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Abstract

Fixed-task-priority (FTP) scheduling and earliest-deadline-first (EDF) scheduling policies are alike in fixing the priority
of each job of a task at the time the job is released. This common feature of FTP and EDF scheduling permits a unified
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tasks under a global preemptive FTP or EDF scheduling policy. The performance of the new tests has been evaluated in
comparison to prior schedulability tests, by simulation. The new tests are able to verify some schedulable task systems that
could not be verified by prior tests, but also fail to verify some systems that can be verified by prior analysis techniques.
The biggest gain appears to be for fixed-task-priority scheduling, especially with post-period deadlines.
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1 Introduction

Multiprocessor platforms have long been used for high performance real-time systems, starting as early as 1971 [7].

Making effective use of multiprocessors for embedded real-time applications has become more important recently, with the

introduction of multi-core microprocessor chips.

Historically, the dominant approach to scheduling real-time applications on a multiprocessor has been partitioned; that

is, to assign each task (statically) to a processor, and then apply a single-processor scheduling technique on each processor.

The alternative is global scheduling; that is, to maintain a single queue of ready jobs and assign jobs from that queue

dynamically to processors. Despite greater implementation overhead, the global approach is conceptually appealing. It

is well known from queueing theory that single-queue scheduling produces better average response times than queue-per-

processor scheduling [13].

This report brings together two threads of prior research on the analysis of global preemptive scheduling for general

sporadic task systems on multiprocessor platforms, and at the same time unifies the treatment of FTP and EDF scheduling.

One thread is the busy-interval analysis of [2, 3, 4]. The other thread is the work of Bertogna, Cirinei and Lipari [8, 9], in

which they observe that if a task τk misses a deadline the maximum fraction of the workload of any task that can contribute

to the “interference” is 1− λk, where λk
def= ci/min(di, Ti).

The empirical performance of the new unified test is evaluated in comparison to prior schedulability tests, by simulation.

The new test is shown to perform sometimes better than the previously known tests, and sometimes worse, so that the

combination of the new and old tests is able to cover more cases than any of the tests alone. The new test seems to be

especially advantageous for fixed-task-priority scheduling.

2 Definitions

For mathematical convenience, points and durations in real time are modeled by real numbers. However, in an actual

system time is not infinitely divisible. The times of event occurrences (and durations between them) cannot be determined

more precisely than one tick of the system’s most precise clock. Therefore, any time value t involved in scheduling is

assumed to be a non-negative integer value and is viewed as representing the entire interval [t, t + 1) def= {x ∈ R|t ≤ x <

t + 1}. The notation [a, b) is used as a reminder that the interval includes all of the clock tick starting at a but does not

include the clock tick starting at b.

A sporadic task set is a collection of sporadic tasks τ = {τ1, τ2, . . . , τn}. Each sporadic task generates potentially infinite

sequence of jobs, and is characterized by a triple τi = (ci, di, Ti), where ci is the worst-case execution time requirement of
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each job, di is the deadline of each job relative to its release time, and Ti is the minimum separation between the release

times of the jobs. It is assumed that ci ≤ min(di, Ti), since otherwise a task would be trivially infeasible.

The utilization of τi is denoted by ui
def= ci/Ti, and the density of τi is denoted by λi

def= ci/min(di, Ti).

A release time sequence for a sporadic task τi is a sequence of times ri,1 < ri,2 < · · · (finite or infinite) such that

ri,j+1 − ri,j ≥ Ti, for j = 1, 2, . . .. A release time assignment for a task set is a mapping of a valid release time sequence

to each task in τ . An m-processor schedule for a given task system and a given release time assignment is a partial mapping

of tasks and time instants to processors, such that at most one task is assigned to each processor at any time t, and a task

cannot be assigned to a processor at time t unless there is at least one job of τk that is backlogged at time t. A task τk is said

to be backlogged at a time t in a schedule if there is at least one job of τk released at or prior to t that has nonzero remaining

execution time at t.

The jobs of each task are assumed to have a precedence constraint; that is, they must be executed sequentially in order

of release times. This is significant because di can be less than or greater than Ti, and so it is possible that the release time

of a job may come before the completion time of the previous job of the same task.

We are interested in global preemptive fixed-job-priority scheduling, in which each job has a fixed priority that is distinct

from all other jobs with which it competes for execution. At any instant in time all contending (i.e., released but not

completed) jobs are totally ordered by priority. The m contending jobs with highest priority are assigned to processors, or

if there are fewer than m contending jobs they all are assigned to processors.

Note that this fixed-job-priority model subsumes and unifies the following two specific priority schemes:

• Fixed-task-priority (FTP) scheduling: Jobs are ordered by task index; that is a job of τi has priority higher than a job

of τj if i < j.

• Earliest-deadline-first (EDF) scheduling: Jobs are ranked by (absolute) deadline; that is a job of τi released at time ri

has priority higher than a job of τj released at time rj if ri + di < rj + dj . Ties are assumed to be broken arbitrarily;

that is, if two jobs have the same deadline, we make no specific assumption about which can preempt the other.

Our goal will be to identify characteristics of a task set that must be satisfied for a scheduling failure to occur under either

of these two scheduling policies, so that by checking that a task set does not have those characteristcs we can verify that the

tasks in the set will always meet their deadlines.

