 and cr3 is aligned using Lemma 1. The minimal and
maximum bound of these CR forms is obtained with Definition 3 as follows:

min({1,+, 3, ∗, 1}, {1,+, 2, ∗, 2}, {1,+, 1, ∗, 2})={1,+, 1, ∗, 1}CR#−1

⇒ I + 1

max({1,+, 3, ∗, 1}, {1,+, 2, ∗, 2}, {1,+, 1, ∗, 2})={1,+, 3, ∗, 2}CR#−1

⇒ 3 ∗ 2I − 2

Therefore, we have the bounds I + 1 ≤ j1 ≤ 3 ∗ 2I − 2 for iteration I = 0, . . . , n.

15

Algorithm CR-Alignment-and-Bounds(pl)
- input: recurrences sequence list pair pl = 〈v, (I, Seq)〉
- output: CR Bounds solution

if length of the Seq list n > Nthresh then
Return ⊥

cr := CR-Construction(〈v, (I, first recurrence in Seq list)〉)
for each remaining recurrence e in Seq

Construct pair p := 〈v, (I, e)〉
cr1 := CR-Construction(p)
Align cr with cr1
if CR alignment succeeds then

Compute the bounds of cr and cr1 to cr
else

Return ⊥
endif

enddo
Store (v, cr) and Return cr

Algorithm CR-Construction(p)
- input: recurrences sequence pair p = 〈v, (v0, S)〉, where v0 is initial value

of variable v and S is the recurrence sequence for v
- output: CR Solution

(1) if S is of the form v + Ψ (Ψ can be CR or constant) then
Φ := {v0,+,Ψ}loop, where loop is the innermost loop v located

(2) else if S is of the form v ∗Ψ (Ψ can be CR or constant) then
Φ := {v0, ∗,Ψ}loop

(3) else if S is of the form c ∗ v + Ψ, where c is constant or a singleton CR form and
Ψ is a constant or a polynomial CR form then

Φ := {ϕ0,+, ϕ1,+, · · · ,+, ϕk+1, ∗, ϕk+2}loop, where
ϕ0 = v0; ϕj = (c− 1) ∗ ϕj−1 + ψj−1; ϕk+2 = c

(4) else if S is variable v then
Φ := {v0}loop

(5) else
Φ := {v0,#, S}loop

endif

Figure 6: Constructing CR Forms for Recurrence Relations

4.2 Examples

Consider two examples shown in Figure 7 and Figure 8. The loop nest shown in Figure 7(a)
exhibits conditional updates of variable i and j. The recurrence system and its solution are shown
in Figure 7(c) and (d). From the SSA form shown in Figure 7(b), an SCC for loop header φ-node
i2 can be found which contains two conditional φ-terms i3 and i4. Three different recurrences are
obtained by traversing this SCC starting from loop header φ-term i2. Based on three recurrences in
the sequence list pair, the CR solutions for loop header φ-term i2 are obtained. The CR alignment
and min, max bounding functions are applied to the set of CR forms, resulting in the lower and
upper dynamic value range bounds for variable i2 which is shown in Figure 7(d). The same analysis
procedure is applied for loop header φ-term j1 and the CR bounds for j1 is shown in Figure 7(d).

Consider the triangular loop nest shown in Figure 8. The algorithm starts with the analysis of
the inner loop of the loop shown in Figure 8(a). From the SSA form shown in Figure 8(b), an SCC
for loop header φ-term j1 can be found and recurrence pair for j1 is shown in Figure 8(c). The
algorithm return variable k1 as the initial value for the recurrence of loop header φ-term k4 since
k1 is defined in the outer loop of loop2 where variable k4 is defined. Thus, the CR forms for j1 and
k4 shown in Figure 8(d) are obtained using the CR construction algorithm CR-Construction.
The same analysis is applied for loop header φ-term i1 when we analyze the outer loop.

