
 1

PARAID: The Gear-Shifting Power-Aware RAID

Charles Weddle, Mathew Oldham, Jin Qian, An-I Andy Wang, Florida State University
Peter Reiher, University of California, Los Angeles

Geoff Kuenning, Harvey Mudd College

Abstract

Server-class computers cannot consume power without
bound, since increased energy consumption translates
into increased heat dissipation, greater cooling
requirements, reduced computational density, and
higher operating costs. For a typical data center, storage
alone accounts for 27% of the energy consumption,
making storage an important target for energy reduction.
Unfortunately, conventional server-class RAIDs cannot
easily reduce power because loads are balanced such
that they require the use of all the disks in the array for
even light loads.

This paper introduces the gear-shifting Power-Aware
RAID (PARAID), which reduces energy in server-class
computing while retaining performance and reliability.
The design of PARAID uses a skewed striping pattern
to adapt to the system load by varying the number of
powered disks. By powering off disks during periods of
light load, PARAID can significantly reduce power
consumption, but by matching the number of powered
disks to the system load, PARAID can meet the
performance demands. Based on our 4-gear PARAID
prototype, PARAID consumes 19% less power than a
conventional RAID-5 device, while achieving the same
performance.

1 Introduction

The disk remains a significant source of power usage.
In web servers, disks typically accounts for 24% of the
power usage; in proxy servers, 77% [4, 13]. Storage
devices can account for as much as 27% of the
electricity cost in a typical data center [29]. The energy
spent to operate servers in a data center has a cascading
effect on other operating costs. Greater energy
consumption leads to more heat dissipation, which in
turn leads to greater cooling requirements [18]. The
combined effect also limits the density of computer
racks. The lower density of computers leads to more
space requirements, thus higher operating costs.

Approaches to reducing the energy consumption in
disks have been explored, but most are achieved by
degrading performance significantly. Popular
approaches involve trading off performance directly,
such as reducing the rotational speed of the disk [3, 4,

13, 22]. Not until recently have new approaches started
to emerge to achieve both goals [6, 19, 31].

Data centers that use large amounts of energy tend to
rely on RAID to store much of their data, so improving
the energy efficiency of RAID devices is promising to
reduce the energy use of such installations. Achieving
power savings on commodity server-class disks is
challenging, because the performance and RAID
reliability must be retained in order for a solution to be
an acceptable alternative. Conventional RAID balances
the load across all disks in the array for maximized disk
parallelism and performance [20]. To reduce power, a
server cannot simply rely on caching and powering off
disks during idle times because such opportunities are
not as frequent on servers. Also, the load balancing
inherent in RAIDs means all disks are kept spinning
even when the server load is light. To be able to reduce
power consumption, we need to create opportunities to
switch the power state of individual disks. However,
server-class disks are not designed for frequent power
cycles, which reduce life expectancy significantly.

We have designed, implemented, and measured the
gear-shifting Power-Aware RAID (PARAID), which
balances power against the performance and reliability
requirements of server-class RAID devices. To our
knowledge, PARAID is the first energy-efficient RAID
to be prototyped and measured. PARAID introduces a
skewed striping pattern, which allows RAID devices to
use just enough disks to meet the system load.
PARAID can vary the number of power-on disks by
gear-shifting sets of disks, giving PARAID the
opportunity to reduce power consumption. Compared
to a conventional RAID, PARAID can reduce the power
consumption by an average of 19%, while maintaining
comparable performance and reliability.

In addition to the power savings obtained by PARAID,
the process of creating a real energy measurement
framework produced some useful insights into the
general problem of measuring energy consumption and
savings. These are also discussed in this paper.

2 Observations

Over-provisioned resources under RAID:
Conventional RAID is designed to maximize peak
performance. The balanced load allows a RAID device

 2

to maximize disk parallelism and performance. This
uniformity makes data management simple and allows
all disks to be accessed in the same way. Its built-in
load balancing also ensures that no disk becomes a
bottleneck.

However, this uniform striping design is not favorable
in the context of energy savings. Load balancing created
by a uniform striping pattern provides significantly
fewer opportunities to power off disks because all disks
in the array need to be powered to serve a file.
Therefore, even if a RAID receives relatively light
loads, all disks have to remain powered, even though
fewer disks could adequately handle the load.

