
BCSQ: Bin-based Core Stateless Queueing for
Scalable Support of Guaranteed Services

Zhenhai Duan and Karthik Parsha
Computer Science Department

Florida State University
Tallahassee, FL 32306

Email: {duan, parsha}@cs.fsu.edu

Abstract— Core stateless packet scheduling systems have re-
ceived considerable attention in recent years because of their
scalability in supporting per-flow Quality of Services guarantees.
In such a system core routers do not need to maintain per-flow
state and do not need to perform per-flow operations such as per-
flow classification, per-flow queueing, and per-flow scheduling. On
the other hand, existing core stateless packet schedulers require
core routers to sort incoming packets based on their virtual finish
times. This sorting operation results in the worst-case runtime
complexity of O(log

2
N), where N is the number of packets in

a scheduler. In this paper we propose a bin-based core stateless
queueing (BCSQ) algorithm, which achieves constant runtime
complexity that is independent of the number of packets in the
scheduler. We present the detailed design of BCSQ and derive the
worst-case end-to-end delay bounds for packets in a network of
BCSQ. In addition, we investigate the effects of the configurable
parameters of BCSQ on the performance of BCSQ networks.
Simulation studies are also performed to illustrate the efficacy
and performance of BCSQ.

I. INTRODUCTION

Core stateless packet scheduling systems have a number
of important advantages in providing scalable and flexible
support of per-flow Quality of Service (QoS) guarantees on the
Internet. In addition to eliminating the need for maintaining
per-flow scheduling state at core routers, such systems also re-
lieve core routers of performing per-flow operations including
per-flow packet classification, per-flow queueing, and per-flow
scheduling. Moreover, they also help decouple QoS control
plane functions such as admission control from the packet
forwarding data plane on core routers. The QoS control plane
functions can now be implemented in separate network entities
such as bandwidth brokers [2], [9], [17], [19]. As a result,
core stateless systems have received considerable attention in
recent years (e.g., [8], [10], [11], [12], [13], [15], [20]), and
many core stateless packet schedulers/architectures have been
proposed, for example, Core Jitter Virtual Clock (CJVC) [15],
Virtual Time Reference Systems (VTRS) [20], Core Stateless
Guaranteed Rate Algorithms (CSGR) [10], and Coordinated
Network Scheduling (CNS) [13].

Core stateless systems rely on the notion of dynamic packet
state to achieve the above advantages [16]. In a network
of core stateless packet schedulers, core routers are distin-
guished from edge routers; whereas edge routers maintain per-
flow state and perform per-flow operations, core routers do
not. Core routers schedule packets based on dynamic packet

state—virtual finish time—carried in the packet headers. The
packet with the smallest virtual finish time departs from
the scheduler first. Conceptually, the virtual finish time of a
packet in a core stateless packet scheduler emulates the real
departure time of the packet in a reference stateful packet
scheduler. However, the computation of virtual finish times is
core stateless in that core routers do not need to maintain per-
flow state or perform per-flow operations in order to compute
the virtual finish time of an incoming packet. On the other
hand, although core stateless systems eliminate the need for
per-flow state maintenance and per-flow operations at core
routers, core routers need to sort packets according to their
virtual finish times. The sorting operation has the worst-case
runtime complexity of O(log2 N), where N is the number of
packets in the scheduler [18]. This may not be acceptable in
a high-speed core router.

We propose a bin-based core stateless queueing (BCSQ)
algorithm to overcome this problem. Conceptually, a BCSQ
scheduler partitions the virtual time space into slots or bins of
equal time intervals (see Fig. 2). A packet is placed into a bin
if its virtual finish time falls in the time interval of the bin.
Bins are ordered according to the time intervals they represent,
and they are served in that order. Importantly, packets in a
bin are served in a FIFO manner. Like the bin-based event
scheduling algorithm Calendar Queue [5] and stateful bin
sort fair queueing BSFQ [6], the proposed BCSQ scheduler
achieves constant runtime complexity that is independent of
the number of packets (or flows) in the scheduler.

In this paper we present the detailed design of BCSQ and
derive the worst-case end-to-end delay bounds for packets in
a network of BCSQ. We also study the effects of the number
of bins and the length of time intervals on the performance
of BCSQ networks. In particular, we investigate the minimum
number of bins that a scheduler needs to maintain in order to
prevent packet overflows due to the limited time window the
bins can collectively represent. Moreover, simulation studies
are performed to illustrate the efficacy and performance of
BCSQ. Through simulations we show that, by controlling the
length of time intervals the bins represent, BCSQ can achieve
various performance and complexity trade-offs. For example,
when time intervals are sufficiently long, all incoming packets
will fall in a single bin and BCSQ degenerates into a FIFO
scheduler. On the other hand, as we gradually decrease the

Network core

Edge
conditioner

Packet state

Core router

Fig. 1. Illustration of the virtual time reference system.

length of time intervals, BCSQ is able to provide improved
per-flow QoS guarantees, albeit with greater scheduling com-
plexity.

The rest of the paper is structured as follows. Section II
presents a brief overview of the virtual time reference system
(VTRS) framework [20]. BCSQ is developed within this
framework. We describe the BCSQ scheduler and analyze
its properties in Section III. We report simulation results in
Section IV and conclude the paper in Section V.