16

i = 2
j = 3
for (. . .)

if . . . then
i = 0

else
j = i
if . . . then

continue
endif

endif
i = i + 1

endfor

loop
j1 = φ(j2, 3)
i2 = φ(i4, 2)
i1 = i2 + 1
i3 = φ(1, i1)
. . .
j4 = φ(j1, i2)
i5 = i3
j2 = φ(i2, j4)
i4 = φ(i2, i5)
. . .

endloop

i2:
〈i2, (2, i2)→ (2, 1)→ (2, i2 + 1)〉

j1:
〈j1, (3, j1)→ (3, i2)〉

i2 :
min: {2,#, 1}
max: {2,#, 3,+, 1}

j1 :
min: {3,#, 2,#, 1}
max: {3,#, 3,#, 3,+, 1}

(a) Loop Nest (b) SSA Form (c) Recurrences list pairs (d) CR Solutions

Figure 7: Conditional and Wrap Around Recurrences

To analyze the outer loop header φ-term k1, the algorithm Collect-Recurrences starts from
k1 and follows the SSA edge to the variable k4. Since k4 belongs to the inner loop, the CR#−1

rules are applied to convert the CR form of k4 to closed form and then update the closed form with
trip count of the inner loop. The total effect is to compute the aggregate value of the recurrence
updates to k4 in the inner loop. The recurrence form of the variable k1 is shown in Figure 8(c)
with the aggregate recurrence updates. After substituting i1 in the recurrence pair with its CR
form and simplify it, the recurrence form for k1, which is 〈k1, (0, k1 + {3,+, 3})〉, is obtained. The
CR form for k1 shown in Figure 8(d) is obtained by CR construction algorithm.

4.3 Complexity

In the worst case there are 2n cycles in the SCC for n number of φ-node join points, see Figure 9.
Methods based on full path enumeration require 2n traversals from j1 to jn. However, the presented
algorithm is linear in the size of the SSA region of a loop nest as explained as follows.

The algorithms CollectRecurrences and Check perform a recursive depth-first traversal
of the SSA graph to visit each node to collect recurrences. When the Collect-Recurrences
algorithm visits a node in the SSA graph, the recurrence collected for this SSA variable is stored
in a cache for later retrieval. Whenever this node is visited again via another data flow path, the
cached recurrence forms are used. Thus, it is guaranteed that the algorithm visits each node and
each edge in the SSA graph only once, which has the same complexity as Tarjan’s algorithm [16].

For example, in Figure 5(c) each SSA node in the SCC cycle has recurrences stored and updated
during the traversal of the SCC. Assume that the algorithm visits the leftmost successor of φ-nodes
first. To obtain the recurrence for variable j7, the edges from j5 was followed first to collect the
recurrence for node j4 in depth-first manner. The recurrence stored for j4 guarantee all the successor
node of j4 in the graph and the node j4 itself will not be revisited via edge from j6.

Note that each time a new set of recurrence pairs at a conditional φ-node is merged this
potentially increases the recurrence set by a factor of two. However, the set is reduced immediately

17

k = 0
for (i=1 to n)

for (j=1 to i)
k = k + 3

endfor
endfor

loop1
i1 = φ(i2, 1)
k1 = φ(k3, 0)
i2 = i1 + 1
loop2
j1 = φ(j2, 1)
k4 = φ(k3, k1)
k3 = k4 + 3
j2 = j1 + 1

endloop2
endloop1

Recurrences pairs
after inner loop
analysis
〈j1, (1, j1 + 1)〉
〈k4, (k1, k4 + 3)〉

Recurrences pairs
after outer loop
analysis
〈i1, (1, i1 + 1)〉
〈k1, (0, k1 + 3 ∗ i1)〉

i1 : {1,+, 1}loop1
k1 : {0,+, 3,+, 3}loop1
j1 : {1,+, 1}loop2
k4 : {k1,+, 3}loop2

(a) Loop Nest (b) SSA Form (c) Recurrences (d) CR Solutions

Figure 8: Recurrences in Multiple Dimensional Loop

by eliminating duplicate recurrence relations and eliminating relations that are already bounded by
other relations, see e.g. Figure 5. The size of the set of recurrence relations cannot exceed Nthresh,
which is a predetermined constant threshold. A low threshold speeds up the algorithm but limits
the accuracy.

