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Abstract: Mobile ad hoc networks are collections of wireless mobile nodes with links that are made or broken in
an arbitrary way. They have constrained resources, restricted broadcast range and no fixed infrastructure. For these
networks communication is achieved via routes whose nodes relay packets. Several routing algorithms have been
proposed in the literature. These focus mainly on efficiency with security relegated to weak adversary models,
particularly with regard to fault tolerance in malicious settings. Our goal in this paper is to develop a formal
security framework for analyzing fault-tolerant routing in malicious environments. Our simulation framework
allows for strong adversary models and preserves fault-tolerance in the universal composability paradigm. We
present optimistic tracing protocols and prove their security in this model and show how they can be composed
with existing, well-established routing algorithms. To the best of our knowledge, these are the only protocols that
guarantee message delivery in a strong adversary model.

Keywords: MANET, Optimistic, Tracing, Secure, Routing.

1 Introduction

Finding and maintaining communication routes in mobile ad hoc networks is a major challenge, especially with
respect to fault tolerance and security. To date, most of the research has focused on performance and services (see
e.g., [3, 16, 21, 22]) with security being given a lower priority, and in many cases, regarded as an add-on after-
thought technology rather than a design feature (e.g., [1, 20]). Although such an approach may be appropriate for
networks with predictable faults, it is not suitable for networks with unpredictable, malicious faults. In particular
one cannot trace malicious behavior by exploiting only stochastic network aspects, because malicious nodes may
avoid detection by colluding and behaving normally whenever a fault detection mechanism is triggered. Of partic-
ular concern in military applications is the possibility that an established route is taken over by the adversary, and
then used at a critical time. Another concern is that, besides packet dropping, malicious nodes may render a net-
work useless by disseminating confusing information regarding the state of the system,e.g., by blaming non-faulty
nodes for failures and for dropping or corrupting packets. It is therefore important to trace malicious behavior and
to prevent faulty nodes from taking part in future attacks.

In this paper we consider the problem of secure routing in mobile ad hoc networks when there are malicious
faults. We overview current security threats and discuss countermeasures, focusing on routing issues. Our main
contribution is to propose a formal security simulation framework for multi-party protocols, in the universal com-
posability paradigm. We present two protocols that address malicious behavior and prove their security in our
framework. Finally we show how these protocols can be combined to support the security of existing routing
algorithms.

The paper organized as follows. In Section 2 we present our model that captures at an appropriate degree
of abstraction the basic stochastic aspects of mobile ad hoc networks and give our definitions. In Section 3 we

∗This material is based on work supported in part by the U.S. Army Research Laboratory and the U.S. Research Office under grant number
DAAD19-02-1-0235 and in part by the National Science Foundation under grant number NSF-009316.
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overview the security threats of routing algorithms. In Section 4 we present an algorithm that traces malicious
faults and in Section 5 we present an adaptive multipath routing algorithm that tolerates malicious behavior.

2 Formal framework for security

Network: There are several ways to capture the unpredictable nature of a mobile ad hoc network. Whichever
way is used, there are important mobility and medium aspects that must be reflected. Below we define a simple
model for ad hoc network that will be assumed in our security framework.

Definition 1 A mobile ad hoc networkis a stochastic processG = G1,G2, . . . , whereGt is a random graph with
node setV , for which communication is:(i) synchronous, the time for a single transmission to be received is
bounded by a constant;(ii) promiscuous, a packet transmitted by a node will be received by all its neighbors;(ii)
ordered, packets transmitted by a node will be received at each of its neighbors in the same order that they were
sent.

Our model allows the following to happen: (i) undeterministic arrival time, a packet can arrive at an arbitrar-
ily future time within the synchronous bound; (ii) promiscuous constraint is only effective on mobile nodes, an
adversary can listen to all packet transmissions can transmit packets to arbitrary nodes, regardless of the network
structure; (iii) undeterministic arrival order among senders, packets transmitted by multiple nodes can arrive at
any single receiver in an arbitrary order; (iv) underterministic arrival order among receivers, a packet transmitted
by a node can arrive at its receivers in an arbitrary order.

Network links can be undirected (the neighbor relationship is symmetric) or directed (the neighbor relationship
is asymmetric). We note that to the best of our knowledge, to date, all routing algorithms proposed in the literature
support only bidirectional or undirected links.