The prior analyses of scheduling failures reported in [3, 4] were based on obtaining upper and lower bounds on the

computational demand over a time interval preceding a first missed deadline of some task τk. The computational demand
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of an interval was defined in terms of all the computation that could be done in the interval by tasks that have higher priority

than τk. However, as pointed out by [8], when doing this sort of analysis one does not need to consider all the work done

by tasks that can preempt τk, but only the time that such tasks actually do preempt τk. That distinction is captured by the

concepts of J-preemptive work, and block J-preemptive time.

For notational simplicity, the definitions of these terms and the rest of this paper assume as context a particular

release time assignment and schedule, a first scheduling failure for this schedule at time t, and a specific task τk that

misses its deadline at t. The job J of τk with deadline t will be called the problem job.

A key concept to our analysis is the amount of execution time consumed by jobs that can successfully compete against

the problem job for processor time, which we call the J-preemptive work of an interval. A job distinct from the problem

job is J-preemptive if it has higher or equal priority than the problem job J , or is a preceding job of the same task.

The contribution W J
i (a, b) of a task τi to the J-preemptive work in an interval [a, b) is the sum of the lengths of all

the subintervals of [a, b) during which a J-preemptive job of τi is scheduled to execute. the total J-preemptive work

W J(a, b) in the interval [a, b) is defined to be the sum
∑n

i=1 W J
i (a, b). The J-preemptive load is defined to be the ratio

W J(a, b)/(b− a).

A second key concept is the amount of clock time during which all m processors are busy executing J-preemptive work,

which we call the block J-preemptive time of an interval. The notation BJ(a, b) is used for the total block J-preemptive

time of an interval [a, b). The block J-preemptive time contribution BJ
i (a, b) of a task τi is defined to be the length of

the subintervals of [a, b) in which a τi is one of m tasks that have J-preemptive jobs scheduled to execute. The block

J-preemptive load is the ratio BJ(a, b)/(b− a).

The following are some relationships between the above definitions:

• BJ
i (a, b) ≤ W J

i (a, b). The instants at which a J-preemptive job of task τi is scheduled along with m − 1 other

J-preemptive jobs is a subset of all the instants when that job is scheduled to execute.

• mBJ(a, b) ≤ W J(a, b). At every instant where J experiences block preemption there are m J-preemptive jobs

executing. All of that execution is included in the total J-preemptive work of the interval.

•
∑n

i=1 BJ
i (a, b) = mBJ(a, b). Each instant where J experiences block preemption it is due to m jobs of the tasks

τ1 . . . τn, and each instant where a task τi contributes to the block J-preemptive time it is one of m tasks causing

block preemption for J .

The concept of block J-preemptive time introduced here is an extension of the concept of interference introduced in [8],

to allow for the possibility that the deadline of a task may exceed its period. Since more than one job of the problem task
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τk may execute in the interval, we must distinguish the problem job J from the problem task τk. However, the difference

turns out not to be very great, since any job that is preemptive of a predecessor of J in τk is also J-preemptive. Therefore,

the block J-preemption time of an interval is always greater than or equal to the τk interference.

The following lemma, which is adapted from [8], is useful for limiting the contribution of each task to the block J-

preemptive time in a generic time interval. The idea is that to verify that the block preemption time is greater than a certain

value x, it is sufficient to consider each single contribution up to x.

Lemma 1 If BJ(a, b) > x, then one of the following is true:

n∑
i=1

min(BJ
i (a, b), x) > mx (1)

n∑
i=1

min(BJ
i (a, b), x) = mx, and ∀i BJ

i (a, b) < x ⇒ BJ
i (a, b) = 0 (2)

proof: Suppose BJ(a, b) > x. Let S
def= { i |BJ

i (a, b) > x} and ξ
def= |S|. If ξ > m, clearly condition (1) holds, so we

consider only the case ξ ≤ m.
n∑

i=1

min(BJ
i (a, b), x)=ξx +

∑
i/∈S

BJ
i (a, b) (3)

If ξ = m, then condition (1) holds, or
∑

i/∈S BJ
i (a, b) = 0, in which case, since ∀iBJ

i (a, b) ≥ 0, condition (2) holds

vacuously.

If ξ < m, then based on (3) and the fact that BJ(a, b) > x,

n∑
i=1

min(BJ
i (a, b), x) = ξx + mBJ(a, b)−

∑
i∈S

BJ
i (a, b)

≥ ξx + mBJ(a, b)− ξBJ(a, b)

= ξx + (m− ξ)BJ(a, b) > mx

2

In the next two sections the core results of [3, 4] are recast in terms of block J-preemptive time, in order to combine the

lower and upper bounds on work found in these prior publications with the result of the above Lemma 1.

3 Lower Bound

In this section we derive a lower bound on the J-preemptive work of the maximal τk-busy interval ending at t, the missed

deadline of the problem job.
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A time interval is said to be τk-busy if τk is backlogged (continually) at all the points in the interval. A time interval

[t−∆, t) is said to be the maximal τk-busy interval with endpoint t if the interval is τk-busy and there is no ∆′ > ∆ such

that [t−∆′, t) is τk-busy. Note that t−∆ surely coincides with the release time of a job of τk, and if dk ≤ Tk then ∆ = dk.

Lemma 2 (lower bound) If t is the first missed deadline and τk misses its deadline at t, then there is a unique maximal

τk-busy interval [t−∆, t) with endpoint t, ∆ ≥ dk, and

BJ(t−∆, t)/∆ > 1− λk

proof: Since t is a missed deadline of some job J of τk, τk is continually backlogged from the release time of J through t.