Table 1 shows the statistical data on the size of recurrence relation list for conditional loop-
variant variables collected by our algorithm from the SPEC2000 benchmarks. The first column in
the table lists the benchmarks. Only those benchmarks which have at least one conditional loop-
variant variable are listed in the table. The columns labeled “Maximum”, “Mean”, and “Standard
Deviation” show the value of the maximum size, average size of the recurrence list and the standard
deviation value for each benchmark.

From the result of Table 1 it can be concluded that the average size of the recurrence list for
conditional updated variables ranges from 2.00 to 2.41 and the standard deviation value for each
benchmark ranges from 0.0 to 0.61, which is very small. Clearly, Nthresh = 10 is sufficiently large
to handle the SPEC2000 benchmarks accurately and given that the standard deviation is small we
expect that this threshold value will be effective to handle a wide range of real-world application
codes in general.

j1

⊕

⊕

⊕

⊕

jn... ...…

Figure 9: An SCC with 2n Cycles Constructed from a Loop with n φ-Nodes

18

Table 1: The Size of Recurrence List for Conditional Variable in SPEC2000

Benchmark Max Mean St.dev.
CINT2000
164.gzip 3 2.41 0.49
175.vpr 3 2.08 0.27
181.mcf 3 2.22 0.33
186.crafty 3 2.05 0.21
197.parser 3 2.04 0.20
254.gap 4 2.26 0.49
255.vortex 3 2.08 0.28
256.bzip2 4 2.32 0.61
300.twolf 3 2.06 0.24
Average 3.22 2.17 0.35

CFP2000
173.applu 2 2 0.0
177.mesa 2 2 0.0
179.art 2 2 0.0
183.equake 2 2 0.0
187.facerec 2 2 0.0
188.ammp 3 2.2 0.4
189.lucas 2 2 0.0
200.sixtrack 2 2 0.0
Average 2.13 2.025 0.04

Because the cost for analyzing an SSA node operation is constant and the cost of recurrence
updates at nodes is bounded by Nthresh, the worst-case complexity is O(|SSA|), where |SSA|
denotes the size of the SSA region.

4.4 Accuracy

The algorithm recognizes IVs with closed forms accurately when IVs are not conditionally updated,
thereby producing classifications that cover linear, polynomial, geometric, periodic, and mixer
functions, similar to other nonlinear IV recognition algorithms [10, 12, 22]. For conditionally
updated loop-variant variables that have no closed forms the algorithm produces bounds.

By comparison, in certain exceptional cases, the full path analysis algorithm [20] is more accu-
rate in producing bounds than the linear time algorithm presented in this paper. This phenomenon
occurs when variables are coupled or combined in induction expressions. In that case their original
relationship may be lost, which results in looser bounds than full path analysis. However, the
greatest disadvantage of the full path analysis method is its exponential execution time.

To illustrate the effect of coupling on the accuracy of the algorithms, an example comparison
is shown in Figure 10 for a Quicksort partition loop. The full path search results are shown
in Figure 10(b) and the linear-time results is in Figure 10(c). Full path analysis computes CR
solution for variable i, j, and s in the example loop separately for two paths of the program. The

19

i = 0
j = n
do

if (. . .)
i = i + 1

else
j = j − 1

s = j − i
. . .
while (s > 0)

Path 1:
i = {0,+, 1}
j = n
s = j - i = {n,+,−1}

Path 2:
j = {n,+,−1}
i = 0
s = j - i = {n,+,−1}

Solution for iteration I:
0 ≤ i ≤ I
n−I ≤ j ≤ n
s = {n,+,−1}

Variable Min CR Max CR
i {0} {0,+, 1}
j {n,+,−1} {n}
s = j-i {n,+,−2} {n}

(a) Loop (b) Full path search results (c) Linear-time results

Figure 10: Comparison of Full Path Search and Linear Time Algorithms

CR result {n,+,−1} for variable s = j− i is equal in two paths because on of the updates i = i+ 1
and j = j − 1 is always taken. Instead of the single CR form for s, the CR solutions of the faster
algorithm for variable s are bounded by {n,+,−2} and {n}, which is less accurate than full path
search.

