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1 Introduction

In this chapter we consider the scheduling of systems of independent sporadic tasks to meet hard deadlines

upon platforms comprised of several identical processors. Although this field is very new, a large number of

interesting and important results have recently been obtained. We focus on presenting the results within the

context of what seems to be a natural classification scheme (described in Section 2.2). Space considerations

rule out the possibility of providing proofs of these results; instead, we provide references to primary sources

where possible.

The organization of this chapter is as follows. In Section 2, we formally define the sporadic task model and

other important concepts, and describe the classification scheme for multiprocessor scheduling algorithms

that we have adopted. In each of Sections 3-5, we discuss results concerning one class of scheduling algorithms.

The focus of Sections 2-5 is primarily theoretical; in Section 6, we briefly discuss some possible extensions

to these results that may enhance their practical applicability.

∗This material is based upon work supported in part by the National Science Foundation under Grant No. 0509131, and a

DURIP grant from the Army Research Office.
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2 Definitions and Models

The sporadic task model may be viewed as a set of timing constraints imposed on a more general model.

A general task is an abstraction of a sequential thread of control, which executes an algorithm that may

continue indefinitely, alternating between states where it is competing for processor time and states where it

is waiting for an event. (Waiting for an event means an intentional act of the task to suspend computation,

as opposed to incidental blocking such as may be imposed by contention for resources.) The computation

between two wait states of a task is a job. The time of an event that triggers a transition from waiting to

competing for execution is the release timeof a job, and the time of the next transition to a wait state is the

completion time of the job. The amount of processor time used by the job during this interval is its execution

time. In hard-real-time systems, a deadline is specified for a job prior to which the job’s completion time

must occur. The absolute deadline of a job is its release time plus its relative deadline, and the scheduling

window of a job is the interval that begins with its release time and ends at its absolute deadline. The

response time of a job during a particular execution of the system is defined to be the amount of elapsed

time between the job’s release time and its completion time. A job misses its deadline if its response time

exceeds its relative deadline.

2.1 Sporadic Task System

Intuitively, it is impossible to guarantee that a system will not miss any deadlines if there is no upper bound

on the computational demand of the system. The idea behind the sporadic task model is that, if there is

a lower bound on the interval between triggering events of a task and an upper bound on the amount of

processor time that a task requires for each triggering event, then the computational demand of each task

in any time interval is bounded.

A sporadic task system is a set τ = {τ1, τ2, . . . , τn} of sporadic tasks. Each sporadic task τi is characterized

by a triple (pi, ei, di), where: pi is a lower bound on the separation between release times of the jobs of the

task, also known as the period of the task; ei is an upper bound on the execution time for each job of the

task, also known as the worst-case execution time; di is the relative deadline, which is the length of the

scheduling window of each job. A sporadic task system is said to have implicit deadlines if di = pi for every



2 DEFINITIONS AND MODELS 3

task, constrained deadlines if di ≤ pi for every task, and arbitrary deadlines if there is no such constraint.

A special case of a sporadic task system is a periodic task system task system, in which the separation

between release times is required to be exactly equal to the period.

The concepts of task and system utilization and density prove useful in the analysis of sporadic task

systems on multiprocessors. These concepts are defined as follows:

Utilization: The utilization ui of a task τi is the ratio ei/pi of its execution time to its period. The total

utilization usum(τ) and the largest utilization umax(τ) of a task system τ are defined as follows:

usum(τ)
def

=
∑

τi∈τ

ui; umax(τ)
def

= max
τi∈τ

(ui)

Constrained Density: The density δi of a task τi is the ratio ei/di of its execution time to its relative

deadline. The total density δsum(τ) and the largest density δmax(τ) of a task system τ are defined as

follows:

δsum(τ)
def

=
∑

τi∈τ

δi; δmax(τ)
def

= max
τi∈τ

(δi)

Generalized Density: The generalized density λi of a task τi is the ratio ei/ min(di, pi) of its execution

time to the lesser of its relative deadline and its period. The total generalized density λsum(τ) and the

largest generalized density λmax(τ) of a task system τ are defined as follows:

λsum(τ)
def

=
∑

τi∈τ

λi; λmax(τ)
def

= max
τi∈τ

(λi)

An additional concept that plays a critical role in the schedulability analysis of sporadic task systems is

that of demand bound function. For any interval length t, the demand bound function DBF(τi, t) of a

sporadic task τi bounds the maximum cumulative execution requirement by jobs of τi that both arrive in,

and have deadlines within, any interval of length t. It has been shown [12] that

DBF(τi, t) = max

(

0, (

⌊

t − di

pi

⌋

+ 1)ei

)

(1.1)

For any sporadic task system τ , a load parameter may be defined as follows:

load(τ)
def

= max
t>0

(

∑

τi∈τ DBF(τi, t)

t

)

(1.2)



2 DEFINITIONS AND MODELS 4

2.2 A classification of scheduling algorithms

Scheduling is the allocation of processor time to jobs. An m-processor schedule for a set of jobs is a partial

mapping of time instants and processors to jobs. It specifies the job, if any, that is scheduled on each

processor at each time instant. We require that a schedule not assign more than one processor to a job at

each instant, and not assign a processor to a job before the job’s release time or after the job completes.

A given schedule is feasible for a given job set if it provides sufficient time for each job to complete within

its scheduling window; that is, if the response time of each job is less than or equal to its relative deadline.