Let ∆ = max{δ | [t− δ, t) is τk-busy}. Such a value ∆ exists and is less than or equal to t, since τk cannot be backlogged

before time zero. Since job J of τk is released at time t− dk and misses its deadline at t, the interval [t− dk, t) is τk-busy,

and so ∆ ≥ dk.

By the maximality of ∆, t − ∆ is the release time of a job of τk. Moreover, since τk is not backlogged before t − ∆

and has a deadline miss at t, only jobs of τk that are released in [t−∆, t) and have deadline in (t−∆, t] can execute in the

interval. If we define j to be the number of such jobs, jck is the execution time necessary to complete all these jobs. By the

minimum interarrival constraint, and considering that j is an integer value we have that

(j − 1)Tk + dk ≤ ∆ ⇒ j ≤
⌊

∆− dk + Tk

Tk

⌋
(4)

Since a deadline of τk is missed, part of the last job cannot be executed in the interval. Let y denote the sum of the lengths of

all the subintervals in which τk does not execute. It follows that the total execution time of τk in the interval is ∆− y. Since

the jobs of τk must be executed sequentially, the amount of time that τk does not experience interference in this interval is

less than jck. In formulae, we obtain the following

∆− y < jck ⇒ y > ∆− jck

For any instant at which τk does not execute there are m jobs of other tasks executing, and those jobs can all preempt

the current (earliest-released and uncompleted) job of τk at that instant. That current job is either J itself or a preceding

job of the same task, so by the transitivity of priority all m of the executing jobs are J-preemptive, and so contribute to

BJ(t−∆, t). Therefore,

BJ(t−∆, t) > ∆− jck (5)

The rest of the proof has two cases. Consider first the case dk ≤ Tk. From the definition of maximal τk-busy interval,
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∆ = dk, and so

BJ(t−∆, t)/∆ > 1− uk − uk(Tk − dk)/dk = 1− ck

dk
= 1− λk

Consider now the case dk > Tk. In this case ∆ ≥ dk and the expression on the right of (5) is decreasing with respect to ∆,

so

BJ(t−∆, t)/∆ > 1− uk = 1− λk

2

Note that it also follows that W J(t − ∆, t) > m(1 − λk) + λk, since every instant at which there are m processors

executing J-preemptive tasks contributes m units of J-preemptive work.

4 Upper Bound

In this section we introduce a parameter λ to generalize λk in the lower bound on the block J-preemptive load of an

interval preceding the first missed deadline, and then derive an upper bound on the block J-preemptive demand as a function

of λ. Because we do not know how to derive an upper bound on BJ(a, t) directly, we instead look at W J(a, t) and rely on

the fact that W J(a, t) ≥ mBJ(a, t).

The first step is to bound the portion of W J
i (t −∆, t) that is contributed by jobs released before the interval, which we

call carried-in jobs. In order to do this we will consider a specific interval ending at t, obtained by starting with the τk-busy

interval guaranteed by Lemma 2 and extending it downward as far as possible while still maintaining a lower bound on the

block J-preemptive time.

For any λ > 0, an interval [t−∆, t) is defined to be (1−λ)-busy if BJ(t−∆, t)/∆>1−λ. It is a maximal (1−λ)-busy

interval if it is (1− λ)-busy and there is no ∆′ > ∆ such that [t−∆′, t) is also (1− λ)-busy.

In other words, an interval is (1 − λ)-busy if the block J-preemptive load is greater than 1 − λ, and it is maximal

(1− λ)-busy if it is the longest (1− λ)-busy interval ending at t.

Lemma 3 If t is a first missed deadline, τk is a task that misses its deadline at t, and λ ≥ λk then there is a unique maximal

(1− λ)-busy interval [t− ∆̂, t) with endpoint t and length ∆̂ ≥ dk.

proof: By Lemma 2, there is a value ∆ for which the interval [t −∆, t) is (1 − λ)-busy. Therefore, the set of all starting

points t′ ≤ t−∆ of (1− λ)-busy intervals [t′, t) is non-empty. This set must have a minimal member, since there is a start

time of the system, before which no jobs arrive. Let ∆̂ = t− t′ for this minimum value t′ and the lemma is satisfied. 2

7



Recall that throughout this paper we assume as context an arbitrary sporadic task set τ = {τ1, . . . , , τn}, an arbitrary

release time assignment for τ , and an EDF or FTP schedule for this release time assignment. The first missed deadline

occurs at time t, and task τk misses its deadline at time t. The job of τk with deadline t is the problem job.

In this context, the unique interval [t − ∆̂, t) that is guaranteed by Lemma 3 when λ ≥ λk is called the (1 − λ)-busy

interval for short, and [t−∆̂, t) always denotes that interval. The next lemma provides an upper bound on the J-preemptive

work W J
i (t− ∆̂, t) done by each task τi in the (1− λ)-busy interval.

Lemma 4 (upper bound) If [t− ∆̂, t) is the (1− λ)-busy interval for task τk then for any task τi,

W J
i (t− ∆̂, t)/∆̂ ≤ βλ

k (i)

where

βλ
k (i) def=


0 if i ≥ k and scheduling is FTP
ui(1 + max(0, γi

dk
)) if ui ≤ λ and (i ≤ k or scheduling is EDF)

ui(1 + max(0, di+γi−λdi/ui

dk
)) if ui > λ and (i ≤ k or scheduling is EDF)

and

γi
def=

 −di if i = k and scheduling is EDF
Ti − ci if scheduling is FTP and i < k
Ti − di if scheduling is EDF and i < k

(6)

proof: The only interesting cases are those where W J
i (t − ∆̂, t) is nonzero. In those cases we can assume that there is at

least one job of τi that has higher priority than the problem job. We will start by using reasoning similar to that of Lemma 2

to derive a lower bound on the amount of J-preemptive work that τi must complete before the start of [t − ∆̂, t), and later

use this to derive an upper bound on the amount of J-preemptive work that τi can contribute to W J
i (t− ∆̂, t).