5 Implementation and Experimental Results

The following classes of loop-variant variables are recognized and classified by the algorithm.

Linear induction variables are represented by nested CR forms {a,+, s}i, where a is the integer-
valued initial value and s is the integer-valued stride in the direction of i. The coefficient a
can be a nested CR form in another loop dimension. Linear IVs are the most common IV
category.

Polynomial induction variables are represented by nested CR forms of length k, where k is the
order of the polynomial. All � operations in the CR form are additions, i.e. � = +. For
example, the variable CppObjectAddr and DbObjectAddr in Figure 11(a) are pointer IV with
polynomial CR form {DbObjectAddr,+, 0,+,AttrDbSize} and {CppObjectAddr,+, 0,+,Attr01Size}.

Geometric induction variables are represented by the CR form {a, ∗, r}i, where a and r are loop
invariant. For example, the variable n in Figure 11(b) are Geometric induction variable with
CR form {1, ∗, 10}.

Mix induction variables with CR forms that contain both � = + and ∗. For example, the variable
i and j in Figure 11(c) have CR form {0,+, 1, ∗, 2} and {1,+, 2, ∗, 2} respectively.

Out-of-sequence (OSV) variables are re-initialized variables and wrap-around variables. They
are represented by (a set of) CR forms {a,#, s}i, where a is the initial out-of-sequence value
and s is a nested CR form. In Figure 11(d), variable iside in the loop of 175.vpr benchmark is
bounded by the CR-form range [{−1,#,+, 0}, {−1,#,+, 1}] (iside is a re-initialized variable).

20

while (k++ < AttrCount) {
CppObjectAddr = (addrtype)((char *)CppObjectAddr + Base01Offset);
DbObjectAddr = (addrtype)((char *)DbObjectAddr + BaseDbOffset);
. . .
Base01Offset += Attr01Size;
BaseDbOffset += AttrDbSize;
}

(a) Polynomial IV from 255.vortex

for (n=1; n<=. . . ; n∗=10) {
. . .
}

j = 1;
for (i=0; i < j;) {

i = j;
j = 2 * j + 1;
largest block = i;
}

(b) Geometric IV from 254.gap (c) Mixed IV from 197.parser

while (. . .) {
iside = iside + 1;
if (iside > 3) {

pindex++;
iside = 0;
}
. . .
}

a = 1; b = 0;
while (o != 0) {

t = b;
b = a - (k/o) * b;
a = t;
. . .
}

offset = 0;
for (ipin=0;. . . ;ipin++) {

. . .
if (ldots) {

times listed[bnum] = 0;
unique pin list[inet][offset] = bnum;
offset++;
}
}

(d) Re-initialized IV (e) Cyclic IV (f) Conditionally updated
from 175.vpr from 254.gap IV from 175.vpr

Figure 11: Example Loops from the SPEC2000 Benchmarks

Cyclic induction variables who have cyclic dependence between the recurrence relations of vari-
ables. For example, in Figure 11(e) variables a and b from cyclic IVs. In some cases cyclic
IVs can be represented by geometric sequences [10, 12], but most cyclic forms represent spe-
cial functions (e.g. the Fibonacci sequence is such an example). Some cyclic forms can be
degenerated into monotonic sequences, by replacing a variable’s update with an unknown [19].

Conditional induction variables are represented by the CR {[a, b],�, s}, where s is a nested
bounded CR form and � can be +, ∗, or #. Variable offset in Figure 11(f) is bounded by the
CR sequence range [0, {0,+, 1}].

Unknown variables have unknown initial values or unknown update values. These unknown
are typically function returns, updates with (unbounded) symbolic variables, or bit-operator
recurrences. Some of these are identified as monotonic. For example, an IV with initial value
0 and a “random” positive stride function has a CR {0,+,>}, where the stride is represented
by the lattice value >.