The stochastic aspect ofG is determined by the states of the nodes ofG (including nodes under control of the
adversary) and Nature. Nature’s contribution comes from the environment and the fact that the communication is
wireless. A wide variety of factors may affect the communication, ranging from weather to radio interference and
physical obstacles.

Adversary structure: We allow the adversary to send packets toarbitrary nodes and to eavesdrop onall com-
munication regardless of the network structure and can request arbitrary actions at nodes under his control. The
adversary also has full information on the network connectivity. In these respects, our model is stronger than other
models, in particular, the Byzantine model described below.

Definition 2 Let Γ be a family of subsetsV ′ of the node setV . We call Γ an Adversary Structure[11]. The
adversaryA = AΓ selects a subsetV ′ ∈ Γ and can corrupt all of its nodes during the lifetime of the system.1

Adv controls the nodes ofV ′ and may use them to undermine the security of the network. We call these nodes
corruptedor faulty and refer toAdv as aΓ-adversary. The adversary may bepassiveor active. A passivead-
versary (also calledhonest-but-curious) will only eavesdrop on the network communication. Anactiveadversary
may use the corrupted nodes to prevent the normal functioning of the network viadropping, modifying, and/or
fabricatingnetwork messages. Nodes that are actively involved in such attacks and the corresponding faults are
calledmaliciousor Byzantine. Malicious nodes may use hidden (covert) channels or “wormholes” through which
they can communicate or tunnel packets.

A particular case of the Adversary Structure model is theByzantine faultsmodel [24] for whichΓ = {V ′ ⊂
V | |V ′| ≤ k}, for some thresholdk. In this case we callA = Ak ak-adversary.

In Figure 1:π is the protocol,G is the network graph,Fπ the functionality that emulatesπ, A the adversary,
SA a simulator for the adversary.

Simulation Framework. Our security simulation framework follows cryptographic simulation paradigms for the
security of network protocols [2]. Mobile nodes are probabilistic Turing machines with special tapes (transceiver)
for sending and receiving packets.

1There are several generalizations of this model. One such generalization allowsΓ to be dynamic: at regular intervalsAdv can replaceV ′

by V ′′ ∈ Γ, that is, release the nodes ofV ′\V ′′ and replace them by the nodes ofV ′′\V ′. Another generalization involves hybrid faults:
malicious faults and physical faults. We shall not consider these models here.
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Figure 1: The UC security framework.

We allow the adversary is to schedule the delivery of network packets and interleave the delivery with its own
packets in arbitrary way it wishes, subject only to the synchrony, promiscuity and orderly conditions on the part of
the network packets. In other words, we assume that the whole network is run by the adversary.

For concurrent executions of a distributed algorithmπ, we use a model with an infinite collection of oracles
{Oσ

π | sessionσ} that simulate concurrent sessions ofπ. The adversary can interact concurrently with the oracles.
In particular, in sessionσ, the adversary is able to interact with uncorrupted mobile nodes by querying oracleOσ

π .
Each query toOσ

π emulates one round of interaction in the session. A query to oracleOσ
π is a list of packets

to be written to the receive tape of each mobile node.Oσ
π first combines this input with the list of packets to

be delivered—which was determined in the previous round—into a single list; it then delivers the packets (from
the combined list) to the corresponding nodes and simulates the response of each node according to protocolπ;
finally, it forwards the nodes’ responses to both(i) the oracleNG , whose output determines the list of packets to
be delivered to mobile nodes in the next round; and(ii) to the adversary asOσ

π ’s output.
The viewviewσ

π of protocolπ in sessionσ is the list of all packets sent and received by uncorrupted mobile
nodes in sessionσ. This view describes the execution of the protocolπ in sessionσ under the influence of the
adversary. Letsuccess(viewσ

π) = 1 if sessionσ is a successful execution of protocolπ andsuccess(viewσ
π) = 0

otherwise.

Definition 3 Let π be a distributed algorithm that runs in at mostt(π) rounds andANG ,Oσ
π be anΓ-adversary with

oracle accesses toNG and{Oσ
π}. LetΣA

π be the set of sessionsσ queried by adversaryANG ,Oσ
π at leastt(π) times

during its execution. We define the advantage ofANG ,Oσ
π againstπ by:

advAπ = Prob[∃σ ∈ ΣA
π : success(viewσ

π) = 0].