II. BACKGROUND: VIRTUAL TIME REFERENCE SYSTEM

In this section we provide an overview of the virtual time
reference system (VTRS), which was proposed in [20] as
a unifying core stateless scheduling framework to provide
scalable support for guaranteed services. In the next section
we will present the new bin-based core stateless queueing
algorithm (BCSQ). BCSQ is developed within the VTRS
framework. Table I summarizes the notations used in the paper.

Like in other core stateless packet scheduling systems, core
routers are distinguished from edge routers in the virtual time
reference system. While edge routers maintain per-flow state
and perform per-flow operations, core routers do not. VTRS
consists of three logical components (Fig. 1): edge traffic
conditioning at the network edge, packet state carried by
packets, and per-hop virtual time reference/update mechanism
at core routers. These three components are briefly described
below.

A. Edge Traffic Conditioning

Edge traffic conditioning plays a key role in VTRS, as it
ensures that the packets of a flow1 will never be injected into
the network core at a rate exceeding its reserved rate. Formally,
for a flow j with a reserved rate rj , the inter-arrival time of
two consecutive packets of the flow at the first hop core router
is such that âj,k+1

1 − âj,k
1 ≥ Lj,k+1

rj , where âj,k
1 denotes the

1Here a flow can be either an individual user flow, or an aggregate traffic
flow of multiple user flows, defined in any appropriate fashion.

pj,k the kth packet of flow j
Lj,k packet length of pj,k

Lj,max maximum packet length of flow j
L∗,max maximum packet length of all flows at a node
rj reserved rate of flow j
h number of hops along the path of flow j
∆j,k cumulative queueing delay packet pj,k

experienced along the path of flow j
δj,k virtual time adjustment term for packet pj,k

ω̃j,k
i virtual time stamp of packet pj,k at node i

ν̃j,k
i virtual finish time of packet pj,k at node i

d̃j,k
i virtual delay of packet pj,k at node i

âj,k
i actual time packet pj,k arrives at node i

f̂ j,k
i actual time packet pj,k departs from node i

Ψi error term of the scheduler at node i
Ci link capacity of node i
πi,i+1 propagation delay from ith node to (i + 1)th node
M Number of bins at a node
N Number of packets at a node
ιi length of bins at node i

TABLE I
NOTATION USED IN THE PAPER.

arrival time2 of the kth packet pj,k of flow j at the network
core and Lj,k the size of packet pj,k.

B. Packet State
After going through the edge conditioner at the network

edge, packets entering the network core carry in their packet
headers certain packet state information that is initialized and
inserted at the network edge. The packet state carried by the
kth packet pj,k of a flow j contains three types of information:
1) QoS reservation (e.g., the reservation rate rj) of the flow;
2) the virtual time stamp ω̃j,k

i of the packet that is associated
with the router i currently being traversed; and 3) the virtual
time adjustment term δj,k of the packet (see below). For the
kth packet of flow j, its virtual time stamp ω̃j,k

1 is initialized to
âj,k
1 , the actual time it leaves the edge conditioner and enters

the first core router along the flow’s path. The virtual time
adjustment term δj,k for packet pj,k is set to ∆j,k/h, where h
is the number of core routers along the flow’s path, and ∆j,k

is computed at the network edge using the following recursive
formula:
∆j,1 = 0 and

∆j,k = max

{

0, ∆j,k−1 + h
Lj,k−1 − Lj,k

rj
+ âj,k−1

1
− âj,k

1
+

Lj,k

rj

}

,

for k = 2, 3,

The physical meaning of ∆j,k is that it represents the
cumulative queueing delay experienced by packet pj,k in an
ideal dedicated per-flow system, where packets of flow j are
serviced by h tandem servers with capacity rj [20].

2A packet is considered to have arrived at a server only when its last bit
has been received, and it to have departed the server only when its last bit has
been serviced. In addition, we assume that the edge conditioner and the first-
hop router (i.e. the first core router) are cohabited, and thus the propagation
delay from the edge conditioner to the first core router is negligible.

C. Per-Hop Virtual Time Reference/Update Mechanisms at
Core Routers

In the conceptual framework of the virtual time reference
system, each core router is equipped with a per-hop virtual
time reference/update mechanism to maintain the continual
progression of the virtual time embodied by the packet virtual
time stamps. This virtual time stamp ω̃j,k

i represents the arrival
time of the kth packet pj,k of flow j at the ith core router in the
virtual time, and thus it is also referred to as the virtual arrival
time of the packet at the core router. The virtual time stamps
ω̃j,k

i ’s associated with packets of flow j satisfy the following
two important properties: 1) virtual spacing property: ω̃j,k+1

i −

ω̃j,k
i ≥ Lj,k+1

rj , and 2) the reality check property: âj,k
i ≤ ω̃j,k

i ,
where âj,k

i denotes the actual arrival time of packet pj,k at
router i. These two properties are important in ensuring that
the end-to-end delay experienced by packets of a flow across
the network core is bounded.