A given job set is feasible if there exists a feasible schedule for it. In practice, feasibility does not mean

much unless there is an algorithm to compute a feasible schedule for it. A job set is schedulable by a given

scheduling algorithm if the algorithm produces a feasible schedule.

The above definitions generalize from jobs to tasks in the natural way, subject to the constraint that

the jobs of each task must be scheduled serially, in order of release time and with no overlap. A sporadic

task system is feasible if there is a feasible schedule for every set of jobs that is consistent with the period,

deadline, and worst-case execution time constraints of the task system, and it is schedulable by a given

algorithm if the algorithm finds a feasible schedule for every such set of jobs.

A schedulability test for a given scheduling algorithm is an algorithm that takes as input a description of a

task system and provides as output an answer to whether the system is schedulable by the given scheduling

algorithm. A schedulability test is exact if it correctly identifies all schedulable and unschedulable task

systems. It is sufficient if it correctly identifies all unschedulable task systems, but may misidentify some

schedulable systems as being unschedulable.

For any scheduling algorithm to be useful for hard-deadline real-time applications it must have at least a

sufficient schedulability test, that can verify that a given job set is schedulable. The quality of the scheduling

algorithm and the schedulability test are inseparable, since there is no practical difference between a job set

that is not schedulable and one that cannot be proven to be schedulable.
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A classification scheme

Given a task system and a set of processors, it is possible to divide the processors into clusters and assign

each task to a cluster. A scheduling algorithm is then applied locally in each cluster, to the jobs generated

by the tasks that are assigned to the cluster. Each of the multiprocessor schedulability tests reported here

focus on one of the following two extremes of clustering:

1. Partitioned scheduling: Each processor is a cluster of size one. Historically, this has been the first step

in extending single-processor analysis techniques to the multiprocessor domain.

2. Global scheduling: There is only one cluster, containing all the processors.

Observe that partitioned scheduling may be considered as a two-step process: (i) the tasks are partitioned

among the processors prior to run-time; and (ii) the tasks assigned to each processor are scheduled individ-

ually during run-time, using some local (uniprocessor) scheduling algorithm.

Run-time scheduling algorithms are typically implemented as follows: at each time instant, a priority

is assigned to each job that has been released but not yet completed, and the available processors are

allocated to the highest-priority jobs. Depending upon the restrictions that are placed upon the manner in

which priorities may be assigned to jobs, we distinguish in this chapter between three classes of scheduling

algorithms:

1. Fixed task-priority (FTP) scheduling: All jobs generated by a task are assigned the same priority.

2. Fixed job-priority (FJP) scheduling: Different jobs of the same task may have different priorities.

However, the priority of each job may not change between its release time and its completion time.

3. Dynamic priority (DP) scheduling: Priorities of jobs may change between their release times and their

completion times.

It is evident from the definitions that FJP scheduling is a generalization of FTP scheduling, and DP schedul-

ing is a generalization of FJP scheduling.
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Predictable scheduling algorithms

At first glance, proving that a given task system is schedulable by a given algorithm seems very difficult. The

sporadic constraint only requires that the release times of any two successive jobs of a task τi be separated

by at least pi time units and that the execution time of every job be in the range [0, ei]. Therefore, there

are infinitely many sets of jobs, finite and infinite, that may be generated by any given sporadic task set.

As observed above, partitioned scheduling algorithms essentially reduce a multiprocessor scheduling prob-

lem to a series of uniprocessor scheduling algorithms (one to each processor). Results from uniprocessor

scheduling theory [29] may hence be used to identify the “worst case” sequence of jobs that can be generated

by a given sporadic task system, such that the task system is schedulable if and only if this worst case

sequence of jobs is successfully scheduled.

Ha and Liu [26, 25] found a way to reduce the complexity of schedulability testing for global multiprocessor

scheduling, through the concept of predictable scheduling algorithms. Consider any two sets J and J ′ of

jobs that only differ in the execution times of the jobs, with the execution times of jobs in J ′ being less

than or equal to the execution times of the corresponding jobs in J . A scheduling algorithm is defined to

be predictable if, in scheduling such J and J ′ (separately), the completion time of each job in J ′ is always

no later then the completion time of the corresponding job in J . That is, with a predictable scheduling

algorithm it is sufficient, for the purpose of bounding the worst-case response time of a task or proving

schedulability of a task set, to look just at the jobs of each task whose actual execution times are equal to

the task’s worst-case execution time.

Not every scheduling algorithm is predictable in this sense. There are well-known examples of scheduling

anomalies, in which shortening the execution time of one or more jobs in a task set that is schedulable by

a given algorithm can make the task set un-schedulable. In particular, such anomalies have been observed

for non-preemptive priority-driven scheduling algorithms on multiprocessors. Ha and Liu proved that all

preemptable FTP and FJP scheduling algorithms are predictable. As a consequence, in considering such

scheduling algorithms we need only consider the case where each job’s execution requirement is equal to the

worst-case execution requirement of its generating task.
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3 Dynamic priority (DP) scheduling

In DP scheduling, no restrictions are placed upon the manner in which priorities may be assigned to jobs; in

particular, the priority of a job may be changed arbitrarily often between its release and completion times.