21

Table 2: Loop-variant Variable Classification in SPEC2000

Benchmark Linear Polyn’l Geom. OSV Cyclic Cond’l Mix Unknown
CINT2000
164.gzip 59.45% 0.00% 0.00% 0.79% 0.00% 7.48% 0.00% 32.29%
175.vpr 59.47% 0.00% 0.21% 0.21% 0.00% 9.05% 0.00% 31.07%
181.mcf 38.18% 0.00% 0.00% 0.00% 0.00% 10.91% 0.00% 50.91%
186.crafty 47.91% 0.00% 0.00% 0.00% 0.00% 12.71% 0.00% 39.37%
197.parser 35.19% 0.00% 0.00% 0.51% 0.00% 5.22% 0.51% 58.58%
254.gap 62.73% 0.00% 2.52% 1.00% 0.33% 5.85% 0.38% 27.51%
255.vortex 66.06% 3.03% 0.61% 2.42% 0.00% 15.15% 0.00% 12.73%
256.bzip2 54.67% 0.00% 0.93% 0.00% 0.00% 12.15% 1.40% 30.84%
300.twolf 40.21% 0.00% 0.00% 0.00% 0.00% 5.35% 0.00% 54.45%
Average 51.54% 0.34% 0.47% 0.55% 0.04% 9.32% 0.25% 37.53%

CFP2000
168.wupwise 80.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 19.80%
171.swim 96.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.70%
172.mgrid 84.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 15.94%
173.applu 94.77% 0.00% 0.00% 0.00% 0.00% 1.31% 0.00% 3.92%
177.mesa 79.57% 0.00% 0.30% 0.00% 0.00% 12.73% 0.00% 7.40%
179.art 73.12% 0.00% 0.00% 0.00% 0.00% 4.30% 0.00% 22.58%
183.equake 81.25% 0.00% 0.00% 2.08% 1.04% 3.12% 0.00% 13.54%
187.facerec 86.92% 0.00% 0.42% 0.00% 0.00% 2.53% 0.00% 10.13%
188.ammp 59.89% 0.00% 0.00% 2.54% 0.00% 3.95% 0.00% 33.62%
189.lucas 87.68% 0.00% 1.48% 0.00% 0.00% 1.97% 0.99% 7.88%
200.sixtrack 83.87% 0.00% 2.15% 2.15% 0.00% 1.08% 1.08% 9.68%
Average 82.51% 0.00% 0.40% 0.62% 0.09% 2.82% 0.19% 13.47%

Table 2 shows the experimental results of all induction variables categorized in SPEC20003

with our algorithm. The first column in the table names the benchmark. The columns labeled
“Linear”, “Polynomial”, “Geometric”, “OSV”, “Cyclic”, “Conditional”, “Mix” and “Unknown”
show the percentage of each loop-variant variable category as a percentage of the total number of
loop-variant variables in each benchmark.

From the results of Table 2 the percentage of conditional induction variables ranges from 5.22%
to 15.15% in CINT2000, with 9.32% on average. None of these are detected by GCC as well as other
compilers, such as Open64 and Polaris [8]. The algorithm also identifies polynomial, geometric,
mix, cyclic and wrap-around induction variables, which have been given significant attention in the
past [10, 12, 14]. None of these are currently detected by the standard implementation of GCC.

Table 3 shows the sub-classification results of the conditional loop-variant variables category in
SPEC2000. This sub-classification identifies the percentage of all conditionally updated variables

3Three CINT2000 and three CFP2000 benchmarks results are not listed because of GCC 4.1-specific compilation
errors that are not related to our implementation.