The probabilities are taken over the adversary’s and honest parties’ coin tosses. The following definition captures
the basic availability requirements of this approach for secure distributed applications.

Definition 4 We have:

- Γ-availability for π if advAπ is negligible for allΓ-adversariesA.

- Γ-tolerancefor π if |advAπ − adv∅π| is negligible for allΓ-adversariesA.

Here negligibility is defined as usual [9] and∅ is the passive adversary that only eavesdrops.
The above definition covers availability and tolerance in a multi-party setting.

2.1 Security notations and mechanisms

For data integrity, Message Authentication Codes (MACs) may be used. For authenticity and integrity, digital
signatures are used. For confidentiality (privacy) encryption mechanisms are used [24]. These are all keyed
cryptosystems. There are two types of cryptosystems:symmetricandpublic key. Symmetric cryptosystems require
one sharedsecretkey. Public key cryptosystems require two keys, apublic keyand asecret key. In our algorithms
we shall use the following notation:

• [[data]]sd : data, and its keyed MAC with the shared key ofs, d.

• [data]x : data, and its digital signature with the signing key ofx.

• hash(data): the (cryptographic) hash ofdata [24].
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We assume in this paper that all MACs and digital signatures are unforgeable. In particular, that the network
nodes and the adversary are polynomially bounded in the security parameter of the signatures. Consequently, the
security is conditional, and the error probability must take into account the error probabilities of these cryptographic
mechanisms.

We describe our optimistic tracing protocol using public key digital signature. However, symmetric key mech-
anisms such as hash chain and TESLA [25] can also be used interchangably for this purpose, which requires more
involved key predistribution, nevertheless allows substantially faster signing and verification.

We shall assume that each network node is assigned a unique secret signing key and given a list of public keys
that correspond to the assigned secret keys. This will allow nodes to link digitally signed messages to their owners
and to authenticate nodes. It is important however to note that malicious nodes may choose to share their secret
signing keys. This will make it possible for them to appear to be present in several virtual places of the network
at the same time (this is the Sybil attack [5] which we shall discuss in Section 3.2). We therefore view malicious
nodes as collections of virtual nodes, each one corresponding to a unique signing key.

The inability to bind entities (or messages) to a uniquephysical nodeis an inherent limit of Public Key Cryp-
tography. It is not restricted to networks and applies to all protocols that rely on cryptographic primitives for
authentication.

3 Security issues for routing algorithms

Depending on where most of the routing effort takes place, there are two types of routing:network-centricand
source-centric. With network-centric routing (such as DSDV [21], WR [3] and AODV [22]) the routing effort is
distributed within the network; with source-centric routing (such as DSR [16]) most of the routing effort is done
by the source node.

Network-centric routing requires considerable cooperation between the nodes of the network in order to update
and maintain a distributed database of routing information such as routes, cost, distance, reliability, time, etc. This
type of routing is appropriate for networks whose node mobility is low and changes are less frequent. Its advantage
is that the routing service is always available and communication can start almost immediately. ¿From a security
point of view, network-centric routing requires substantial cooperation between network nodes and strong trust
relationships. These algorithms are therefore more vulnerable to malicious faults. There is no way to prevent such
faults, because the routing service is provided by remote nodes (that may be faulty).

With source-centric routing, the sources is responsible for discovering the topology of the network, for finding
a route and for updating any changes, with less help from other nodes. When a node needs to send a packet, a
route to the destination is constructed on-demand by the node and updated according to the changes in the network.
Cooperation from other nodes is often limited to forwarding packets or collecting local information. Since there is
almost no status information to maintain, this kind of routing is flexible and appropriate for networks that change
frequently. Source-centric routing lessens the dependence on intermediate node cooperation, and thus is less
vulnerable to malicious attacks. Furthermore, since the source and destination have control over the routes, they
are also more flexible in dealing with DoS. For these reasons, when security issues are of concern, source-centric
routing is preferable.