3.1 Partitioned scheduling

Upon uniprocessor platforms, it has been shown [29, 20] that the earliest deadline first scheduling algorithm

(uniprocessor EDF) is an optimal algorithm for scheduling sporadic task systems upon uniprocessors, in the

sense that any feasible task system is also uniprocessor EDF-schedulable.

As a consequence of this optimality of uniprocessor EDF, observe that any task system that is schedulable

by some partitioned DP scheduling algorithm can also be scheduled by partitioning the tasks among the

processors in exactly the same manner, and subsequently scheduling each partition by EDF. Since EDF is a

fixed job-priority (FJP) scheduling algorithm, it follows that DP scheduling is no more powerful than FJP

scheduling with respect to the partitioned scheduling of sporadic task systems. FJP partitioned scheduling of

sporadic task systems is discussed in detail in Section 4.1; the entire discussion there holds for DP scheduling

as well.

3.2 Global scheduling

3.2.1 Implicit-deadline systems

For global scheduling of implicit-deadline sporadic task systems, the following result is easily proved:

Test 1 Any implicit-deadline sporadic task system τ satisfying

usum(τ) ≤ m and umax(τ) ≤ 1

is schedulable upon a platform comprised of m unit-capacity processors by a DP scheduling algorithm.

To see why this holds, observe that a “processor sharing” schedule, in which each job of each task τi is

assigned a fraction ui of a processor between its release time and its deadline, would meet all deadlines —

such a processor-sharing schedule may subsequently be converted to one in which each job executes on zero

or one processor at each time instant by means of the technique of Coffman and Denning [18, Chapter 3].
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Such an algorithm is however clearly inefficient, and unlikely to be implemented in practice. Instead,

powerful and efficient algorithms based upon the technique of pfair scheduling [11] may be used to perform

optimal global scheduling of implicit-deadline sporadic task systems upon multiprocessor platforms — see [1]

for a survey.

Notice that task systems τ with usum(τ) > m or umax(τ) > 1 cannot possibly be feasible upon a platform

comprised of m unit-capacity processors; hence, Test 1 represents an exact test for global DP-schedulability.

3.2.2 Constrained- and arbitrary-deadline systems

To our knowledge, not much is known regarding the global DP scheduling of sporadic task systems with

deadline distinct from periods. It can be shown that Test 1 is trivially extended to such systems by replacing

the utilization (u) parameters by corresponding generalized density (λ) parameters:

Test 2 Any sporadic task system τ satisfying

λsum(τ) ≤ m and λmax(τ) ≤ 1

is schedulable upon a platform comprised of m unit-capacity processors by a DP scheduling algorithm.

Unlike Test 1 above, this test is sufficient but not necessary for DP-schedulability.

4 Fixed job-priority (FJP) Scheduling

4.1 Partitioned scheduling

As stated in Section 3.1 above, the additional power of dynamic priority (DP) assignment provides no

benefits with respect to partitioned scheduling; consequently, all the results in this section are valid for DP

partitioned scheduling as well.

4.1.1 Implicit-deadline systems

Liu and Layland [29] proved that a periodic task system τ with implicit deadlines is schedulable on a

single processor by EDF if and only if usum(τ) ≤ 1. They also showed that EDF scheduling is optimal for
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scheduling such task systems on a single processor, in the sense that a task system is feasible if and only

if it is schedulable by EDF. The proofs extend directly to the case of sporadic task systems with implicit

deadlines.

Lopez, Garcia, Diaz and Garcia [35, 34] applied this single-processor utilization bound test to parti-

tioned multiprocessor scheduling with a First-Fit-Decreasing-Utilization (FFDU) bin packing algorithm and

obtained the following schedulability test. Although originally stated in terms of periodic tasks, the result

generalizes trivially to the sporadic model.

Test 3 (FFDU EDF Utilization) Any implicit-deadline sporadic task system τ is schedulable by some

partitioned FJP algorithm (specifically, FFDU partitioning, and EDF local scheduling) upon a platform of m

unit-capacity processors if

usum(τ) <
mβEDF (τ) + 1

βEDF (τ) + 1

where βEDF (τ) = ⌊1/umax(τ)⌋.

If umax(τ) = 1 then βEDF (τ) = 1, and the above condition reduces to the following simpler test.

Test 4 (Simple FFDU EDF Utilization) Any implicit-deadline sporadic task system τ is schedulable by

some partitioned FJP algorithm (specifically, FFDU partitioning, and EDF local scheduling) upon a platform

of m unit-capacity processors if usum(τ) < (m + 1)/2.

4.1.2 Constrained- and arbitrary-deadline systems

Baruah and Fisher [8] proposed several different algorithms for partitioning constrained- and arbitrary-

deadline sporadic task systems among the processors of a multiprocessor platform. In first-fit decreasing

density (FFDD) partitioning, the tasks are considered in non-increasing order of their generalized density

parameters; when considering a task, it is assigned to any processor upon which the total density assigned

thus far does not exceed the computing capacity of the processor. For such a partitioning scheme, they

proved the following:

Test 5 (FFDD EDF) Any arbitrary-deadline sporadic task system τ is schedulable by a partitioned FJP

algorithm (specifically, FFDD partitioning, and EDF local scheduling) upon a platform comprised of m unit-
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capacity processors, provided

λsum(τ) ≤















m − (m − 1)λmax(τ), if λmax(τ) ≤ 1
2

m
2 + λmax(τ) if λmax(τ) ≥ 1

2

(1.3)