22

Table 3: Classification for Conditional Loop-Variant Variable in SPEC2000

Benchmark Linear Polyn’l Geom. OSV Mix Unknown
CINT2000
164.gzip 42.11% 0.00% 0.00% 5.26% 15.79% 36.84%
175.vpr 72.73% 0.00% 0.00% 9.09% 0.00% 18.18%
181.mcf 66.67% 0.00% 0.00% 0.00% 16.67% 16.67%
186.crafty 32.81% 0.00% 0.00% 10.94% 7.81% 48.44%
197.parser 70.97% 0.00% 0.00% 19.35% 0.00% 9.68%
254.gap 45.53% 0.00% 0.00% 20.33% 6.50% 27.64%
255.vortex 60.00% 4.00% 0.00% 24.00% 0.00% 12.00%
256.bzip2 61.54% 0.00% 0.00% 23.08% 7.69% 7.69%
300.twolf 51.61% 0.00% 0.00% 40.32% 0.00% 8.06%
Average 55.99% 0.44% 0.00% 16.93% 6.05% 20.58%

CFP2000
173.applu 100% 0.00% 0.00% 0.00% 0.00% 0.00%
177.mesa 63.26% 0.00% 0.00% 1.40% 0.47% 34.88%
179.art 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
183.equake 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
187.facerec 83.33% 0.00% 0.00% 0.00% 0.00% 16.67%
188.ammp 28.57% 0.00% 7.14% 14.29% 0.00% 50.00%
189.lucas 75.00% 0.00% 0.00% 0.00% 25.00% 0.00%
200.sixtrack 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Average 68.77% 0.00% 0.89% 14.46% 3.18% 12.69%

23

(taken as 100%), which are “Linear”, “Polynomial”, “Geometric”, “OSV”, “Mix” and “Unknown”.
Only those benchmarks which have at least one conditional loop-variant variable are listed in the
table. For example, from the 7.48% of conditionally updated variables in 164.gzip, 42.11% is sub-
classified as linear. Thus, 3.15% of the variables are conditionally updated variables with linear
closed forms.

From the results of Table 3, linear conditional variables are the most common category. The av-
erage percentage of linear conditional variable takes 55.99% and 68.77% in CINT2000 and CFP2000
separately. Note that these closed forms are not detected by other compilers. We also identify all
re-initialized variables, the “OSV” category. The “Mix” conditional variable has an average per-
centage of 6.05% and 3.18% in CINT2000 and CFP2000, and was separately identified with our
implementation from OSV using the bounding technique. This result shows that CR alignment is
applied frequently for bounding the CR forms.

To evaluate the execution time performance of our CR implementation in GCC, we measured
the compilation time of CR construction for the SPEC2000 benchmarks. CR construction accounts
for 1.75% percent of the compilation time of GCC in average. The additional time is less than one
second for most benchmarks. This shows that the performance of our algorithm is quite good.

6 Conclusion

This paper presented a linear-time loop-variant variable analysis algorithm that effectively analyzes
flow-sensitive variables that are conditionally updated. We believe that the strength of our algo-
rithm lies in its ability to analyze nonlinear and non-closed index expressions in the loop nests with
higher accuracy than pure monotonic analysis. This benefits many compiler optimizations, such
as loop restructuring and loop parallelizing transformations that require accurate data dependence
analysis.

The experimental results of our algorithm applied to the SPEC2000 benchmarks shows that a
high percentage of flow-sensitive variables are detected and accurately analyzed requiring only a
small fraction of the total compilation time (1.75%). The result is a more comprehensive classifi-
cations of variables, including additional linear, polynomial, geometric, and wrap-around variables
when these are conditionally updated.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. Addison-
Wesley Publishing Company, Reading MA, 1985.

[2] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan Kaufmann,
2002.

[3] D. Andrade, M. Arenaz, B. Fraguela, J. T. no, and R. Doallo. Automated and accurate cache
behavior analysis for codes with irregular access patterns. In Concurrency and Computation:
Practice and Experience (to appear), 2007.

[4] O. Bachmann. Chains of Recurrences. PhD thesis, Kent State University, College of Arts and
Sciences, 1996.

24

[5] O. Bachmann, P. Wang, and E. Zima. Chains of recurrences - a method to expedite the
evaluation of closed-form functions. In proceedings of the International Symposium on Symbolic
and Algebraic Computing (ISSAC), pages 242–249, Oxford, 1994. ACM.