3.1 Denial of Service attacks and countermeasures

There are several ways in which a DoS can be triggered. For example, the adversary can cause a DoS by flooding
the network with irrelevant packets (via faulty nodes). Another way to trigger a DoS is by flooding queries in dense
networks. We also have DoS attacks on routes. If the adversary succeeds in taking control of a route, for example
by having one or more nodes under his control selected by a route discovery algorithm, then the adversary will
establish routes that may not exist or that may have loops, which could prevent routing updates from settling and
route convergence. DoS is also triggered by packet dropping. For example, malicious nodes in a route discovery
algorithm may drop packets to prevent the source getting path information. Packet dropping can also take place
during communication. This problem is aggravated when malicious nodes collude.

Non-malicious DoS caused by flooding in dense networks is controlled by reducing the broadcast redundancy.
Gossipprotocols [10, 4] use this approach. Malicious DoS caused by flooding may be controlled by using Intrusion
Detection mechanisms. One way to deal with malicious DoS attacks on routes is to use fault tracing algorithms.
Awerbuch-Holmer-Nita Rotaru-Rubens [1] use an adaptive fault probing algorithm that is triggered when faults
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occur at a rate higher than that of ordinary link failures (non-malicious). There are several problems with such an
approach, due primarily to the fact that a malicious node need not exhibit faulty behavior when probed, but only
during communication. Furthermore, malicious nodes may collude to prevent failure reports reaching the source
and make bogus reports to confuse other nodes. In Section 4 we describe an algorithm that will trace malicious
behavior when it occurs.

3.2 Man-in-the-Middle attacks and countermeasures

In a man-in-the-middle attack the adversary takes control of the communication channel between the source and
destination by interposing between them. In their simplest form these attacks arepassive, with the adversary
relaying packets between two nodesx, y via nodes under his control. The relaying node(s) is (are) transparent tox
andy, andx is fooled into believing thaty is in range (a neighbor). In particularx, y will appear to be adjacent in
any route containing them. The attacker will not be listed on the route, but the nodesx, y will be. Consequently,
the route will appear to be shorter than it actually is, and may be selected in preference to other routes. In this way
the adversary can take control of the route. Authentication mechanisms are of no help: the adversary simply relays
the authenticators.

Active man-in-the-middle attacks in which the attacker is an “insider”, that is a malicious node that is trusted,
are the hardest to control. In such attacks, the attacker is properly authenticated and controls nodes on routes
originating at the source. In awormhole attack[14] the adversary succeeds in fooling a source node into believing
that a route is short by tunnelling packets intended for the destination via nodes under her control. Arushing
attack[14] is a wormhole attack in which the adversary succeeds in sending packets through the wormhole faster
than normal network traffic. With such attacks it may not possible to distinguish non-faulty nodes from malicious
nodes because the adversary may disguise the attack to mimic (stochastically) a failure caused by Nature. In a
Sybil attack[5] a malicious nodez presents multiple identities. In this wayz succeeds in fooling the source into
believing that there are many short routes to the destination. These routes “pass through” conspiring nodeszi that
may actually be far away (in broadcast hops), but are used as proxy nodes by the nearby nodez. In this attackz
knows the secret authentication keys of the conspiring nodeszi and uses them to authenticate thezi.

Man-in-the-middle attacks in ad hoc networks are hard to counter, if not impossible. There are two general
approaches that can be used with such attacks: atemporaland alocationalapproach. The former exploits the time
taken for each broadcast hop. In most cases this can be used to prevent the attacker from falsifying the length of
routes. The latter uses the physical location of the nodes. Each node certifies its own position. In most cases this
approach will trace nodes that claim false positions (by non-faulty neighbor nodes).

3.3 Security at the physical and data link layers

There are two types of faults that may occur in a routing algorithm: faults whose effect is stochastically indistin-
guishable from ordinary link failures caused by the mobility of the system, radio interference, power failure etc,
and faults whose effect can be distinguished. Malicious faults tend to be of the second type, although the first type
should not be excluded. For example, as observed earlier, the adversary may try to evade detection by causing
faults that mimic the statistics of natural failures. Furthermore, malicious physical faults may affect the mobility
of the system.

Faults that deviate from ordinary failures can be controlled by using redundancy. In particular, error detection,
error correction and erasure mechanisms. These faults are best dealt with at the physical or data link layer of the
protocol stack with Medium Access Control protocols. At these layers one can also deal with jamming attacks
(using frequency-hopping spread spectrum techniques) and most isolated DoS attacks.