Baruah and Fisher [8] also proposed a somewhat more sophisticated partitioning scheme that runs in time

polynomial (quadratic) in the number of tasks in the system. This scheme — First-Fit-Increasing-Deadline

(FFID) — considers tasks in increasing order of their relative deadline parameters. In considering a task,

it is assigned to any processor upon which it would meet all deadlines using EDF as the local scheduling

algorithm, where the test for local EDF schedulability is done by computing an approximation to the demand

bound functions (DBF’s) of the tasks. This local EDF schedulability test is sufficient rather than exact;

with this test for local EDF schedulability, they derived the following test:

Test 6 (FFID EDF) Any arbitrary-deadline sporadic task system τ is schedulable by a partitioned FJP

algorithm (specifically, FFID partitioning, and EDF local scheduling) upon a platform comprised of m unit-

capacity processors, provided

m ≥
2load(τ) − δmax(τ)

1 − δmax(τ)
+

usum(τ) − umax(τ)

1 − umax(τ)

For constrained-deadline systems, the test becomes somewhat simpler [9]:

Test 7 (FFID EDF; Constrained deadlines) Any constrained-deadline sporadic task system τ is schedu-

lable by a partitioned FJP algorithm (specifically, FFID partitioning, and EDF local scheduling) upon a

platform comprised of m unit-capacity processors, if

load(τ) ≤
1

2
(m − (m − 1)δmax(τ)) .

4.2 Global Scheduling

4.2.1 Implicit-deadline systems

Dhall and Liu [21] showed that the uniprocessor EDF utilization bound test does not extend directly to

global multiprocessor scheduling. In fact, they showed that there are implicit-deadline sporadic task systems

τ with usum(τ) = 1 + ǫ for arbitrarily small positive ǫ, such that τ is not schedulable on m processors, for
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any value of m. The key to this observation is that m tasks with infinitesimal utilization but short deadlines

will have higher priority than a task with a longer deadline and utilization near 1. For several years, this

“Dhall phenomenon” was interpreted as proof that global EDF scheduling is unsuitable for hard real-time

scheduling on multiprocessors.

Notice, however, that the phenomenon demonstrated by Dhall and Liu depends on there being at least

one task with very high utilization. This observation was exploited in [44, 24] to obtain the following sufficient

condition for global EDF-schedulability of implicit-deadline sporadic task systems:

Test 8 (EDF Utilization) Any implicit-deadline sporadic task system τ satisfying

usum(τ) ≤ m − (m − 1)umax(τ) (1.4)

is schedulable upon a platform comprised of m unit-capacity processors by the global EDF scheduling algo-

rithm.

(Though written for periodic task systems, the proofs of the above test extend trivially to sporadic task

systems with implicit deadlines.)

To handle systems with large umax, Srinvasan and Baruah [44] also proposed a hybrid scheduling algorithm

called EDF-US[ζ], for any positive ζ ≤ 1. EDF-US[ζ] gives top priority to jobs of tasks with utilizations

above some threshold ζ and schedules jobs of the remaining tasks according to their deadlines. In [44] it is

proven that EDF-US[m/(2m − 1)] successfully schedules any implicit-deadline sporadic task system τ with

total utilization usum(τ) ≤ m2/(2m − 1), regardless of the value of umax(τ). Baker [4] showed that this

result implies that any sporadic task system τ with implicit deadlines can be scheduled by EDF-US[1/2] on

m processors if usum(τ) ≤ (m + 1)/2.

Goossens, Funk and Baruah [24] suggested another approach for dealing with cases where umax(τ) is

large. The algorithm they call EDF(k) assigns top priority to jobs of the k − 1 tasks that have the highest

utilizations, and assigns priorities according to deadline to jobs generated by all the other tasks. They showed

that an implicit-deadline sporadic task system τ is schedulable on m unit-capacity processors by EDF(k) if

m ≥ (k − 1) +

⌈

usum(τ) − uk(τ)

1 − uk(τ)

⌉

where uk(τ) denotes the utilization of the kth task when the tasks are ordered by non-decreasing utilization.
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Goossens, Funk and Baruah [24] also proposed an algorithm, called PRI-D, which computes the minimum

value m such that there exists a value k < n that satisfies condition (4.2.1) above, and then schedules the

task system on m processors using EDF(k). Baker [4] suggested a variant on this idea, called EDF(kmin)

here, in which the value m is fixed, k is chosen to be the minimum value that satisfies this condition, and the

task system is then scheduled by EDF(k). EDF(kmin) can schedule any sporadic task system τ with implicit

deadlines on m processors if usum(τ) ≤ (m + 1)/2. This is the same utilization bound as EDF-US[1/2],

but the domain of task systems that are schedulable by EDF(kmin) is a superset of those schedulable by

EDF-US[1/2].

Test 9 (EDF Hybrid Utilization) Any implicit-deadline sporadic task system τ satisfying

usum(τ) ≤ (m + 1)/2

is schedulable upon a platform comprised of m unit-capacity processors by the global scheduling algorithms

EDF-US[1/2] or EDF(kmin).

Observe that this is the same bound as in partitioned FJP scheduling (Test 4).

The worst-case utilization bound of (m + 1)/2 achieved by EDF-US[1/2] and EDF(kmin) is optimal.