[6] D. Berlin, D. Edelsohn, and S. Pop. High-level loop optimizations for GCC. In Proceedings of
the 2004 GCC Developers’ Summit, pages 37–54, 2004.

[7] J. Birch, R. van Engelen, K. Gallivan, and Y. Shou. An empirical evaluation of chains of
recurrences for array dependence testing. In PACT ’06: Proceedings of the 15th international
conference on Parallel architectures and compilation techniques, pages 295–304, New York,
NY, USA, 2006. ACM Press.

[8] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee, D. Padua,
Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Advanced program restructuring for
high-performance computers with Polaris. IEEE Computer, 29(12):78–82, 1996.

[9] B. Franke and M. O’Boyle. Array recovery and high-level transformations for dsp applications.
ACM Transactions on Embedded Computing Systems (TECS), 2(2):132–162, 2003.

[10] M. Gerlek, E. Stolz, and M. Wolfe. Beyond induction variables: Detecting and classifying
sequences using a demand-driven SSA form. ACM Transactions on Programming Languages
and Systems (TOPLAS), 17(1):85–122, Jan 1995.

[11] R. Gupta. A fresh look at optimizing array bound checking. SIGPLAN Not., 25(6):272–282,
1990.

[12] M. R. Haghighat and C. D. Polychronopoulos. Symbolic analysis for parallelizing compilers.
ACM Transactions on Programming Languages and Systems, 18(4):477–518, July 1996.

[13] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, San Fran-
sisco, CA, 1997.

[14] W. Pottenger and R. Eigenmann. Parallelization in the presence of generalized induction and
reduction variables. Technical report, 1396, Univ. of Illinois at Urbana Champaign, Center for
Supercomputing Research & Development, 1995.

[15] Y. Shou, R. van Engelen, J. Birch, and K. Gallivan. Toward efficient flow-sensitive induction
variable analysis and dependence testing for loop optimization. In proceedings of the ACM
SouthEast Conference, pages 1–6, 2006.

[16] R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of Computing,
1(2):146–160, 1972.

[17] R. van Engelen. Symbolic evaluation of chains of recurrences for loop optimization. Technical
report, TR-000102, Computer Science Dept., Florida State University, 2000.

[18] R. van Engelen. Efficient symbolic analysis for optimizing compilers. In proceedings of the
ETAPS Conference on Compiler Construction 2001, LNCS 2027, pages 118–132, 2001.

[19] R. van Engelen. The CR# algebra and its application in loop analysis and optimization.
Technical report, TR-041223, Computer Science Dept., Florida State University, 2004.

25

[20] R. van Engelen, J. Birch, Y. Shou, B. Walsh, and K. Gallivan. A unified framework for
nonlinear dependence testing and symbolic analysis. In proceedings of the ACM International
Conference on Supercomputing (ICS), pages 106–115, 2004.

[21] R. van Engelen and K. Gallivan. An efficient algorithm for pointer-to-array access conversion
for compiling and optimizing DSP applications. In proceedings of the International Workshop
on Innovative Architectures for Future Generation High-Performance Processors and Systems
(IWIA) 2001, pages 80–89, Maui, Hawaii, 2001.

[22] M. Wolfe. Beyond induction variables. In ACM SIGPLAN’92 Conf. on Programming Language
Design and Implementation, pages 162–174, San Fransisco, CA, 1992.

[23] M. Wolfe. High Performance Compilers for Parallel Computers. Addison-Wesley, Redwood
City, CA, 1996.

[24] P. Wu, A. Cohen, J. Hoeflinger, and D. Padua. Monotonic evolution: An alternative to induc-
tion variable substitution for dependence analysis. In proceedings of the ACM International
Conference on Supercomputing (ICS), pages 78–91, 2001.

[25] E. Zima. Recurrent relations and speed-up of computations using computer algebra systems.
In proceedings of DISCO’92, pages 152–161. LNCS 721, 1992.

[26] E. V. Zima. Automatic construction of systems of recurrence relations. USSR Computational
Mathematics and Mathematical Physics, 24(11-12):193–197, 1986.

26