In order to ensure that these two properties are satisfied,
the virtual time stamps must be appropriately referenced or
updated as packets enter or leave a core router. The refer-
encing/updating rule depends on the scheduling algorithm (or
scheduler) employed by a core router and its characteristics.
We associate two parameters with each arriving packet at a
core scheduler: the virtual delay parameter and virtual finish
time. They are computed as follows. Consider a packet pj,k

arriving at the ith router along the path, then the virtual delay
parameter for the packet is d̃j,k

i = Lj,k/rj + δj,k, and its
virtual finish time is defined as ν̃j,k

i = ω̃j,k
i + d̃j,k

i .
The per-hop behavior of a core router (or rather, its sched-

uler) is characterized by an error term, which is defined with
respect to the virtual finish time and actual finish time of
packets at the router. Let f̂ j,k

i denote the actual time packet
pj,k departs the scheduler i. We say that scheduler i can
guarantee flow j its reserved rate rj with an error term Ψi,
if for any k, f̂ j,k

i ≤ ν̃j,k
i + Ψi. In other words, each packet

of flow j is guaranteed to depart Si by the time ν̃j,k
i + Ψi =

ω̃j,k
i + d̃j,k

i + Ψi.
Given the error term Ψi of the scheduler i, the virtual time

stamp of packet pj,k after it has traversed i is updated using
the following reference/update rule:

ω̃j,k
i+1 = ν̃j,k

i + Ψi + πi,i+1 = ω̃j,k
i + d̃j,k

i + Ψi + πi,i+1 (1)

where πi,i+1 denotes the propagation delay from the ith router
to the next-hop router along the flow’s path. In [20] it is shown
that using the reference/update rule in (1) the virtual spacing
and reality check properties of virtual time stamps are satisfied
at every router.

D. End-to-End Delay Bound of Packets in a VTRS Network
An important consequence of the virtual time reference

system outlined above is that the bound on the end-to-end
delay in a VTRS network experienced by packets of a flow
across the network core can be expressed in terms of the
reservation rate of a flow and the error terms of the routers
along the flow’s path. The following theorem concerning the

end-to-end delay bound of packets in a VTRS network was
proved in [20].

Theorem 1: Suppose there are total h hops along the path
of flow j, then for each packet pj,k of flow j, we have

f̂ j,k
h − âj,k

1 ≤ h
Lj,max

rj
+

h
∑

i=1

Ψi +

h−1
∑

i=1

πi,i+1 (2)

where Lj,max is the maximum packet size of flow j.
Observe that the end-to-end delay formula (2) is quite

similar to that specified in the IETF Guaranteed Service [4]
using the WFQ [7] as the reference system. In this sense,
the virtual time reference system provides a conceptual core
stateless framework based on which guaranteed services can
be implemented in a scalable manner using the DiffServ
paradigm [1], [3].

A core stateless virtual clock scheduler (CSVC) was de-
signed and studied in [20]. CSVC serves packets in the order
of their virtual finish times. For any packet pj,k traversing
scheduler i, let ω̃j,k be the virtual time carried by pj,k as it
enters scheduler i, and d̃j,k = Lj,k

rj + δj,k be its virtual delay.
Then the virtual finish time ν̃j,k of pj,k is given by ω̃j,k+d̃j,k.
Throughout the paper, we denote by L∗,max the maximum
size of packets of all flows traversing a core scheduler. The
following Virtual Rate Control lemma was proved in [20].

Lemma 2 (Virtual Rate Control Lemma): Consider an arbi-
trary time interval [τ, t]. We say that packet pj,k of flow
j is virtually eligible for service during [τ, t] if ω̃j,k ≥ τ
and ν̃j,k ≤ t. Let S̃j denote the set of the packets of flow
j which are virtually eligible for service in [τ, t]. Define
W̃ j(τ, t) =

∑

k∈S̃j Lk. We refer to W̃ j(τ, t) as the virtual
eligible work of flow j over [τ, t). Then

W̃ j(τ, t) =
∑

k∈S̃j

Lj,k ≤ rj(t − τ). (3)

III. BCSQ: BIN-BASED CORE STATELESS QUEUEING

In this section we present the new bin-based core stateless
queueing algorithm BCSQ, which can be deployed at the
core routers in the virtual time reference system framework.
To simplify the presentation, we first assume that a BCSQ
scheduler has an infinite number of bins, and derive the worst-
case end-to-end delay bounds for packets in a BCSQ network.
Then we study the practical scenario where BCSQ only has a
finite number of bins and investigate the minimum number
of bins that a BCSQ needs to maintain in order to avoid
packet overflow due to the limited time window that the bins
can collectively represent. We discuss the runtime scheduling
complexity of BCSQ at the end of the section.

A. BCSQ with Infinite Number of Bins
Conceptually, a BCSQ scheduler i divides the virtual time

space into slots or bins of equal time intervals of length ιi
(Fig. 2). Let τm = mιi, for m = 0, 1, 2, Each bin m
represents the time interval [τm, τm+1), and has an associated
FIFO queue with an unlimited buffer space; that is, there is no
packet loss due to buffer overflow. In the following, we use

C

[0, ι)

[ι, 2ι)

[2ι, 3ι)

Fig. 2. Illustration of BCSQ.