Andersson et al. [2] showed that the utilization guarantee for EDF or any other multiprocessor scheduling

algorithm that assigns a fixed priority to each job – whether partitioned or global – cannot be higher than

(m + 1)/2 on an m-processor platform. (This result was stated for periodic task systems with implicit

deadlines, but the proof applies also to the sporadic case.) Consider a set of m + 1 identical sporadic tasks

with pi = di = 2x and ei = x + 1, and consider the case when all the tasks release jobs simultaneously. It is

clear that such a job set cannot be scheduled successfully on m processors. By making x sufficiently large

the total utilization can be arbitrarily close to (m + 1)/2.

4.2.2 Constrained- and arbitrary-deadline systems

Bertogna, Cirinei, and Lipari [13] showed that the results presented above for implicit-deadline systems hold

for constrained-deadline systems as well, when the utilization parameters in the tests (usum(τ), umax(τ), and

uk(τ)) are replaced by corresponding density parameters. Further examination of the proof reveals that it

also generalizes to arbitrary deadlines. Hence,
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Test 10 Any sporadic task system τ satisfying

λsum(τ) ≤ m − (m − 1)λmax(τ)

is schedulable upon a platform comprised of m unit-capacity processors by a fixed-priority global scheduling

algorithm.

Once again, this test is sufficient but not necessary for global FJP-schedulability. Baker [3, 4] determined

the schedulability of some task systems more precisely by finding a separate density-based upper bound

βλ
k (i) on the contribution of each task τi to the load of an interval leading up to a missed deadline of a task

τk, and testing the schedulability of each task individually:

Test 11 (Baker EDF) An arbitrary-deadline sporadic task system τ is schedulable on m processors using

global EDF scheduling if, for every task τk, there exists λ ∈ {λk} ∪ {ui | ui ≥ λk, τi ∈ τ}, such that

∑

τi∈τ

min(βλ
k (i), 1) ≤ m(1 − λ) + λ

where

βλ
k (i)

def

=































ui(1 + max(0, Ti−di

dk

)) if ui ≤ λ

ui(1 + pi

dk

) − λ di

dk

if ui > λ and di ≤ pi

ui(1 + pi

dk

) if ui > λ and di > pi

This test is able to verify some schedulable task systems that cannot be verified by the generalized EDF

utilization test (Test 10), and the generalized EDF density bound test is able to verify some task systems

that cannot be verified using the Baker test. The computational complexity of the Baker test is Θ(n3) (where

n is the number of sporadic tasks in the system) while Test 10 has an O(n2) computational complexity.

A direct application of the demand bound function (DBF) to global scheduling has not yet been obtained.

However, Bertogna, Cirinei and Lipari [13] have taken a step in that direction by devising a schedulability

test that uses DBF for the interval of length pi preceding a missed deadline of some job of a task τk, based

on exact computation of the demand of a competing task over that interval.

Test 12 (BCL EDF) Any constrained-deadline sporadic task system is schedulable on m processors using

preemptive EDF scheduling if for each task τk one of the following is true:

∑

i6=k

min(βk(i), 1 − λk) < m(1 − λk) (1.5)
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∑

i6=k min(βk(i), 1 − λk) = m(1 − λk) and ∃i 6= k : 0 < βk(i) ≤ 1 − λk
(1.6)

where

βk(i)
def

=
DBF(τi, ek) + min(ei, max(0, dk − DBF(τi, ek)pi/ei))

dk

This test is imcomparable with both Test 10 and Test 11 above, in the sense that there are task systems

determined to be schedulable by each test for which the other two tests fail to determine schedulability.

An alternative approach to global multiprocessor EDF schedulability analysis of sporadic task systems

is based on the following result, paraphrased from [37]

Theorem 1.1 (from [37]) Any independent collection of jobs that is feasible upon a multiprocessor plat-

form comprised of m processors each of computing capacity m/(2m − 1) is global EDF-schedulable upon a

multiprocessor platform comprised of m unit-capacity processors.

Theorem 1.1 above may be used to transform any test demonstrating feasibility of a sporadic task system

into a global FJP schedulability test. For instance, recall that Test 7 deemed any constrained-deadline

sporadic task system satisfying the following condition to be schedulable by a partitioned FJP algorithm

upon m unit-capacity processors:

load(τ) ≤
m − (m − 1)δmax(τ)

2

Any τ satisfying the above condition is clearly feasible on m unit-capacity processors as well. This fact, in

conjunction with Theorem1.1 above, yields the following sufficient condition for multiprocessor global EDF

schedulability:

Test 13 Any constrained-deadline sporadic task system τ is global EDF schedulable upon a platform com-

prised of m unit-capacity processors, provided

load(τ) ≤
m2

2m−1 − (m − 1)δmax(τ)

2

5 Fixed Task-Priority (FTP) Scheduling

Partisans of EDF scheduling [16] have argued that FTP scheduling should be forgotten, since EDF scheduling

has clear advantages. On single processors, the optimality of EDF ([29, 20]) implies that it successfully
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schedules all task systems that are successfully scheduled by any FTP algorithm. Even on multiprocessors

it is trivially true that FJP scheduling performs no worse than FTP scheduling since all FTP algorithms are

also FJP algorithms by definition, while the converse is not true. EDF also allows each application thread to

express its own deadline requirement directly, rather than indirectly through priority as in FTP-scheduled

systems. In contrast, making the right priority assignments in a FTP system can be very difficult to do, and

the priority assignment is fragile since a change to any thread may require adjusting the priorities of all other

threads. However, there are still many loyal users of FTP scheduling, who cite its own advantages. FTP

is arguably simpler than EDF to implement. It is supported by nearly every operating system, including

those that support the POSIX real-time application program interface [27]. With FTP it may be simpler

to design a system for overload tolerance, since the lowest-priority tasks will be impacted first. Therefore,

FTP scheduling is still important, and is of more immediate importance to some users than EDF.