Let t−∆̂−φ be the release time of the first carried-in job of τi that contributes to W J
i (t−∆̂, t), if such exists; otherwise,

let φ = 0. Observe that the way φ is chosen guarantees φ < di.

If φ > 0 the interval [t − ∆̂ − φ, t − ∆̂) is non-empty. Call this the preamble with respect to τi of [t − ∆̂, t). Since

the job of τi that is released at the start of the preamble has nonzero remaining execution time at the end of the preamble,

there is only one job released in the preamble that can execute in the preamble. Call this job J ′. Since J ′ contributes to

W J
i (t−∆̂, t), it has higher priority than the problem job. It follows that W J

i (t−∆̂−φ, t−∆̂) is equal to the amount of time

that J ′ executes in the preamble. The only times in the preamble that J ′ does not execute are when m other jobs with higher

priority are executing, and those must be from m distinct tasks. Moreover, J ′ has higher priority than the problem job, and

the priority ordering is transitive, so any job that has higher priority than J ′ also has higher priority than the problem job.

Therefore,

BJ(t− ∆̂− φ, t− ∆̂) ≥ φ−W J
i (t− ∆̂− φ, t− ∆̂) (7)
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Also, since [t− ∆̂, t) is (1− λ)-busy,

BJ(t− ∆̂, t) > ∆̂(1− λ) (8)

Since, the block J-preemptive time of the concatenation of any two contiguous intervals is the sum of the block J-

preemptive times of the intervals, by substitution of (7) and (8),

φ−W J
i (t− ∆̂− φ, t− ∆̂) + ∆̂(1− λ) < BJ(t− ∆̂− φ, t) (9)

Since [t− ∆̂, t) is maximal (1− λ)-busy and φ > 0,

BJ(t− ∆̂− φ, t) ≤ (∆̂ + φ)(1− λ) (10)

By transitivity, (9) and (10) imply that

φ−W J
i (t− ∆̂− φ, t− ∆̂) + ∆̂(1− λ) < (∆̂ + φ)(1− λ)

and so,

W J
i (t− ∆̂− φ, t− ∆̂) ≥ λφ (11)

That completes the analysis of the case φ > 0. In the remaining case, where φ = 0, we have W J
i (t−∆̂−φ, t−∆̂) = 0 = λφ,

so (11) holds in all cases.

Given this lower bound on the amount of J-preemptive work that τi must complete before the (1− λ)-busy interval, we

can derive the following upper bound on the amount W J
i (t − ∆̂, t) of J-preemptive work that τi can complete within the

interval.

W J
i (t− ∆̂, t) = W J

i (t− ∆̂− φ, t)−W J
i (t− ∆̂− φ, t− ∆̂) ≤ W J

i (t− ∆̂− φ, t)− φλ (12)

The next part of the proof is to show that in each case (EDF and FTP) an expression γi can be defined that is independent

of ∆̂ and φ and such that

W J
i (t− ∆̂− φ, t) ≤ ui(∆̂ + φ + γi) (13)

It is easy to see that the J-preemptive work due to τi in the interval [t− ∆̂− φ, t) is maximized when the jobs of τi are

released as close together as possible, at times t − ∆̂ − φ + jTi for integers j = 0, 1, 2, . . .. Let t − ∆̂ − φ + ĵTi be the

release time of the last job of τi that is J-preemptive.

We next must analyze the cases EDF and FTP separately, because the value of ĵ depends on the job priorities.

For FTP: We are only interested in the case i < k, since W J
i (t − ∆̂, t) = 0 if i ≥ k. The amount of J-preemptive work

done by the job of τi released at time t− ∆̂− φ + ĵTi is bounded by ci and by ∆̂ + φ− ĵTi, so

W J
i (t− ∆̂− φ, t) ≤ ĵci + min(ci, ∆̂ + φ− ĵTi) (14)
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Suppose first that the term ci is the minimum. We then have that ĵ ≤ (∆̂ + φ)/Ti − ui, and so from (14) we obtain

W J
i (t− ∆̂− φ, t) ≤ (ĵ + 1)ci ≤ (

∆̂ + φ

Ti
− ui + 1)ci = ui(∆̂ + φ + (Ti − ci)) = ui(∆̂ + φ + γi)

Suppose next that the term ci is not the minimum. We have that ĵ > (∆̂ + φ)/Ti − ui, and so from (14) we obtain

W J
i (t− ∆̂− φ, t) ≤ ĵci + ∆̂ + φ− ĵTi = ∆̂ + φ− ĵ(Ti − ci)

=
∆̂ + φ

Ti
ci + (

∆̂ + φ

Ti
− ĵ)(Ti − ci)

<
∆̂ + φ

Ti
ci + ui(Ti − ci) = ui(∆̂ + φ + γi)

For EDF:

First, we consider the case of i = k. This case is special because the problem job is not preemptive of itself, but earlier

jobs of τk are preemptive of the problem job. Since t is the deadline of the last job of τk, t− ∆̂− φ + ĵTk + dk − Tk ≤ t,

and so

ĵ ≤ ∆̂ + φ− dk − Tk

Tk

It follows that

W J
k (t− ∆̂− φ, t) ≤ (ĵ + 1)ci ≤

∆̂ + φ− dk

Tk
ck = uk(∆̂ + φ + γk)