Cyclic fluctuating load: Many system loads display
daily cyclic fluctuations [5]. For example, on a typical
day, academic web traffic displays activity as a bell
curve with a crest in the afternoon, reflecting students’
schedules. Figure 1 shows the trace data used in the
evaluation of PARAID. The activity shows an example
of daily cyclic fluctuating load. Depending on the types
of traffic, different systems may exhibit different cyclic
patterns, with varying ranges of light to heavy loads
over the course of a day [14].

0

200

400

600

800

1000

1200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Time (h)

N
um

be
r o

f r
eq

ue
st

s

Figure 1: FSU web server activity for 50 hours over
September 19 through September 21, 2004.

Therefore, we can exploit these patterns by varying the
number of powered disks, while still meeting
performance needs and minimizing the number of
power switches. A few strategically placed power
cycles can achieve significant power savings. Also,
fewer power cycles mean that the life expectancy of
disks will not be affected significantly.

Unused storage space: Increasingly, storage capacity
is outgrowing demand, and not all the storage space is
used. Jim Gray recently reported that disks at Microsoft
are only 30% full on average [9]. Researchers are
increasingly looking for creative ways to consume the
unused storage. For example, research at Princeton
explores trading off capacity for performance [28]. The

Elephant file system explores the possibility of storing
every version of file updates [25].

Also, many companies purchase storage with
performance as the top criterion. Therefore, they may
need many disks for parallelism to aggregate bandwidth,
while the associated space is left largely unused.
Additionally, administrators tend to purchase more
space in advance to avoid frequent upgrades. Unused
storage can then be used opportunistically for data block
replication to help reduce power consumption.

Performance versus energy optimizations:
Performance benefits are important only when a system
is under heavy load, and may not result in an immediate
monetary return to an organization. On the other hand,
energy savings are available at once. For example, the
electricity costs saved could be invested in additional
computing capabilities. Also, unlike performance,
which is essentially purchased in chunks as new
machines are acquired, monetary savings can be
invested immediately and compounded over the lifetime
of the computers. Therefore, if a server usually operates
below its peak load, optimizing energy efficiency offers
attractive benefits.

3 Power-Aware RAID

The design of PARAID trades capacity for energy
savings via a skewed striping pattern. Since servers are
purchased for their peak performance, PARAID is
designed to match that performance under the peak
load. Under light loads, PARAID provisions disk
parallelism as needed. Finally, PARAID exploits cyclic
daily workload behavior to power-switch disks in a
sparing and effective manner, to minimize the effect on
the life expectancy of disks.

3.1 Skewed Striping for Energy Savings

PARAID exploits unused storage to replicate and stripe
data blocks in a skewed fashion, so that disks can be
organized into and behave like hierarchical overlapping
sets of RAIDs. Each set contains a different number of
disks, and is capable of serving all requests via either its
data blocks or replicated blocks. Each set is analogous
to a gear in automobiles, since different numbers of
disks offer different levels of parallelism and aggregate
disk bandwidth.

The replicated blocks are soft states, in the sense that
they can be reproduced. Thus, as the need for storage
capacity arises, replicated blocks can be reclaimed by
reducing the number of gears. Unlike memory caches,
PARAID soft states can persist across reboots.

Figure 1 shows an example of replicated data blocks
persisting in soft states in the unused disk regions. By

 3

organizing disks into gears, PARAID can operate in
different modes. When operating in gear 1, with disks 1
and 2 powered, disks 3 and 4 can be powered off. As
the load increases, PARAID upshifts into the second
gear by powering up the third disk.

Figure 2: Skewed striping of replicated blocks in soft
state, creating three gears over a four-disk RAID.

By adjusting the number of gears and the number of
disks in each gear, PARAID provisions disk parallelism
and bandwidth so as to follow the fluctuating
performance demand curve closely through the day. By
creating opportunities to turn off disk drives, PARAID
conserves power.

While more gears can match the performance demand
curve more closely, the number of gears is constrained
by the unused storage available and the need for update
propagation when switching gears. To minimize
overhead, the gear configuration also needs to consider
the number of gears and gear switches.

3.2 Preserving Peak Performance

PARAID matches the peak performance of conventional
RAIDs by preserving the original disk layouts when
operating at the highest gear. This constraint also
allows PARAID to introduce minimal disturbances to
the data path when the highest gear is in use.

In low gears, since PARAID offers less parallelism, the
total bandwidth offered is less than that of a
conventional RAID. Fortunately, the number of
requests affected by this performance degradation is
significantly less compared to peak hours. Also, as
bandwidth demand increases, PARAID will up-shift the
gear to increase disk parallelism.