Faults of the second type, although by definition statistically detectable, can be quite hard to trace or locate.
They include malicious faults. Malicious faults may occur when they are least expected, and may not be traceable
with statistical failure analysis. The reason for this is that any analysis based on reported failures can be manipu-
lated by the adversary. Faults of this type have to be addressed at the network layer. In this paper we are concerned
with such faults.

3.4 Security issues of Ariadne, SEAD and SAODV

Several routing protocols in the literature address security issues (seee.g., [20]). Here we discuss three of the more
popular ones: Ariadne [12], SEAD [13] and Secure AODV [28].
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Ariadne is a source-centric routing algorithm based on DSR that uses an authentication mechanism with a
keyed hash chain called TESLA [25] for path integrity. The security of this algorithm is based on the assumption
that all nodes on a route (insiders) will protect the integrity of path information. It therefore will not tolerate
insider faults. In particular it does not tolerate DoS caused by packet dropping. SEAD is a source-centric variant
of Ariadne. This algorithm also does not tolerate insider faults. Secure AODV (SAODV) is a network-centric
routing algorithm that is based on the AODV algorithm [22]. It uses digital signatures and hash chains to protect
the integrity of path information. As with the previous two algorithms it will not tolerate insider faults.

Rushing attacks on routing algorithms are the hardest to control. With these attacks two colluding nodes, one
close to the sources the other close to the destinationd, tunnel packets intended ford and sent bys via a wormhole,
slightly faster than normal network traffic. The colluding nodes are authenticated and may insert conspiring nodes
(using a Sybil attack) on the path to make its length appear “normal” and be selected in preference to other paths.
Such attacks are not tolerated by Ariadne, SEAD and SAODV.

4 Tracing malicious faults

In this section we describe a routing algorithm that will trace malicious faults by identifying malicious behavior.
Faulty nodes that are traced may have their keys invalidated by the non-faulty nodes, thus preventing future attacks.

Observe that failure rates based on reported failures of nodes to forward packets may be inaccurate. This is be-
cause faulty nodes may fail to report such events –even worse, fabricate events. Consequently tracing mechanisms
that are triggered by failure rates exceeding a certain threshold may fail. Furthermore it is not possible in general
to tell from a report by a node that claims that another node is faulty, which node is actually faulty: the reporting
or the reported node. Two approaches can be used with maliciousk-adversaries. In the first, malicious behavior is
established when more thank (distinct) reports are available. In the second, each time a node is reported as mali-
cious, both the reporting and the reported node are treated as malicious and eliminated. In this case the malicious
nodes can cause up tok faults, but will then be eliminated together with up tok non-faulty nodes.

4.1 An optimistic algorithm that traces malicious faults

We describe an optimistic2 algorithm that will trace malicious node behavior. For this algorithm there is no addi-
tional cost when there are no faults. When faults do occur, the cost to locate a fault is one tracing round and one
digital signature. Compared to [1], our algorithm will locate faults when malicious nodes collude and it also uses
less rounds. Each participating node only needs to know its neighbors on the path. In this algorithm faults that can
be dealt with at the data link layer by error correction and re-sending packets are treated as non-malicious. The
protocol is described in Figure 2. We use the following notation:

• pktsd = [[s, d, sn, seqs, data]]sd : an authenticated packet consisting of identifierss, d, a session numbersn
for tracing algorithm (unique to each session), the sequence numberseqs for pkts, anddata.

• acksd = [[s, d, sn, seqs]]sd : an authenticated acknowledgment.

• probs = [s, d, sn, seqs, hash(pkts)]s : a digitally signed probing request bys.

• failreporty = [s, d, y, succ(y), sn, seqs]y : a digitally signed failure report byy.

• timerxy : a bound on time taken for a round trip fromx to y for pkts.

• prec(x), succ(x): the node that precedes, succeedsx on the path taken bypkts.