The remaining case is of i 6= k. The deadline of the last J-preemptive job of τi must be no later than t, i.e., ĵ < ∆̂+φ−di

Ti
,

and so

W J
i (t− ∆̂− φ, t) ≤ (ĵ + 1)ci < ui(∆̂ + φ + Ti − di) = ui(∆̂ + φ + γi)

That concludes the proof that (13) is satisfied for both FTP and EDF scheduling, so we can now substitute (13) into (12)

and obtain
W J

i (t− ∆̂, t)
∆̂

<
ui(∆̂ + φ + γi)− λφ

∆̂
(15)

Let f(φ, ∆̂) be the function defined by the formula on the right side of inequality (15). That is

f(φ, ∆̂) def= ui(1 +
γi + φ(1− λ/ui)

∆̂
)

The value of f(φ, ∆̂) is bounded by consideration of the following cases.

Case 1: Suppose ui > λ. It follows that f is increasing with respect to φ, and since φ < di,

f(φ, ∆̂) ≤ ui(1 +
di + γi − λdi/ui

∆̂
)
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Case 1.1: Suppose f is decreasing with respect to ∆̂. Since ∆̂ ≥ dk,

f(φ, ∆̂) ≤ ui(1 +
di + γi − λdi/ui

dk
)

Case 1.2: Suppose f is non-decreasing with respect to ∆̂. Taking the limit as ∆̂ →∞,

f(φ, ∆̂) ≤ ui

In both cases 1.1 and 1.2,

f(φ, ∆̂) ≤ ui(1 + max(0,
di − γi − λ/ui

dk
)) = βλ

k (i)

Case 2: Suppose ui ≤ λ. It follows that f is non-increasing with respect to φ, and since φ > 0,

f(φ, ∆̂) ≤ ui(1 +
γi

∆̂
) (16)

Case 2.1: If the expression on the right in (16) is decreasing with respect to ∆̂, since ∆̂ ≥ dk, it follows that

f(φ, ∆̂) ≤ ui(1 +
γi

dk
)

Case 2.2: If the expression on the right in (16) is non-decreasing with respect to ∆̂, by taking the limit as ∆̂ → ∞, it

follows that

f(φ, ∆̂) ≤ ui

Combining the two cases 2.1 and 2.2, we have

W J
i (t− ∆̂, t)

∆̂
≤ f(φ, ∆̂) ≤ ui(1 + max(0,

γi

dk
)) = βλ

k (i)

2

5 Schedulability Test

Theorem 1 (BC) Let τ = {τ1, . . . , τn} be a set of independent sporadic tasks, and let βλ
k (i) be as defined in Lemma 4.

The task set τ is EDF or FTP schedulable on m processors if, for every task τk there exists λ ≥ λk such that one of the

following criteria is satisfied
n∑

i=1

min(βλ
k (i), 1− λ) < m(1− λ) (17)

∑n
i=1 min(βλ

k (i), 1− λ) = m(1− λ) and ∃i 0 < βλ
k (i) < 1− λk (18)
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proof: The proof is by contradiction. Suppose there is a task set τ and a release time assignment such that for the m-

processor preemptive EDF schedule some task τk has a first missed deadline at time t. Let [t − ∆̂, t) be the (1 − λ)-busy

interval guaranteed by Lemma 3.

Based on the definition of maximal (1 − λ)-busy interval, by application of Lemma 1 with x = (1 − λ)∆̂, one of the

following must be true:
n∑

i=1

min(
BJ

i (t− ∆̂, t)
∆̂

, 1− λ) > m(1− λ) (19)

∑n
i=1 min(BJ

i (t−∆̂,t)

∆̂
, 1− λ) = m(1− λ) and ∀i BJ

i (t−∆̂,t)

∆̂
< (1− λ) ⇒ BJ

i (t− ∆̂, t) = 0 (20)

Combining the fact that BJ
i (t − ∆̂, t) ≤ W J

i (t − ∆̂, t) and the upper bound of Lemma 4, we can substitute BJ
i (t−∆̂,t)

∆̂
in

(19) and (20), to show that one of the following must be true:
n∑

i=1

min(βλ
k (i), 1− λ) > m(1− λ) (21)

∑n
i=1 min(βλ

k (i), 1− λ) = m(1− λ) and ∀i βλ
k (i) ≤ (1− λ) ⇒ βλ

k (i) = 0 (22)

It is easy to verify that if either of the two conditions above is true then both conditions (17) and (18) are false. 2

The above theorem can be used as a schedulability test by testing the conditions for each value of k. The test is of

complexity O(n3) since the only values of λ that need be considered are λk and the points where βλ
k (i) might change from

non-decreasing to decreasing with respect to λ, i.e., λ = ui, i = 1, . . . , n.

The schedulability test can be tightened slightly more. Though time and page constraints do not permit a full explanation

here, the basic idea is simple. Observe that there can be at most m − 1 tasks τi that carry J-preemptive work into the

(1−λ)-busy interval [t−∆̂, t). That is because, by the definition of (1−λ)-busy, at least one processor must be idle at time

t − ∆̂. The analysis of Lemma 3 can be repeated under the assumption that τi carries in no J-preemptive work, reducing

the bound on W J
i (t−∆, t) by ci − φλ. This results in a two-part bound βλ

k (i) = αλ
k(i) + κλ

k(i), such that κλ
k(i) is a bound

on the demand from carried in work and αλ
k(i) is a bound on the demand from work that arrives within the (1 − λ)-busy

interval. In the schedulability test, one can then replace the sum of βλ
k (i) by the sum of αλ

k(i) plus the sum of the m − 1

largest values of κλ
k(i).