However, PARAID also has the ability to improve
performance in low-gear settings for two reasons. (1)
Latency suffers as the number of disks increases in a
RAID, since the probability that one of the disks will
wait for a full rotation increases. Therefore, by
decreasing the number of disks being used in parallel,
PARAID can shave off a fraction of average rotational
latency, which is fairly significant for small file

accesses. (2) By reducing the number of active disks
during light traffic periods, the average disk queue
length increases, resulting in more opportunities to
reduce seek time; again, this effect is more pronounced
for small accesses Therefore, the performance of
PARAID at lower gears largely depends on the average
request size.

3.3 Retaining Reliability

To retain the reliability offered by conventional RAID,
PARAID must be able to tolerate disk failures. To
accomplish this goal, PARAID needs to supply the data
redundancy provided by conventional RAIDs and
address the reduced life expectancy of server-class disks
due to power cycles.

PARAID is designed to be a device layer sitting
between an arbitrary RAID device and its physical
devices. Therefore, PARAID inherits the level of data
redundancy, striping granularity, and disk layout for the
highest gear provided by that RAID. PARAID only
performs soft-state replication of blocks from the
conventional RAID device. For example, a PARAID
device composed with a RAID level-5 device would
still be able to rebuild a lost disk in the event of disk
failure. Section 4.4 has more details on failure
recovery.

Because it relies on power-cycling disks to save energy,
PARAID must also address a new reliability concern.
Power-cycling reduces the MTTF of a disk, which is
designed for an expected number of cycles during its
lifetime. For example, the disks used in this work have
a 20,000-power-cycle rating [8]. Every time a disk is
power-cycled, it comes closer to eventual failure.

PARAID manages the power cycling of the disks by
inducing a bimodal distribution of busy and idle disks.
The busier disks stay powered on, and the more idle
disks often stay off, leaving a set of middle-range disks
that are power-cycled more frequently. PARAID can
then prolong the MTTF of a PARAID device as a whole
by rotating the gear-membership role of the disks and
balancing their current number of power cycles.

In addition, PARAID sets rate limits on the power
cycles for disks. By rationing power cycles, PARAID
can operate with an eye to targeted life expectancy. For
example, if the disks have a five-year life expectancy
due to the system upgrade policy, and the disks are
expected to tolerate 20,000 cycles, then each disk in the
array cannot be power cycled more than 10 times a day.
Once any of the disks has reached the rationed numbers
of power cycles for a given period, PARAID can
operate at the highest gear without energy savings. The
power-saving mode resumes at the next rationing
period.

RAID

Soft
State

Gears
1
2
3

1 2 3 4

 4

4 PARAID Components

PARAID has four major components—block handler,
monitor, reliability manager, and disk manager (Figure
2)—responsible for handling block I/O and replication,
gear shifting, update propagation, and reliability.

Figure 3: Logical association of PARAID system
components.

4.1 Handling Block I/O

PARAID is a new device layer sitting between the
conventional software RAID multi-device driver and the
disk device driver. PARAID transparently remaps and
forwards RAID requests.

If a disk request is sent to a powered disk, the disk
simply replies to the request. If a block read request is
sent to a powered-off disk, then the PARAID layer will
remap the request to read from a replicated block stored
on a powered disk. If a block write request is sent to a
powered-off disk, then PARAID will write to a
replicated block stored on a powered disk.

In the current design, PARAID delegates RAID regions
for the purpose of storing replicated data for individual
gears. If gear 1 has 3 drives, and gear 2 has 5 drives,
the content of drives 4 and 5 are replicated and striped
across the dedicated region on the first three drives in a
round-robin fashion, so that drives 4 and 5 can be
powered off when shifting down to gear 1.

Delegated RAID regions prompt the question of
whether this disk layout will degrade performance due
to longer seek distances. Our performance results show
the contrary, since fewer drives used in parallel actually
have longer disk queues that amortize the cost of
individual disk seeks.

4.2 Update Propagation

When disks are powered off, no requests are sent to
them. As soon as a powered-off disk misses a write
request, it no longer contains the most up-to-date data

for all data blocks, so it needs to synchronize the stale
data either at the time when it is powered on or right
before the stale information is accessed. Full
synchronization requires that all stale data be updated
with current data. Depending on the total size of the
stale data, this process could take a long time. The on-
demand approach only updates stale data when it is
accessed. The on-demand approach allows the gear
shift to take place much more quickly, but the full
synchronization approach provides better data
consistency.