the terms bin and its associated queue interchangeably. The
scheduler has an infinite number of bins, i.e., m → ∞. When
the kth packet pj,k of flow j arrives at a BCSQ scheduler, the
scheduler will assign a virtual finish time ν̃j,k = ω̃j,k + d̃j,k to
the packet, where ω̃j,k and d̃j,k are the virtual arrival time and
virtual delay of the packet, respectively. Like the core stateless
virtual clock scheduler (CSVC), BCSQ assigns the packet the
virtual delay using the following formula: d̃j,k = Lj,k

rj + δj,k.
The packet is placed in the queue associated with bin m if
τm ≤ ν̃j,k < τm+1. The bins are serviced in the order of
τm. If bin m is empty, the next non-empty bin is serviced.
However, suppose a new packet arrives at a previously empty
bin m while a packet from a queue m′ where τm′ > τm is
being serviced, the new packet has to wait. After the current
packet being served by the scheduler departs, bin m will be
serviced next. When a packet pj,k departs from the scheduler
i, the virtual time stamp carried in the packet header is updated
using Eq. (1). We derive the error term of a BCSQ scheduler
shortly.

To have a finite end-to-end delay bound for packets in a
BCSQ network, the following admission control condition
needs to hold at any BCSQ scheduler i in the network.
Assuming F flows traversing scheduler i with link capacity
of Ci, then

∑F
j=1 rj ≤ Ci. The next lemma states the error

term associated with a BCSQ scheduler i.
Lemma 3: Consider F flows traversing a BCSQ scheduler

i such that the admission control condition
∑F

j=1 rj ≤ Ci is
satisfied. Suppose that âj,k ≤ ω̃j,k for any packet pj,k of flow
j, j = 1, 2, . . . , F . Then

f̂ j,k ≤ ν̃j,k +
L∗,max

CS
+ ιi. (4)

In other words, the error term of a BCSQ scheduler Ψi =
L∗,max

Ci
+ ιi.

Proof: Consider an arbitrary packet pj,k from a flow j,
and the system busy period containing packet pj,k. Suppose
that τm ≤ ν̃j,k < τm+1. Without loss of generality, we assume
that the system busy period starts at time 0. Let τ be the last
time before the arrival of packet pj,k such that the scheduler
starts servicing a packet from a queue m′ such as τm′ > τm.
If such a packet does not exist, set τ = 0, the beginning
of the busy period. Hence 0 ≤ τ ≤ âj,k. For each flow n,

n = 1, 2 . . . , F , let Sn denote the set of packets of flow n
that are serviced after τ and no later than packet pj,k (i.e.,
they are serviced during the time interval (τ, f̂ j,k]). From the
definition of τ , we see that for any pn,l ∈ Sn, ω̃n,l ≥ ân,l ≥ τ
and ν̃n,l < τm+1 = τm+ιi. Applying the Virtual Rate Control
Lemma (Lemma 2) to flow n over the time interval [τ, τm+ιi],
we have

∑

l∈Sn

Ln,l ≤ W̃ n(τ, τm + ιi) ≤ rn(τm + ιi − τ).

Summing over all n and using the admission control condition,
we have

F
∑

n=1

∑

l∈Sn

Ln,l ≤ (

F
∑

n=1

rn)(τm + ιi − τ) ≤ Ci(τm + ιi − τ).

Note that packet pj,k ∈ Sj . Hence packet pj,k must depart the
scheduler after all the packets in ∪F

n=1S
n have been serviced

by the server. Furthermore, the packet which is being serviced
at time τ (if it exists) has a size of at most L∗,max. Therefore,

f̂ j,k ≤ τ +
L∗,max

Ci
+

∑F
n=1

∑

l∈Sn Ln,l

Ci

≤ τm + ιi +
L∗,max

Ci
≤ ν̃j,k + ιi +

L∗,max

Ci
. (5)

That is, the error term of a BCSQ scheduler i is Ψi = L∗,max

Ci
+

ιi.
The following theorem states the worst-case end-to-end

delay bounds for packets in a network of BCSQ schedulers.
Theorem 4: Consider a flow j that traverses a path of h

hops in a BCSQ network. BCSQ scheduler ii has a bin
time interval of length ιi and a link capacity of Ci, for
i = 1, 2, . . . , h. Then for any packet pj,k of flow j, its end-to-
end delay in the network is bounded by:

f̂ j,k
h − âj,k

1 ≤ h
Lj,max

rj
+

h
∑

i=1

(
L∗,max

i

Ci
+ ιi)+

h−1
∑

i=1

πi,i+1, (6)

Proof: The proof is trivial by noticing Lemma 3 and
Eq.(2).

B. BCSQ with Finite Number of Bins
It is intuitively clear that a BCSQ scheduler does not need to

maintain an infinite number of bins. When a bin with a lower
time interval becomes empty, it can be reused for a higher
time interval. Consider a scheduler i with a number of M
bins. Figs. 3 and 4 present the pseudo-code for enqueueing
and dequeueing a packet, respectively. As shown in Fig. 3,
when a packet pj,k arrives at the scheduler, the scheduler
first computes the virtual finish time ν̃j,k of the packet, and
determines the bin number m that the packet should enter:
m = b(ν̃j,k − τ0)/ιic (lines 1-2). If such a bin exists (line
3-7), the scheduler appends the new packet to the tail of the
corresponding queue. If the index of the queue m is smaller
than the currentqueue queue that the scheduler is currently
serving, the index currentqueue is updated to the new queue
m.