5.1 Partitioned scheduling

5.1.1 Implicit-deadline systems

Liu and Layland [29] analyzed FTP as well as EDF scheduling upon preemptive uniprocessors. They showed

that ordering task priorities according to period parameters is optimal for implicit-deadline periodic task

systems in the sense that if a task system is schedulable under any FTP scheme, then the task system is

schedulable if tasks are ordered according to period parameters, with smaller-period tasks being assigned

greater priority. This priority order is called Rate Monotonic (RM). The proofs extend directly to the case

of sporadic tasks.

Test 14 (Uniprocessor RM Utilization) Any implicit-deadline sporadic task system τ comprised of n

tasks is schedulable upon a unit-capacity processor by RM if usum(τ) ≤ n(21/n − 1).

Unlike the uniprocessor EDF schedulability test, this uniprocessor RM utilization test is sufficient but

not necessary.

Oh and Baker[36] applied this uniprocessor utilization bound test to partitioned multiprocessor FTP

scheduling using First-Fit Decreasing Utilization (FFDU) assignment of tasks to processors and RM local
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scheduling on each processor. They proved that any system of implicit-deadline sporadic tasks with total

utilization U < m(21/2 − 1) is schedulable by this method on m processors. They also showed that for any

m ≥ 2 there is a task system with U = (m + 1)/(1 + 21/(m+1)) that cannot be scheduled upon m processors

using partitioned FTP scheduling. Lopez, Diaz and Garcia[31, 32, 33] refined and generalized this result,

and along with other more complex schedulability tests, showed the following.

Test 15 (FFDU RM Utilization) Any implicit-deadline sporadic task system τ comprised of n tasks is

schedulable upon m unit-capacity processors by a FTP partitioning algorithm (specifically, FFDU partitioning,

and RM local scheduling) if

usum(τ) ≤ (n − 1)(21/2 − 1) + (m − n + 1)(21/(m−n+1) − 1)

5.1.2 Constrained- and arbitrary-deadline systems

Leung [28] showed that ordering task priorities according to the relative deadline parameters (this priority

assignment is called Deadline Monotonic (DM)) is an optimal priority assignment for the uniprocessor

scheduling of constrained-deadline sporadic task systems. Hence, DM is the logical choice for use as the local

scheduling algorithm in partitioned FTP schemes for the multiprocessor scheduling of constrained-deadline

sporadic task systems; simulations [6] indicate that DM performs well on arbitrary-deadline sporadic task

systems as well.

Fisher, Baruah, and Baker [22] studied the partitioned FTP scheduling of sporadic constrained- and

arbitrary- deadline task systems when DM scheduling is used as the local scheduler on each processor.

They defined a variation on the FFID partitioning scheme described in Section 4.1.2, called FBB-FFD, and

obtained the following schedulability tests:

Test 16 Any arbitrary sporadic task system τ is partitioned FTP schedulable (specifically, by FBB-FFD

partitioning and DM local scheduling) upon a platform comprised of m unit-capacity processors if

m ≥
load(τ) + usum(τ) − δmax(τ)

1 − δmax(τ)
+

usum(τ) − umax(τ)

1 − umax(τ)

For constrained-deadline systems, the test becomes somewhat simpler:
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Test 17 Any constrained-deadline sporadic task system τ is partitioned FTP schedulable (once again, by

FBB-FFD partitioning and DM local scheduling) upon a platform comprised of m unit-capacity processors,

if

load(τ) + usum(τ) ≤ m − (m − 1)δmax(τ)) .

5.2 Global scheduling

5.2.1 Implicit-deadline systems

Andersson, Baruah, and Jonsson[2] showed that any implicit-deadline periodic task system τ satisfying

umax(τ) ≤ m/(3m − 2) can be scheduled successfully on m processors using RM scheduling, provided

usum(τ) ≤ m2/(3m − 1).

Bertogna, Cirinei, and Lipari [14] proved the the following tighter result.

Test 18 (RM Utilization) Any implicit-deadline sporadic task system τ is global FTP schedulable (by

global RM scheduling) upon a platform comprised of m unit-capacity processors, if

usum(τ) ≤
m

2
(1 − umax(τ)) + umax(τ)

Andersson, Baruah, and Jonsson [2] proposed a hybrid scheduling algorithm called RM-US[m/(3m− 2)],

similar to EDF-US [44], that gives higher priority to tasks with utilizations above m/(3m−2), and showed it

is able to successfully schedule any set of independent periodic tasks with total utilization up to m2/(3m−1).

Baker [5] considered RM-US[ζ] for arbitrary values of ζ, showing that the optimum value of ζ is 1/3 and

RM-US[1/3] is always successful if usum ≤ m/3.

Bertogna, Cirinei, and Lipari [14] tightened the above result and proved the following general utilization

bound.