In the protocol, the sources sends a packetpkts to succ(s) to be delivered to the destinationd. If there are no faults
then the packet reachesd that will send back tos an authenticated acknowledgmentackd. If there is a fault and
this is detected by an intermediate nodesy, then afailreporty will be sent tos. Otherwise the sources will send
aprobs with details ofackd requesting from intermediate nodes to check the validity of any receivedfailreporty
or ackd. Thus, for an intermediate nodex, eithersucc(x) is faulty orx should have received fromsucc(x),

1. afterx
pkts−→ succ(x) and beforetimerxd timeouts: either anackd for which (s, d, sn, seqs) have the correct

values, or

2Optimistic algorithms have optimal performance when they are no faults.
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2. afterx
probs−→ succ(x) and before the resettimerxd timeouts: a validfailreporty.

It follows that s will receive a validfailreporty and consequently a fault will be traced. Observe that in the
protocols, d check the validity ofpkts andackd, and if there are no faults, the intermediate nodes check only for
matching acknowledgmentsackd; if there are faults, intermediate nodes will also check the validity offailreporty
andprobs.

Sources. Setseqs = 0. While a connection tod has not terminated do:

1. Settimersd and sendpktsd to succ(s).

2. If a validacksd for pktsd is received before timeout then setseqs = seqs+1.

3. Else resettimersd and sendprobs to succ(s).

(a) If a validfailreporty for pktsd is received before timeout theny or
succ(y) is malicious;

(b) Elsesucc(s) is malicious.

Intermediate nodex. Whenpkt′sd is received:

1. Settimerxd andtimerxs, and sendpkt′sd to succ(x).

2. If an ack′sd matchingpkt′sd is received beforetimerxd timeouts then send
ack′sd to prec(s).

(a) If a valid probes for pkt′sd is received withacksd 6= ack′sd before
timerxs timeouts, resettimerxd and sendprobes to succ(x).

i. If a valid failreporty for pkt′sd is received beforetimerxd time-
outs:
sendfailreporty to prec(x);

ii. Else construct and sendfailreportx to prec(x).

3. Else if a validprobes for pkt′sd is received withpktsd = pkt′sd before
timerxs timeouts, resettimerxd and sendprobes to succ(x).

(a) If a validfailreporty for pkt′sd is received beforetimerxd timeouts:
sendfailreporty to prec(x);

(b) Else construct and sendfailreportx to prec(x).

Destinationd. When a validpkts is received:

1. Construct and sendackd to prec(d).

Figure 2: An optimistic tracing algorithm.

Theorem 1 For anyΓ-adversary, the tracing algorithm in Figure 2 will either deliverpkts to the destinationd or
will trace at least one faulty node. In particular:

1. If all nodes adhere to the protocol thend will receivepktsd and the sources will receiveacksd before its
timeout.

2. If s received a validacksd before its timeout thend will have receivedpktsd.

3. If s did not receive a validacksd before its timeout then at least one faulty node is traced.
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Proof. (Sketch) We consider each part separately.

1. Clearly if all nodes adhere to the protocol thend will get pktsd ands will get acksd.

2. If s gets a validacksd, then because we assume that digital signatures are unforgeable and becaused will
only sign a matchingacksd if the receivedpktsd is valid,d must have receivedpktsd.

3. If s has not received a validacksd before its timeout, it will send a probeprobs downstream requesting
intermediate nodes to check the last transmittedpktsd. Note that any non faulty intermediate nodex that has
receivedpktsd upstream will send back upstream either anacksd, afailreportx or afailrporty, for some
y, before its timeout. Ifs did not receive a validfailreporty for anyy before its timeout, thensucc(s) must
faulty and ifs did receive a validfailreportx = [s, d, sn, seq, x, y] for somex, y before its timeout, then at
least one of{x, y} is faulty. In both casess succeeds in tracing at least one faulty node. The full proof will
be given in the journal version of this paper. �

In this tracing algorithm when there are no faults, a shortack is sent back. When faults do occur, a short
prob andfailreport are sent. In either case, a packet is confirmed successfully delivered, or a fault location is
determined with only two digital signatures. This is the most efficient routing algorithm that will trace malicious
behavior even when faulty nodes collude. It improves on the fault tracing algorithm in [1], which requires at least
log(n) communication rounds and signatures to locate a malicious fault, and does not consider collusions.

Symmetric key. Symmetric key mechanisms such as hash chain and TESLA [25] can be used in our tracing
protocol readily, which results in substantially faster signing, verification and tracing.