6 Prior Work

6.1 Fixed Task Priorities

Andersson, Baruah, and Jonsson [1] first showed that any system of independent periodic tasks for which deadline equals

period and the utilization of every individual task is at most m/(3m − 2) can be scheduled successfully on m processors

12



using rate monotonic scheduling if the total utilization is at most m2/(3m− 1). Baruah and Goossens [6] also published a

similar result, that a total utilization of at least m/3 can be achieved if the individual task utilizations do not exceed 1/3.

Baker [2, 4] derived sufficient conditions for general FTP schedulability for sporadic task sets with unconstrained dead-

lines. The schedulability test of [4], restated in the notation of Theorem 1 to aid comparison, is as follows:

Theorem 2 (BAK-FTP) A set of sporadic tasks τ = {τ1, . . . , τn} is schedulable on m processors using global preemptive

fixed-priority scheduling if, for every task τk there exists λ ≥ λk such that

n∑
i=1

min(βλ
k (i), 1) ≤ m(1− λ) (23)

where

βλ
k (i) def=


0 if i >= k
ui(1 + max(0, γi

dk
)) if ui ≤ λ m

m−1

ui(1 + max(0,
di+γi−λ m

m−1 di/ui

dk
)) if ui > λ m

m−1

and γi is defined as in Theorem 1.

The differences, going from Theorem 2 to Theorem 1, are:

1. The bound used in the minimum is reduced from 1 to 1 − λ. This improvement was the main objective of the new

analysis, using BJ(a, b) instead of W J(a, b) in the definition of (1 − λ)-busy. This change is most likely to pay off

in improved accuracy when there are tasks with large densities.

2. In the definition of βλ
k (i), λ m

m−1 is replaced by λ. This is a loss, since it results in a larger value of βλ
k (i). It seems to

be an unavoidable down-side consequence of the change above.

Later, Bertogna et al. [9] looked at fixed-task-priority scheduling and derived the following test.

Theorem 3 (BCL-FTP) A set of sporadic tasks τ1,. . . ,τn with constraint di ≤ Ti is FTP schedulable on m identical

processors if for each task τk one of the following is true:

∑
i 6=k

min(βλ
k (i), 1− λk) < m(1− λk) (24)

∑
i 6=k min(βλ

k (i), 1− λk) = m(1− λk) and ∃i 6= k : 0 < βλ
k (i) ≤ 1− λk (25)

where

βλ
k (i) def=

Nici + min(ci,max(0, dk −NiTi + di − ci))
dk

, and Ni
def=

⌊
dk − di

Ti

⌋
+ 1
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Because the above result relies on the assumption that di ≤ Ti, it is difficult to compare against Theorem 1. Both proofs

use the technique of bounding βλ
k (i) by the lower bound on block J-preemptive demand, but they define demand slightly

differently and look at different intervals. The principal advantage in precision of the above result seems to be that, because

it only considers a single interval of known length (the one between a missed deadline and the corresponding release of

τk), it can use the exact value of Ni. In contrast, the proof of Theorem 1 relies on simplifications made possible by over-

bounding the floor function, in order to eliminate the dependences on the interval length ∆̂ and the release-time offset φ of

the first carried-in J-preemptive job.

6.2 EDF Priorities

Goossens, Funk, and Baruah [11] showed that a system of independent periodic tasks can be scheduled successfully

on m processors by EDF scheduling if the total utilization is at most m(1 − umax) + umax, where umax is the maximum

utilization of any individual task.

Baker [2, 3] derived several sufficient feasibility tests for m-processor preemptive EDF scheduling of sets of periodic

and sporadic tasks with arbitrary deadlines. The EDF schedulability test of [4], restated to aid comparison with Theorem 1

here, is as follows:

Theorem 4 (BAK-EDF) A set of independent sporadic tasks τ1, . . . , τn is EDF-schedulable on m identical processors if,

for every task τk, there exists a positive value λ ≥ λk such that

n∑
i=1

min(βλ
k (i), 1) ≤ m(1− λ) + λ

where

βλ
k (i) def=


ui(1 + max(0, γi

dk
)) if ui ≤ λ

ui(1 + max(0, di+γi−λdi/ui

dk
)) if ui > λ and di ≤ Ti

ui(1 + max(0, di+γi

dk
)) if ui > λ and di > Ti

and γi
def= Ti − di.

The differences going from Theorem 4 to Theorem 1 are:

1. The bound used in the minimum is reduced from 1 to 1− λ, as explained for Theorem 2.

2. The lower bound is reduced by λ. This a loss that seems to be the price of using block J-preemptive demand instead

of J-preemptive work in the definition of (1− λ)-busy.
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3. The upper bound βλ
k (i) is reduced by ui

Ti

dk
for the case i = k. This is an improvement from using block J-preemptive

demand that only partially offsets the loss above.

4. The upper bound βλ
k (i) is reduced by ui

λdi/ui

dk
for the case ui > λ and di > Ti. This is an improvement that

apparently could be backed into the proof of Theorem 4.

Bertogna, Cirinei and Lipari [8] observed that the proof of the utilization bound test of [11] extends naturally to cover

pre-period deadlines if the utilization ui is replaced by ci/di. As observed by Sanjoy Baruah1, the same proof extends to

the case of post-period deadlines if utilization is replaced by density.