0. Packet pj,k arrives at scheduler i;
1. ν̃j,k = ω̃j,k + d̃j,k ;
2. m = b(ν̃j,k − τ0)/ιic;
3. if (0 ≤ m < M)
4. Add pj,k to the tail of queue m;
5. if m < currentqueue
6. currentqueue = m
7. end if
8. else if (m ≥ M)
9. Rotate bins 0 to m − M to (new) highest time intervals;
10. Add pj,k to the tail of (new) queue M − 1;
11. else /* m < 0 */
12. Rotate bins M − 1 to M − |m| to (new) lowest time intervals;
13. Add pj,k to the tail of (new) queue 0;
14. currentqueue = 0
15. end if

Fig. 3. Pseudo-code for enqueueing a packet.

0. Scheduler i finished serving the current packet;
1. if (queue currentqueue 6= ⊥)
2. p = dequeue HOL of queue currentqueue;
3. else
4. currentqueue = next nonempty queue();
5. if (currentqueue ≥ 0)
6. p = dequeue HOL of queue currentqueue;
7. end if
8. end if
9. if (p 6= ⊥)
10. ω̃j,k = ν̃j,k + Ψi + πi,i+1

11. Serving packet p;
12. end if

Fig. 4. Pseudo-code for dequeueing a packet.

If the packet has a large virtual finish time that is not
covered by the time window collectively represented by bins 0
to M −1, i.e., ν̃j,k ≥ τM (line 8-10), the scheduler will rotate
m − M + 1 bins from the lowest time intervals to the (new)
highest time intervals. For the time being, we assume that M is
sufficiently large that the lowest m−M +1 queues are empty
when the bin rotation is performed. We will investigate the
minimum number of bins required to ensure such a condition
be always held shortly. The scheduler then updates the bin
indexes and appends the new packet to the tail of the queue
M − 1. Similarly, if the virtual finish time of the packet is
smaller than τ0 (line 11-14), the scheduler will rotate |m|
bins from the highest time intervals to the (new) lowest time
intervals. Again we assume that M is large enough so that the
queues with the |m| highest time intervals are empty when the
rotation is performed. Then the scheduler adds the new packet
to queue 0 and updates currentqueue to 0 accordingly.

Fig. 4 illustrates the procedure for the scheduler to depart a
packet. After the scheduler finishes serving the current packet,
it checks if the current queue currentqueue is empty (line
1-3). If the queue is not empty, the head-of-line packet is
dequeued from the current queue. Otherwise, the scheduler
searches the next nonempty queue (line 5-8), and dequeues
the head-of-line packet of the queue if such a queue is found.
Otherwise, there is no packet to be served and the scheduler
becomes idle. When the next packet to be transmitted is found
(line 9-12), scheduler i updates the virtual time stamp of the
packet and transmits the packet accordingly.

1) Number of Bins: The number of bins M and the time
interval ιi of scheduler i must be properly configured so that all
incoming packets can be placed into one of the bins (assuming
the amount of traffic released into the network from all flows
has been properly conditioned at the network edge). We use
the following concepts to derive a condition that M and ιi

need to satisfy, in order to avoid packet overflow due to the
limited time window that is collectively represented by the
bins in the scheduler. We refer to Θi = Mιi as the virtual
time window size of i. Denote by Pi the set of packets in the
scheduler when an arbitrary packet pj,k from flow j arrives.
In order for the packet to be placed in one of the queues, the
scheduler parameters M and ιi must be configured in a way
that the following condition holds: |ν̃j,k − ν̃n,l| < Θi, for any

packet pn,l ∈ Pi. We denote by ν̃j,k ∈ Θi the fact that packet
pj,k can be placed into one of the queues of scheduler i.

Theorem 5: Let D be the largest worst-case end-to-end
delay bound of any flow in a BCSQ network. Let Θi be the
virtual time window size of a BCSQ scheduler i in the network
and assume that the empty bin with the lowest or highest
time interval can be reused. If Θi ≥ 2D, for any incoming
packet pj,k of an arbitrary flow j, we have ν̃j,k

i ∈ Θi. That
is, all incoming packets can be placed into a proper bin at the
scheduler.

Proof: Consider an arbitrary packet pj,k from flow j
arriving at the BCSQ scheduler i. Without loss of generality,
we assume that ν̃j,k

i is larger than the virtual finish times of
all other packets in the scheduler when packet pj,k arrives.
Let pn,l be the packet with the smallest virtual finish time
currently in the scheduler. To prove the theorem, we simply
need to establish that ν̃j,k

i − ν̃n,l
i ≤ 2D. We prove this by

contradiction.
Assume that ν̃j,k

i −ν̃n,l
i > 2D. Notice ν̃n,l

i ≥ ân,l
1 , we know

that pn,l must have entered the network before ν̃j,k
i −2D. That

is
ân,l
1 < ν̃j,k

i − 2D, (7)

otherwise we have ν̃j,k
i − ν̃n,l

i ≤ ν̃j,k
i − ân,l

1 ≤ 2D, we reach
a contradiction. Note that the real time when pj,k arrives at
scheduler i is âj,k

S , which is no less than âj,k
1 , i.e., âj,k

S ≥ âj,k
1 .

Note that D is the largest worst-case end-to-end delay bound
for all flows traversing the network, we have f̂ j,k

i − âj,k
1 ≤ D.