4.2 Tracing malicious behavior with AODV and DSR

Most of the routing algorithms can easily be extended to incorporate our tracing mechanism in the communication
phase. For example, for distance vector based routings such as DSDV, AODV, and DSR , malicious faults will be
traced by using the optimistic tracing algorithm for packet processing (the store-and-forward process). This can be
done at the network layer,i.e., after error checking at the data link layer (MAC).

5 Adaptive Multipath Routing

Multipath routing involves the establishment of multiple paths between source and destination pairs. These paths
may be used for redundant communication to control malicious attacks. A major advantages in using multipaths is
that, by exploiting redundancy we can guarantee service continuity, even when the adversary is active.

5.1 An Adaptive Multipath Routing algorithm

Finding routes with multiple paths in networks that do not have a fixed infrastructure is a challenge and in general
requires a different approach to that used with fixed infrastructures. In this section we consider a multipath routing
algorithm that combines in parallel a distributed version of Ford-Fulkerson Max Flow algorithm [6] (at the source)
with a local network discovery algorithm (for nearby nodes) to find vertex-disjoint paths that link the source to
the destination. When there are no malicious faults, a single route is used. Otherwise, the route is adaptively
reconstructed to deal with the faults. Only the shortest route(s) is (are) are actually used, while the rest are kept
alive.

The protocol is given in Figures 3 and 4. Figure 3 describes the actions of the sources. Initially s broadcasts a
requestreqs for neighbor lists. A hop-by-hop (on-the-fly) version of Ford-Fulkerson Max Flow algorithm3 is used
to construct a local graphG∗ = (V ∗, E∗) with neighbor lists obtained from network nodes.G∗ is a directed graph
which is a vertex expanded version of the network graphG: each nodex in G corresponds to two nodesx+, x−

linked by(x+, x−) in G∗, and each link(x, y) of G corresponds to a link(x−, y+) in G∗, and conversely. Initially
G∗ = ∅. The source adds toG∗ its neighbors and the links to them.The following variables are used:

• flow: a list of vertex-disjoint paths that links to d in G∗; value(flow): the number of paths inflow.

3The Ford-Fulkerson Max Flow algorithm is given for static networks. Here we consider an extension for mobile environments.
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Sources

1. SetG∗ = ∅, flow = ∅, t = 1, radius = ∆.

2. Start usingflow for communication whenevervalue(flow) ≥ 1.

3. AddLinks(s, neighbors(s); flow,G∗).

4. While a connection tod has not terminated do

(a) Whilevalue(flow) < t do

i. Setseqs, ttls, timeouts and broadcastreqs.

ii. For each validrepx received beforetimeouts do

AddLinks(x, neighbors(x); flow,G∗).
iii. Set radius = radius + ∆.

(b) If errorrate(path) > ε0 for all path ∈ flow then

i. t = t + 1.

Figure 3: An adaptive multipath routing algorithm, I

• reqs = [s, d, sn, seqs, ttls]s: a request bys for neighbor lists consisting of identifiers fors, d, a session
numbersn, a sequence numberseqs for reqs, and the time-to-livettls for reqs.

• repx = [x, sn, seqs, ttlx, neighbor(x)]x: a report byx.

• ctimez: the current time for nodez.

• radius: an upperbound of the hop distance forreqs; ∆: an initial hop radius.

• seqs = ctimes; ttls = ctimes + radius× τ ; timeouts = ttls + radius× τ .

• t: the number of disjoint paths of the multipath.

• ε0: a threshold for the error rate of a non faulty path.

• errorrate(path): the error rate ofpath.

ProcedureAddLinks(x, neighbors(x);G∗)

1. G∗ = G∗ + {(x+, x−), (x−, y+), (y+, y−) | y ∈ neighbors(x)}.

2. Letreverse(S) := {(x, y) | (y, x) ∈ S}, for a set of linksS of G.

3. For each pathp from s− to d+ in G∗ such thatp = (p− flow) + (p ∩ reverse(flow)),
setflow = flow + p− reverse(p).

Observe that each edge ofG∗ has capacity1. Consequentlyflow is a set of edge-disjoint paths inG∗. If
(s−, x+

1 , x−1 , . . . , x+
n−1, x

−
n−1, d

+) is a directed path inflow then the corresponding path inG is (s, x1, . . . , xn−1, d)
–provided all the reverse links(x−i , x+

i−1) are also inG∗. It is not hard to see that if{(s−, x+
1 , x−1 , . . . , x+

n−1, x
−
n−1, d

+)}
is a set of edge-disjoint paths inG∗ then the corresponding paths{(s, x1, . . . , xn−1, d)} in G are vertex-disjoint,
and vice-versa.