To be able to synchronize a disk, outstanding write
requests to powered-off disks are captured by the disk
manager. In the case of full synchronization, when a
powered-off disk is switched to a powered-on state, the
disk manager reissues a list of outstanding write
requests to the disk that is to be synchronized.
Sometimes this process involves rereading the data from
a replicated copy already stored on a powered disk
before reissuing the write.

In the case of on-demand synchronization, the PARAID
block I/O handler uses a dirty-block list. If a dirty block
being accessed is not cached, PARAID will retrieve the
block from the original gear and return it to the
requestor. PARAID will then write that block to the
target gear disks, effectively piggybacking the
synchronization step at access time, and sometimes
avoiding the rereading step.

One implication is that the disk manager needs to track
the stale block locations for synchronization. This list
of dirty blocks is stored in memory for fast access
during on-demand synchronization as well as on disk in
case of system failure.

Another implication is that when downshifting, the on-
demand approach is not applicable, since PARAID
needs to finish the propagation before powering off
drives.

A failed disk can stop the gear-shifting process. Disks
can also fail in the middle of synchronization.
However, the list of outstanding writes is maintained
throughout the disk failure and recovery process. Once
the failed disk recovers, the synchronization can
continue from where it left off.

Whether to use on-demand or full synchronization for
upshifting is configurable. On-demand synchronization
will allow PARAID to be more responsive to sudden
bursts of requests. This also means tracking additional
writes while the disks are not synchronized. The full-
synchronization approach may be preferable if there are
few gear shifts and the workload is dominated by reads,
effectively keeping the number of blocks to be
synchronized small. The full synchronization method is

File System

RAID

Block Handler
Disk Mgr

Monitor Reliability
Mgr

Disk Device Driver

Software RAID

 5

also available for manual maintenance of the PARAID
device. For example, an administrator would need to
have a consistent system state before pulling out a hard
disk.

4.3 Asymmetric Gear-Shifting Policies

The disk manager performs shifts between gears. The
PARAID monitor decides when a shift is needed, and
the disk manager then performs the actual power cycles.

Switching to a higher gear is aggressive, so that the
PARAID device can respond quickly to a sharp increase
in workload. Downshifting gears needs to be done
conservatively, so that wild swings in system activity
will not (1) mislead the PARAID device into a gear that
cannot handle the requests, or (2) cause rapid
oscillations between gears.

To decide when PARAID should upshift, the monitor
needs to know whether the current gear has reached a
predetermined utilization threshold, in number of
requests per time interval. The threshold is
configurable, and is set to 80% for the Web servers in
our experiments. The intent is that within the time it
takes to spin up the disk and propagate updates, the
utilization threshold would not reach 100%. The use of
an online algorithm to automatically set thresholds will
be future work,

To track the system load, the monitor keeps a moving
average of utilization for each disk. The purpose of
averaging is to filter out short bursts of requests that are
frequently seen in real-world workloads. Interestingly,
we were unable to check the disk busy status directly,
since this probe would spin up a powered-down disk.
Instead, once a second, each disk is checked to see if
any access has occurred. If so, the disk is marked as
active for that second. If any disk in an active gear has
reached the utilization threshold, then the monitor will
make a request to the disk manager to up-shift.

To decide when to downshift, the PARAID monitor
needs to know the utilization trends as well as the
average disk utilization. The intent is to avoid frequent
gear switches due to wild workload fluctuations. A
downward trend is detected with multiple threshold
averages over different time windows. Monotonically
decreasing averages indicate dropping utilization.
Having identified this trend, the PARAID monitor then
makes sure that the next lower gear with fewer disks can
handle the current workload. If both conditions are met,
a downshift is performed (Figure 4).

Figure 4: The downward trend in workload activity
triggers a downshift in gears. Monitoring trends
avoids downshifting during volatile workloads.

The effectiveness of an energy-saving gear
configuration depends on the shape of the workload
curve and the peak-to-trough ratio across the course of a
day. Suboptimal gear configurations typically reveal
themselves through lack of use.

The gear-shift triggering condition can significantly
affect the performance, energy-savings, and reliability
of PARAID. If the condition is too sensitive to traffic
bursts, PARAID will be likely to operate at the highest
gear at all times, resulting in little energy savings. Also,
with too many power cycles, the life expectancy of
PARAID suffers.

4.4 Reliability

The reliability manager rations power cycles and
exchanges the roles of gear memberships to prolong the
life expectancy of the entire PARAID, as mentioned in
Section 3.3. The reliability manager is also responsible
for recovering a PARAID device upon disk failure.