From the definition of error term Ψi, we have ν̃j,k
i − âj,k

1 ≤
D − Ψi ≤ D. Therefore, ν̃j,k

i − âj,k
S ≤ D, or

âj,k
S ≥ ν̃j,k

i − D. (8)

Combining (7) and (8), we see that

âj,k
S − ân,l

1 > D. (9)

From this we know that packet pn,l has stayed in the network
longer than D when packet pj,k arrives at the scheduler at
time âj,k

S . This contradicts the fact that D is the largest worst-
case end-to-end delay bound for all flows including flow n.
Therefore we establish ν̃j,k

i − ν̃n,l
i ≤ 2D and the theorem

follows.

S0 N1

S1 S2

R1

R0N2 N3

R2

Fig. 5. Simulated network topology.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 31 32 33 34 35 36 37

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

End-to-End delay (ms)

CDF of end-to-end delays comparison

Flow 1, Rate = 1.0 Mbps
Flow 4, Rate = 0.7 Mbps
Flow 6, Rate = 0.5 Mbps

Fig. 6. CDF of end-to-end packet delays in
FIFO network.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 31 32 33 34 35 36 37

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

End-to-End delay (ms)

CDF of end-to-end delays comparison

Flow 1, Rate = 1.0 Mbps
Flow 4, Rate = 0.7 Mbps
Flow 6, Rate = 0.5 Mbps

Fig. 7. CDF of end-to-end packet delays in
CSVC network.

C. Scheduling Complexity of BCSQ Scheduler
BCSQ has runtime scheduling complexity comparable to

the bin-based event scheduling algorithm Calendar Queue [5]
and the stateful packet scheduler Bin Sort Fair Queueing
(BSFQ) [6]. In the following we analyze the complexity of
the enqueue and dequeue operations of BCSQ respectively.
Consider a BCSQ scheduler i with M bins. When a packet
pj,k arrives at the scheduler, the scheduler checks if the virtual
finish time of the packet falls in one of the current bins.
If this is the case, the packet will be placed at the tail of
the corresponding queue. This can be done with one insert
operation. Otherwise, one or multiple bins need to be rotated.
The rotation of bins can be done by simply updating the bin
pointers instead of physically copying queues [14]. Therefore,
in the worst case, a constant number of pointer operations
O(M) are needed to enqueue a new packet.

Now let us consider the dequeue operation of BCSQ. If the
current queue is not empty, the scheduler can directly schedule
the next packet in the queue after finishing serving the current
packet, which only needs one delete operation. (Note that
currentqueue may be updated after a new packet arrives.)
Otherwise, the scheduler needs to search the next non-empty
queue, which, in the worst case, may take a constant number
of O(M) comparison operations.

In summary, the worst-case scheduling complexity of a
BCSQ scheduler with M bins is a constant O(M). It only
depends on the number of bins maintained by the scheduler,
and is independent of the number of packets (flows) in the
scheduler. However, similar to the observation made about cal-
endar queues, the amortized per packet scheduling complexity
of BCSQ is O(1) [5]. This can be understood by noting that
incoming packets may occupy most of the bins or only a few
bins in a scheduler. In the former case, it is likely that the
scheduler will locate the next non-empty bin after examining
a small number of empty bins. In the latter case, the scheduler
may need to examine a relatively large number of empty
bins before identifying the next non-empty bin. However, after
the scheduler encounters a non-empty bin, it will serve that
bin for a relatively long time before beginning to search the
next non-empty bin again. This is because a large number of
packets fall in the queues of a few bins. In either of these

two cases, the average per-packet scheduling complexity of a
BCSQ scheduler is only O(1).

IV. SIMULATION STUDIES

In this section we perform simulation studies to illustrate the
efficacy of BCSQ, and to compare the performance of BCSQ
with that of FIFO and the core stateless virtual clock scheduler
CSVC (Section II). We also study the effects of time interval
length ι on the performance of a BCSQ network.

Figure 5 depicts the network topology used in the simulation
studies. All links have a capacity of 10 Mbps and propagation
delay of 10 ms. Nodes S0, S1, and S2 are edge routers; they
shape a flow’s traffic according to the reservation rate of the
flow. To make the comparisons fair for the three types of
packet schedulers, edge traffic shaping is conducted in all
the simulation studies. Moreover, all BCSQ schedulers in a
network of BCSQ schedulers use the same bin time interval
length ι in each specific simulation study. In reality, BCSQ
schedulers in a BCSQ network may use different bin time
interval lengths.

For the simulation results that we will report below, six
CBR flows are originated from node S0 and destined to
node R0. The average sending rates of the flows 1 − 6
are 1 Mbps, 0.9 Mbps, 0.8 Mbps, 0.7 Mbps, 0.6Mbps, and
0.5 Mbps, respectively. There are also six Exponential On/Off
(Expoo) flows from Si to Ri, for i = 1, 2. All packets are
of a fixed size of 210 bytes. The configuration of the Expoo
flows is such that the average network utilization is 90% (i.e.,
the average utilization of the bottleneck links is 90%). The
reservation rate of a flow equals its average rate (for BCSQ
and CSVC). For the packets of the CBR flows, we measured
the delays between N1 and R0, and refer to them as the end-
to-end delays of the packets. We have conducted simulation
studies with different configurations by varying the number
of CBR flows, Expoo flows, and network utilization. Similar
observations were obtained.