Figure 4 describes the actions of the intermediate nodes and the destination. On receiving a requestreqs each
intermediate nodex checks its validity andttls. If these are in order,x sends a reportrepx to s with its neighbor
list and forwardsreqs. Similarly, whenx receives a reportrepy from ay it checks its validity andttly. If these are
in order,x broadcastsrepy.

Theorem 2 The adaptive multipath routing algorithm tolerates anyk-adversary, provided that the network graph
is (k + 1)-connected,k ≥ 1.
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Intermediate nodex and the destination

1. If a new validreqs is received such thatttls ≤ ctimex then

(a) Setttlx andtimeoutx.

(b) Broadcastrepx andreqs.

(c) For each new validrepy received beforetimeoutx do
if ttly ≤ ctimex then broadcastrepy.

Figure 4: The adaptive multipath routing algorithm, II

Proof. (Sketch) If there are no faulty nodes then, when the sources requests local connectivity information
from the nodes in radius∆, each node in range will forward the request and reply with its list of neighbors. By
timeouts, s will have received a complete connectivity graph of the nodes that are no more thanradius hop counts
from it. Observe thatradius increases adaptively, untils findst disjoint paths froms to d, wheret ≤ k + 1, and
the graph is(k + 1)-connected. Then, by the property of the Ford-Fulkerson algorithm,s will eventually succeed
in finding t such paths. Note that since there are no malicious faults in this case, the value oft stays at1.

Next consider the case when there are up tok malicious nodes. The faulty nodes may manipulate or fabricate
packets but this will not affect the outcome of the algorithm because intermediate nodes always forward a new
message before timeout, regardless of the actions or the states of their neighbors. Since we are assuming that the
graph is(k + 1)-connected, there must be a non faulty path between any pair of nodes. Consequently the request
reqs of s will reach every intermediate nodex in range, and conversely a report by any intermediate nodex in
range ofreqs will always reachs.

In either case the route discovery always succeeds in finding routes. In the communication phase, the number
of pathst needed increases adaptively until at least one good path is in theflow. Since the graph is(k + 1)-
connected, this process takes at mostk steps, at which pointflow is assured to contains at least one non-faulty
path. This adaptive approach avoids finding unnecessary paths when the adversary is partially active. The full
proof will be given in the journal version of this paper. �

5.2 Discussion

The novelty of this route discovery algorithm is that it is resistant to malicious DoS attacks which are addressed
adaptively. In particular, when there are no attacks a single route is used. With each malicious attack, the multipath
is adaptively reconstructed to deal with the threat. Communication is activated as soon as a path becomes available,
so there are no unnecessary delays.

In general when faults in at-multipath occur beyond a certain acceptable threshold, the sources will use a
(t + 1)-multipath. Since the new set of paths is already constructed in the background, the delay caused by faults
is minimized. Most of the time, there should be no delay. Furthermore, in our algorithm, the set of vertex-disjoint
paths of the multipath is constructed incrementally, so that even when delays are unavoidable, they are minimal.

For efficiency, each node on a path only needs to know its upstream and downstream neighbor. So the path
information needs to be sent to intermediate nodes only at the beginning. When changes are made to the multipath,
the source needs only send the changes to all nodes on the new paths. The nodes will discard unused information
after a period of inactivity.

Observe that having local information available centrally is more effective than having it distributed. In par-
ticular, the procedure used in the adaptive routing algorithm by the source allows more vertex-disjoint paths to
be found than by the distributed process used in most other multipath routing protocols (because all the routing
information is available locally). As a consequence fewer communication rounds may be needed when faults occur.

Finally, observe that we can combine our adaptive multipath routing algorithm with the Dynamic Source Rout-
ing algorithm [16] to get an adaptive multipath DSR algorithm. Similarly, we may combine the adaptive multipath
routing algorithm with the tracing mechanism in Section 4.1 to get an adaptive routing algorithm that will trace
malicious behavior.
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