Test 19 (RM Utilization) Any implicit-deadline sporadic task system τ is global FTP schedulable (by

global RM[1/3] scheduling) upon a platform comprised of m unit-capacity processors, if

usum(τ) ≤
m + 1

3
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5.2.2 Constrained- and arbitrary-deadline systems

Baker [3] derived an FTP schedulability test based on generalized density for sporadic task systems with

constrained deadlines. The analysis was refined in [5] to allow arbitrary deadlines. Baker and Cirinei [7]

combined an insight from [13, 14] with the analysis of [5], and unified the treatment of FTP and FJP

scheduling. If one considers only the FTP case, the Baker and Cirinei test reduces to the following.

Test 20 (BC FTP) Any arbitrary-deadline sporadic task system τ is global FTP schedulable upon a plat-

form comprised of m unit-capacity processors, if for every task τk, there exists λ ∈ {λk} ∪ {ui | ui ≥ λk, τi ∈

τ}, such that one of the following is true:

∑

i<k

min(βλ
k (i), 1 − λ) < m(1 − λ)

∑

i<k min(βλ
k (i), 1 − λ) = m(1 − λ) and ∃i 6= k : 0 < βλ

k (i) ≤< 1 − λk

where

βλ
k (i)

def

=















ui(1 + max(0, pi−ei

dk

)) if ui ≤ λ

ui(1 + max(0, di+pi−ei−λdi/ui

dk

)) if ui > λ

The RM-US[ζ] idea can be applied to arbitrary fixed task-priority schemes and applied to task systems

with arbitrary deadlines as well as task systems with implicit deadlines. With FTP-US[ζ] one gives top

priority to the k tasks with utilization above ζ, for k < m, and schedules the remaining tasks according to

some other fixed task-priority scheme. Clearly, the top priority tasks will be schedulable, since k < m. Any

basic FTP schedulability test can then be applied to the n− k remaining tasks, using m− k processors. The

test may be overly conservative, but it is safe.

The idea of EDF(k) and EDF(kmin) can also be applied with FTP. That is, for FTP(k) assign top priority

to jobs of the k−1 tasks in τ that have highest utilizations, and assign lower priorities according to the given

FTP scheme to jobs generated by all the other tasks in τ . FTP(kmin) uses the least k for which FTP(k)

can be verified as schedulable. The same strategy for testing schedulability using a basic FTP schedulability

test on m − k processors applies.

Bertogna, Cirinei and Lipari[14] have applied to FTP scheduling the same technique they applied to FJP

scheduling in [13], and obtained the following FTP analog of Test 12.
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Test 21 (BCL FTP) Any constrained-deadline sporadic task system τ is global FTP schedulable upon a

platform comprised of m unit-capacity processors, if for each task τk one of the following is true:

∑

i<k

min(βk(i), 1 − λk) < m(1 − λk)

∑

i<k

min(βk(i), 1 − λk) = m(1 − λk) and ∃i 6= k : 0 < βk(i) ≤ 1 − λk

where

βk(i)
def

=
Ni,kei + min(ei, max(0, dk − Ni,kpi + di − ei))

dk

and

Ni,k =

(⌊

dk − ei

pi

⌋

+ 1

)

6 Relaxations of the Sporadic Model

The sporadic task model may seem very restrictive from the point of view of a programmer. The restrictions

are imposed to simplify analysis, and cannot be removed entirely without making it impractical or impossible

to determine whether a task system is schedulable. However, some of them can be relaxed using well-known

tricks, if one is prepared to accept a degree of conservative over-estimation in the analysis. The following are

illustrative examples of how one can accommodate some features that at first seem to violate the sporadic

model.

Sleeping Within a Job

Within a single job, a task cannot execute for a while, put itself to sleep to wait for completion of an input

or output operation, and then execute some more. That means there can be no deadlines that span more

than one job.

It is possible to work around this restriction by modeling tasks with multi-step jobs as if they were

multiple independent jobs with appropriately related deadlines. For example, suppose a task repeats the

following every 10 milliseconds (ms), with relative deadline of 5 ms.

1. Execute computation A, taking up to 1 ms, then read some data from an input device.
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2. Initiate an input operation, then wait for the input device to respond, where the worst-case response

time of the device is 1 ms.

3. Execute computation B, taking up to 1 ms.

4. Initiate an output operation, and don’t wait for the operation to complete.

This could be modeled by two independent tasks, each with period 10 ms. The first task would execute

A and the initiation of the input operation, with relative deadline of 1.5 ms. The second would be released in

response to the completion of the input operation (by an interrupt generated by the device) and execute B

with deadline of 1.5 ms. If the first task can be completed within 1.5 ms, the I/O operation can be completed

within 1 ms, and the second task can be completed within 1.5 ms, then the work of the original task can be

completed within 1.5 + 1 + 1.5 = 4 ms, satisfying the original relative deadline of 5 ms.

Task Inter-dependences

The only precedence constraints in the sporadic task model are between jobs of the same task. There are no

precedence constraints between jobs of different tasks, and a task cannot be blocked by a resource, such as

a lock held by another task.

This restriction can be relaxed slightly when one is testing schedulability of a given task, by padding the

worst-case execution time of the given task with the worst-case execution times of the longest possible com-

bination of critical sections that can block it. However, care must be taken in a multiprocessor environment,

since the worst-case impact of such resource blocking is greater than that in a single-processor environment.