Theorem 5 (GFB) A set of sporadic tasks τ1,. . . ,τn is EDF schedulable on m identical processors if
n∑

i=1

λi ≤ m(1− λmax) + λmax

where λmax
def= max(λi|i = 1, . . . , n).

Bertogna et al. [8] also derived the following sufficient test for EDF schedulability of task tests with constrained dead-

lines.

Theorem 6 (BCL-EDF) A set of sporadic tasks τ1,. . . ,τn with constraint di ≤ Ti is EDF schedulable on m identical

processors if for each task τk one of the following is true:∑
i 6=k

min(βλ
k (i), 1− λk) < m(1− λk) (26)

∑
i 6=k min(βλ

k (i), 1− λk) = m(1− λk) and ∃i 6= k : 0 < βλ
k (i) ≤ 1− λk (27)

where

βλ
k (i) def=

Nici + min(ci,max(0, dk −NiTi))
dk

, and Ni
def=

⌊
dk − di

Ti

⌋
+ 1

The discussion of the relationship of Theorem 1 to Theorem 3 also applies to this result. In addition, observe that here

the sums exclude the kth term, while in Theorem 1 the kth term is included, resulting in a loss of accuracy in some cases.

7 Empirical Comparisons

Bertogna et al. [8] reported simulations on collections of pseudo-randomly generated tasks sets with a few heavy tasks,

for which the BCL was able to discover significantly more schedulable task sets than the GFB and BAK tests for EDF

schedulability.
1personal communication
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To discover how the new BC schedulability test compares to the previously known tests, a series of experiments were

conducted on pseudo-randomly generated sets of sporadic tasks. Due to a page limit, only a few such experiments are

reported here:

BAK Baker’s FTP and EDF tests from [2, 3, 4], as stated in Theorems 2 and 4.

GFB Goossens, Funk and Baruah’s EDF test, extended to arbitrary deadlines by Bertogna, Cirinei and Lipari, as stated

Theorem 5.

BCL Bertogna, Cirinei, and Lipari’s FTP and EDF tests, as stated in Theorems 3 and 6.

BC The unified FTP and EDF test based on Theorem 1 above.

7.1 Generation of Datasets

The performance of the schedulability tests was evaluated on several datasets. Each dataset contained 1,000,000 sets of

tasks. The task periods were generated pseudo-randomly with a uniform distribution between 1 and 1000. The processor

utilizations (and, implicitly, the execution times) were chosen according to the following distributions, truncated to bound

the utilization between 0.001 and 1.0.

1. uniform distribution, between 1/period and 1.0

2. bimodal distribution: heavy tasks uniform between 0.5 and 1; light tasks uniform between 1/period and 0.5; proba-

bility of being heavy = 1/3

3. exponential distribution with mean 0.25

4. exponential distribution with mean 0.50

The bimodal distribution was intended to bias toward cases with a few heavy tasks, similar to the experiments of

Bertogna, Cirinei, and Lipari [8], on which the BCL test performed well.

The deadlines were chosen in two different ways:

A constrained: deadlines uniformly distributed between the execution time and the period

B unconstrained: deadlines uniformly distributed between the execution time and 4 times the period (for all but the BCL

test)

Separate datasets were generated for 2, 4, and 8 processor systems, as follows. An initial set of m+1 tasks was generated,

and tested. Then another task was generated and added to the previous set, and all the schedulability tests were run on the
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new set. This process of adding tasks was repeated until the total processor utilization exceeded m. The whole procedure

was then repeated, starting with a new initial set of m + 1 tasks.

The above procedure rules out task sets that are trivially scheduable on m processors, one per processor. The tasks sets

were further screened, by dropping all task sets that could be shown to be trivially schedulable on one processor because

the total density was less than or equal to one, to be infeasible on m processors because the maximum processor demand

[5, 10] exceeded m. After this screening many infeasible task sets are still included in the datasets. The only necessary and

sufficient test for feasibility of global EDF scheduling of n tasks on m processors known to us has worst-case execution time

of the order O(mn ·Πn
i=1Tici). We implemented and tested that algorithm, but running it on datasets of the size considered

here was not practical. Reporting the relative performance of the efficient sufficient tests of feasibility on large numbers

of tasks sets seemed more important than comparing them against perfection on a much smaller number of task sets, with

smaller periods.

Histograms are used to compare the success rates of the different schedulability tests. Each bucket x corresponds to the

collection of task sets that have total utilization in a range between 0.01x and 0.01(x + 1), i.e., a utilization range of one

percent. The lines with points show how many task sets were verifiably feasible according to each of the three tests.

All the schedulability tests described in this paper were run on these datasets. Only the results of a few of the experiments

are reported here, due to space limitations.

7.2 Results for Basic EDF

Figures 1, 2, and 3 compare the performance of the new BC test against the GFB, BAK, and BCL tests on datasets with

constrained deadlines and bimodal task utilizations, on which the BCL test is known to do well. Histograms for m = 4 and

m = 8 are shown. As can be seen from the huge gap between the plot of the total number of task sets (N ) and the verifiably

schedulable task sets in Figure 1, none of the tests performed very well. To make the differences between the schedulability

tests more visible, Figures 2 and 3 omit the plot of N . The BCL test (solid squares) performed best over all for the bimodal

utilization distribution, as expected. For datasets less weighted toward high density tasks (not shown here) the GFB test did

better. The BC test peformed better than the BAK test for the two values of m shown, but performed worse than the BAK

test for m = 2 (not shown).