Figs. 6 and 7 present the empirical cumulative distribution
function (CDF) of the end-to-end delays experienced by
packets of three CBR flows 1, 4, 6 in the networks of FIFO
and CSVC schedulers, respectively. As expected, flows with
different sending rates experienced similar end-to-end packet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 31 32 33 34 35 36 37

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

End-to-End delay (ms)

CDF of end-to-end delays comparison

Flow 1, Rate = 1.0 Mbps
Flow 4, Rate = 0.7 Mbps
Flow 6, Rate = 0.5 Mbps

Fig. 8. CDF of end-to-end packet delays in
BCSQ network (ι = 0.01s).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 31 32 33 34 35 36 37

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

End-to-End delay (ms)

CDF of end-to-end delays comparison

Flow 1, Rate = 1.0 Mbps
Flow 4, Rate = 0.7 Mbps
Flow 6, Rate = 0.5 Mbps

Fig. 9. CDF of end-to-end packet delays in
BCSQ network (ι = 0.005s).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 31 32 33 34 35 36 37

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

End-to-End delay (ms)

CDF of end-to-end delays comparison

Flow 1, Rate = 1.0 Mbps
Flow 4, Rate = 0.7 Mbps
Flow 6, Rate = 0.5 Mbps

Fig. 10. CDF of end-to-end packet delays in
BCSQ network (ι = 0.0025s).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 31 32 33 34 35 36 37

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

End-to-End delay (ms)

CDF of end-to-end delays

FIFO
BCSQ (bin = 0.01)

BCSQ (bin = 0.0025)
CSVC

Fig. 11. CDF of end-to-end packet delays of
flow 6 (rate = 0.5 Mbps).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 31 32 33 34 35 36 37

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

End-to-End delay (ms)

CDF of end-to-end delays

FIFO
BCSQ (bin = 0.01)

BCSQ (bin = 0.0025)
CSVC

Fig. 12. CDF of end-to-end packet delays of
flow 4 (rate = 0.7 Mbps).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 31 32 33 34 35 36 37

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

End-to-End delay (ms)

CDF of end-to-end delays

FIFO
BCSQ (bin = 0.01)

BCSQ (bin = 0.0025)
CSVC

Fig. 13. CDF of end-to-end packet delays of
flow 1 (rate = 1 Mbps).

delays in the FIFO network, given that a FIFO scheduler
cannot differentiate flows. (Note that the CDF curves of the
three flows are close to each other in Fig. 6.) In contrast, from
Fig 7 we see that in the CSVC network, flows with higher
reservation rates (such as flow 1) received better services
in terms of end-to-end packet delays than flows with lower
reservation rates (such as flow 6). This is because CSVC can
differentiate the forwarding of packets based on the reservation
rates of the flows they belong to (the reservation rate of a flow
is carried in the packet header).

Figs. 8, 9, and 10 show the empirical CDF of end-to-end
delays experienced by packets of the same three CBR flows
in the BCSQ networks, with the bin time interval ι = 0.01 s,
0.005 s, and 0.0025 s, respectively. Fig. 8 shows that when
the bin time interval is large, BCSQ performs similarly as
FIFO. This is because when the bin time interval is large, the
majority of packets will fall into a small number of bins, and
packets in the same bin are served in a FIFO manner. As an
extreme case, if the bin time interval is sufficiently large so
that all packets fall into the same bin, BCSQ will essentially
degenerate into a FIFO scheduler. As we decrease the bin
time interval gradually (Figs. 9 and 10), we see that BCSQ
starts to better differentiate flows with different reservation
rates at the cost of more bins being occupied, and consequently
greater complexity. Like CSVC, flows with larger reservation
rates receive better services in terms of end-to-end packet
delays. From this set of simulation studies we conclude that,

by controlling the bin time intervals of BCSQ schedulers, we
can achieve different end-to-end per-flow service guarantees,
albeit with different levels of runtime scheduling complexity.

From the above discussions we see that flows with differ-
ent reservation rates will observe similar end-to-end service
guarantees when we are not able to effectively differentiate
them, for example, in a network of BCSQ with large bin
time intervals or in a FIFO network. In this case flows with
smaller reservation rates “steal” network resources such as
bandwidth that should have been “allocated” to flows with
larger reservation rates. As the ability to differentiate flows
increases, flows with different reservation rates start to receive
distinct service guarantees. These observations are confirmed
in Figs. 11, 12, and 13, which show the empirical CDF of end-
to-end delays experienced by packets in the different networks
for flows 6, 4, and 1, respectively.

For flow 6 (Fig. 11), which has the lowest reservation
rate (0.5 Mbps), the FIFO network provides the best end-to-
end packet delay service compared to the BCSQ networks
and the CSVC network. As we start to differentiate flows
by deploying BCSQ (or CSVC) to provide service to flows
based on their reservation rates, the service received by the
flow 6 degrades compared to that in the FIFO network (see
Fig. 11). It can no longer steal as much bandwidth as in the
FIFO network. In contrast, flows with larger reservation rates
receive better service when we are able to better differentiate
flows. For example, flow 1 (Fig. 13), which has the largest

reservation rate, receives better service in a BCSQ network
or a CSVC network compared that in the FIFO network.
This is because, unlike the FIFO scheduler, BCSQ and CSVC
schedulers can differentiate the forwarding of packets from
flows with different reservation rates.