That is, on a single processor if a job is blocked the processor will at least be doing useful work executing

another thread. On a multiprocessor, it is possible that m − 1 processors are idle because their tasks are

blocked by a critical section of a job running on another processor. This problem may be reduced with

partitioned scheduling, if tasks that contend for access to the same data are assigned to the same processor.

However, in a global scheduling environment or where performance concerns dictate accessing shared data

in parallel from multiple processors, contention for data access becomes unavoidable. It then becomes im-

portant to bound blocking time, by using a priority-aware locking protocol. Rajkumar [38, 39] has shown

how to apply the Priority Ceiling Protocol to multiprocessor systems with partitioned rate monotone (RM)
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scheduling, and Chen and Tripathi[17] have shown how to extend the technique to multiprocessor systems

with partitioned EDF scheduling. Further study of this subject in the context of global scheduling is needed.

Non-Preemptability

The model assumes that a scheduler may preempt a task at any time, in order to give the processor to

another task.

Short non-preemptable sections may be accommodated by treating them as critical sections that can block

every other task, and adding an appropriate allowance to the execution time of the task that is attempting

to preempt. The problem of multi-way blocking described above cannot occur. Even with global scheduling,

the m − 1 jobs with highest priority will not be affected at all.

Scheduling and Task-Switching Overhead

The model does not take into account the execution time overheads involved in task scheduling, preemption,

and migration of tasks between processors.

Overhead that is only incurred when a job starts or completes execution can be modeled by adding it

to the execution time of the corresponding job, and overhead that is associated with timer interrupt service

can be modeled by a separate task.

Changes in Task System

The model assumes that τ is fixed, including the number n of tasks and the values ei, pi, and di for each

task.

This restriction can be relaxed by modeling the system as switching between a finite set of modes, with

a different task system for each mode. If the task system for each mode is verified as schedulable, the only

risk of missed deadlines is during switches between modes. Through careful control of the release times of

tasks it is also possible to avoid missed deadlines during mode changes. At the extreme, one can delete the

tasks of the old mode as their pending jobs complete, and wait to start up the tasks of the new mode until

all of the tasks of the old mode have been deleted. As less extreme set of rules to ensure safe mode changes

in a single-processor FTP system was proposed in 1989 by Sha, Rajkumar, Lehoczky and Ramamritham
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[41], and corrected in 1992 by Burns, Tindell and Wellings [15]. We do not know of any similar work for

EDF scheduling or for FTP scheduling on multiprocessors.

Aperiodic Tasks

The model assumes that there is a non-trivial minimum inter-release time and that the execution time of

each job of a task is consistent enough that it makes sense to schedule for the worst-case execution time.

This restriction can be relaxed by de-coupling logical jobs from the jobs seen by the scheduler, and viewing

the task as a server thread. That is, the thread of a sporadic server has a control structure like Figure 1.1.

The server thread is scheduled according to one of the many budget-based preemptive bounded-allocation

scheduling algorithms that are compatible with the underlying scheduling scheme. These scheduling schemes

have in common that the scheduler maintains an execution time budget for the server thread and it executes

until either its queue is empty or the server’s budget is exhausted. The server budget is replenished according

to the particular scheduling algorithm. If the server is suspended for using up its budget, then when the

budget is replenished the server resumes execution at the point it was suspended. If the replenishment and

priority policies of the server limit the computational load to a level that can be modeled by a sporadic

task, an aperiodic server may be treated as a sporadic task in the schedulability analysis. The Sporadic

Server[42]1, Deadline Sporadic Server[23], Constant Bandwidth Server [19], and Total Bandwidth Server [43]

are examples of such scheduling policies. For an overview of simple aperiodic server scheduling algorithms

for the FTP and EDF environments, see [40], and for more detail see [30]. For specifics on how this approach

can be applied to a Constant-Bandwidth Server (CBS) on a multiprocessor with EDF scheduling, see the

work of Baruah, Goossens, and Lipari[10].

It appears that multiprocessor applications of aperiodic server scheduling, combined with bandwidth

recovery techniques to compensate for over-allocation of processing resources to guarantee hard deadline

tasks, have a strong potential to exploit the advantages of global scheduling on multiprocessors.

1The original description of the Sporadic Server in [42] contained a defect, that led to several variations. See [30] for details.
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Sporadic server task

1 for ever do

2 Sleep until queue is non-empty

3 while queue is not empty do

4 Remove next event from queue

5 Compute

Figure 1.1: Pseudo-code for a sporadic server.

7 Conclusion

We have shown how demand analysis techniques developed originally for the analysis of schedulability with

priority-based preemptive scheduling on single-processor systems have been extended to apply to multipro-

cessor systems. There are several practical algorithmic tests for verifying the schedulability of such systems

under both EDF and fixed task-priority scheduling in both partitioned and global modes. While none of

the multiprocessor scheduling algorithms we have considered here is optimal, and none of the corresponding

schedulability tests is tight, experiments with pseudo-randomly generated task sets have shown that some

of them are successful on most task sets, up to nearly full system utilization.

It is likely that further improvements can still be made in the accuracy of schedulability tests for global

scheduling on multiprocessors, with fixed job-priority schemes like EDF and FTP, and that more dramatic

improvements may be made as research on dynamic job-priority schemes progresses. However, the present

state of knowledge is already sufficient to make effective use of multiple processors for systems with hard

deadlines.
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