Figures 4 and 5 show the performances of the GFB, BAK, and BC tests on datasets with unconstrained deadlines and

bimodal task utilizations, for which the BCL test does not apply. For two (not shown) or four processors, the GFB test does

best, and the BC test actually does worse than the original BAK test. However, for eight processors, the BC test does better

than the BAK and BC tests.
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Figure 1. Histograms showing success of GFB, BCL, BAK, and BC tests for global EDF schedulability on 4 processors, of task
sets with constrained deadlines and bimodal task utilizations, categorized by usum
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Figure 2. Same as Figure 1, but without N .
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Figure 3. Same as Figure 2, but for 8 processors
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Figure 4. Histograms showing success of GFB, BAK, and BC tests for global EDF schedulability on 4 processors, of task sets
with unconstrained deadlines and bimodal task utilizations, categorized by usum
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Figure 5. Same as Figure 4, but for 8 processors

From the performance on these datasets and others, it is clear that the tests are generally incomparable, and the per-

formance of the BC test for EDF generally falls in the middle between the GFB, BAK, and BCL tests, sometimes being

outdone by one and sometimes by the other. As mentioned above, the reasons for this mediocre performance can be traced

back primarily to including the contribution of the task τk in the upper bound on J-preemptive work but not in the lower

bound on block J-preemptive time.

7.3 Results for Basic Deadline-Monotonic

Figures 6 and 7 show the performances of the BAK, BCL, and BC tests for deadline-monotonic schedulability, on the

same datasets as Figures 2 and 3. The BC test outperformed the BAK test, outperformed the BCL test for m = 2 (not

shown) and m = 4, and did about the same as the BCL test for m = 8.

Figures 8 and 9 show the performances of the BAK and BC tests on the same datasets as Figure 4, with post-period

deadlines, for which the BCL test does not apply. The BC test clearly outperforms the BAK test.

In general, performance of the FTP with all the available tests is better than EDF with any of the available tests, as can

be seen by comparing Figure 2 to Figure 6, and Figure 4 to Figure 8. This is the strongest area of the BC test. It does better

than the BAK test in nearly all cases, does better than the BCL test for most of the cases where the BCL test applies (those
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Figure 6. Histograms showing success of BAK, BCL, and BC tests for global deadline-monotonic schedulability on 4 processors,
of the same task sets as Figures 2 and 3, categorized by usum
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Figure 7. Same as Figure 6, but for 8 processors
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Figure 8. Histograms showing success of BAK and BC tests for global deadline-monotonic schedulability on 4 processors, for
the same task sets as Figures 4 and 5, with post-period deadlines, categorized by usum
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Figure 9. Same as Figure 8, but for 8 processors
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with constrained deadlines), and applies to additional cases where the BCL test does not apply (those with unconstrained

deadlines).

8 Conclusions and Future Work

Theorem 1 provides a unified derivation of a new sufficient test for m-processor schedulability of a set of independent

sporadic tasks under preemptive global EDF and FTP policies. The derivation is based on a new metric, called block J-

preemptive time. The new unified schedulability test (BC test) is more accurate for some tasks sets than previous tests based

on computational “load” [2, 3, 4] and “interference” [8, 9]. However, there are also cases where it is less accurate, especially

for EDF scheduling and small values of m.

The strength of the new BC test is FTP scheduling. The performance of FTP scheduling with the BC test in our experi-

ments was significantly better, over all, than EDF scheduling with any of the known schedulability tests. The BC test also

has a broader range of applicability, which extends beyond the BCL family of tests, to post-period deadlines. Such task

sets are of interest because they occur in applications where input and output buffering is used to smooth out computational

demand. For such task sets, with unconstrained deadlines, the BC test is able to verify schedulability of a significant number

of task sets that could not be verified using the previously known algorithms.

Further improvements in schedulability tests appear to be possible. One idea for an improvement is sketched at the end

of Section 5. Other improvements may be possible by retaining the floor functions in the upper and lower bounds all the

way through the analysis.

In future work it would also be interesting to compare the performance of the various schedulability tests discussed here

in a hybrid scheduling context. It is well known that scheduling with a pure global EDF or pure global deadline-monotonic

policies is not as effective as with a hybrid policy in which up to m − 1 tasks with heavy resource consumption are given

special high (super) priority. For example, see the following: the hybrid scheduling algorithm called RM-US[m/(3m-2)] in

[1], which gives super priority to tasks with utilizations above m/(3m−2); the policy called EDF-US[m/(2m−2)] in [14]

and generalized to EDF-US[ζ] in [3], which gives super priority to tasks with utilizations above some constant threshold;

the hybrid scheduling algorithm called PriD [12], which gives super priority to the k tasks (0 ≤ k < m) with highest

utilization, where the value k is chosen to be the minimum such that the remaining n − k tasks satisfy a utilization-based

schedulability test for m − k processors; a generalization of the PriD idea to tasks with period not equal to deadline and

other schedulability tests [3]; the hybrid algorithm called DM-DS[x] [9], which gives super priority to tasks with density

above some threshold. All the tests for global EDF or FTP scheduling can be applied directly in such a hybrid context, by

pretending each super-priority task is statically assigned to its own processor (even though the assignment is not static), and

then applying the global schedulability test to the remaining tasks and processors. Such direct application seems to be more

23



pessimistic than necessary. Through further analysis, more precise schedulability tests for the hybrid scheduling schemes

should be possible.
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