V. CONCLUSION

In this paper we proposed a bin-based core stateless queue-
ing (BCSQ) algorithm, which has constant runtime scheduling
complexity that is independent of the number of packets (or
flows) in the scheduler. BCSQ was developed in the virtual
time reference system framework and can be deployed at core
routers in VTRS. We presented the detailed design of BCSQ
and derived the worst-case end-to-end packet delay bounds
for flows in a network of BCSQ. We also studied the effects
of the number of bins maintained by a BCSQ scheduler and
the length of bin time intervals on the performance of BCSQ
networks. In particular, we investigated the minimum number
of bins that a scheduler needs to maintain in order to prevent
packet overflows due to the limited time window the bins can
collectively represent. Simulation studies were also conducted
to illustrate the efficacy and performance of BCSQ. Through
simulation studies we showed that, by controlling the length of
time intervals the bins represent, BCSQ can achieve various
performance and complexity trade-offs. When the bin time
intervals are sufficiently long, all incoming packets will fall in
a single bin and BCSQ degenerates into a FIFO scheduler. On
the other hand, as we gradually decrease the length of time
intervals, BCSQ is able to provide improved per-flow QoS
guarantees, albeit with greater scheduling complexity.

REFERENCES

[1] Y. Bernet, J. Binder, S. Blake, M. Carlson, B. E. Carpenter, S. Keshav,
E. Davies, B. Ohlman, D. Verma, Z. Wang, and W. Weiss. A framework
for differentiated services. Internet Draft, February 1999. Work in
Progress.

[2] S. Bhatnagar and B. Nath. Distributed admission control to support
guaranteed services in core-stateless network. In Proc. IEEE INFOCOM,
Sun Francisco, CA, April 2003.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
architecture for differentiated services. RFC 2475, December 1998.

[4] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet
architecture: An overview. RFC 1633, June 1994.

[5] R. Brown. Calendar queues: A fast O(1) priority queue implementation
for the simulation event set problem. Communications of the ACM,
31(10), October 1988.

[6] S. Cheung and C. Pencea. BSFQ: Bin sort fair queueing. In Proc. IEEE
INFOCOM, New York, NY, June 2002.

[7] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queueing algorithm. In Proc. ACM SIGCOMM, pages 1–12, Austin,
TX, September 1989.

[8] Z. Duan, Z.-L. Zhang, and Y. T. Hou. Foundamental trade-offs in
aggregate packet scheduling. IEEE Transactions on Parallel and
Distributed Systems, December 2005.

[9] Z. Duan, Z.-L. Zhang, Y. T. Hou, and L. Gao. A core stateless bandwidth
broker architecture for scalable support of guaranteed services. IEEE
Transactions on Parallel and Distributed Systems, January 2004.

[10] J. Kaur and H. Vin. Core-stateless guaranteed rate scheduling algo-
rithms. In Proc. IEEE INFOCOM, Anchorage, AK, April 2001.

[11] J. Kaur and H. Vin. Core-stateless guaranteed throughput networks. In
Proc. IEEE INFOCOM, Francisco, CA, April 2003.

[12] J. Kaur and H. Vin. Providing deterministic end-to-end fairness guaran-
tees in core-stateless networks. In Proc. IEEE/IFIP Seventh International
Workshop on Quality of Service (IWQoS ’03), Monterey, CA, June 2003.

[13] C. Li and E. Knightly. Coordinated network scheduling: A framework
for end-to-end services. In Proceedings of IEEE International Confer-
ence on Network Protocols (ICNP), Osaka, Japan, November 2000.

[14] J. Liebeherr and D. E. Wrege. A versatile packet multiplexer for quality-
of-service networks. In Proc. 4th International Symposium on High
Performance Distributed Computing (HPDC-4), pages 148–155, August
1995.

[15] I. Stoica and H. Zhang. Providing guaranteed services without per flow
management. In Proc. ACM SIGCOMM, Boston, MA, September 1999.

[16] I. Stoica, H. Zhang, S. Shenker, R. Yavatkar, D. Stephens, A. Malis,
Y. Bernet, Z. Wang, F. Baker, J. Wroclawski, C. Song, and R. Wilder. Per
hop behaviors based on dynamic packet states. Internet Draft, February
1999. Work in Progress.

[17] A. Terzis, L. Wang, J. Ogawa, and L. Zhang. A two-tier resource
management model for the internet. In Global Internet 99, December
1999.

[18] J. Xu and R. Lipton. On fundamental tradeoffs between delay bounds
and computational complexity in packet scheduling algorithms. In Proc.
of ACM SIGCOMM 2002, August 2002.

[19] Z.-L. Zhang, Z. Duan, L. Gao, and Y. T. Hou. Decoupling QoS control
from core routers: A novel bandwidth broker architecture for scalable
support of guaranteed services. In Proc. ACM SIGCOMM, Sweden,
August 2000.

[20] Z.-L. Zhang, Z. Duan, and Y. T. Hou. Virtual time reference system:
A unifying scheduling framework for scalable support of guaranteed
services. IEEE Journal on Selected Areas in Communication, Special
Issue on Internet QoS, December 2000.