Although PARAID can inherit the reliability properties
of RAID levels, the data and parity blocks of N disks
cannot be striped across on N – 1 disks to achieve the
same level of redundancy. If we simply assigned the
Nth block to one of the still-powered disks, it would be
possible for a single drive to lose both a data block and
parity block from the same stripe, while the block stored
on the powered-off disk might be out of date.

In the current design, when operating in lower gears, the
underlying RAID data blocks are no longer updated in-
place. Updates are written to alternative locations on
disks and propagated back to the original layout when
shifting to the highest gear. With this model, the data
loss due to a crashed drive is bounded by the frequency
of using the highest gear. PARAID can also force
updates to propagate once a day. Therefore, in the case
of a single drive failure, PARAID can experience a one-
day loss of updates.

Downshift

Gear
Utilization
Threshold

Time

Workload
Trend line

 6

This problem can be prevented with additional gear-
centric parities. Basically, blocks from disk N can be
replicated and striped to N – 2 disks, with an additional
parity block computed for these N – 2 blocks, which is
stored on disk N – 1. This design avoids rereading
blocks not involved in the actual replication. We plan
to implement such an approach in a future system.

5 Implementation

The PARAID prototype was built on Linux 2.6.5.
Linux was chosen for its open source and because it
contains a software RAID module. The block I/O
handler, monitor, disk manager, and reliability manager
are built as kernel modules. A PARAID User
Administration Tool runs in user space to help manage
the PARAID devices. For the reliability manager, we
have not implemented drive rotation and gear-centric
parities. However, our gear-shifting policies and the
characteristics of daily work cycles have limited the
number of disk power cycles quite well. Since the
content stored on the lowest gear is the most vulnerable,
we keep those drives always powered. Additionally,
PARAID currently relies on the underlying RAID levels
to provide data recovery, so we can recover the
information from the last time we shifted to the highest
gear.

The Linux software RAID is implemented as the md
(multiple device) device driver module, which builds
RAIDs from multiple disks. For the PARAID block
handler implementation, we changed the md device
driver to make it PARAID-aware. The data path of the
md device driver is intercepted by the PARAID device
layer, so that requests from conventional RAID are
redirected to the block queues of PARAID, which
remaps and forwards requests to individual disk queues.

During initialization, the PARAID-aware md module
starts a daemon that provides the heartbeat to the
PARAID device and calls the monitor at regular
intervals, so that it can decide when to gear-shift. The
disk manager controls the power status of disks through
the disk device I/O control interface.

To synchronize the content of a powered-off disk before
bringing it back into operation, the disk manager keeps
a per-disk red-black tree of references to outstanding
blocks that need to be updated. This record is updated
whenever a write request is made to a clean block on a
powered-off disk, and the upkeep of this data structure
is not CPU-intensive. For the current implementation,
the disk manager performs a full synchronization after
bringing back powered-off disks, by iterating through
the tree for each disk and reissuing all outstanding
writes. For each block that needs to be synchronized,
the disk manager will first read in the data block from
disks in the original gear, and then write the block to the

disks being brought back online. Once the
synchronization is complete, the gear-shifting manager
switches to the new gear by enabling it to serve requests
with the newly powered disks.

Note that during synchronization, PARAID still serves
requests from the old gear until the target gear has been
fully synchronized. During synchronization, new writes
are temporarily written to both old and new gears. The
old gear still serves all subsequent reads to the newly
written data, while the new gear will skip propagation of
the original overwritten dirty block. This conservative
switching assures that no block dependency is violated
through the ordering of updates. In the future, we will
also explore the use of back pointers [1] to allow the
new gear to be used while propagating the updates.

For the PARAID monitor, we currently use 10-, 60-,
and 300-second time windows to compute moving
averages of disk utilization. The choice of these time
windows is somewhat arbitrary, but they work well for
Web server workloads and can tolerate traffic bursts and
dampen the rate of power cycles. Further investigation
of the gear-shifting triggering conditions will be the
subject of future work.

The mkraid tool, commonly used by Linux to
configure RAIDs, had to be changed, so that it could
handle making PARAID devices and insert entries to
/etc/raidtab. Additional raidtab parameters
had to be defined to be able to specify the gears.

Source File Line Count
paraid.c/.h 1057
paraid-dm.c/.h 1047
paraid-mon.c/.h 610
md.c/md_u.h/md_p.h/md_k.h 409
bio.h/ll_rw_blk.c 12
Raidtools
(mkraid.c,parser.c,pdadm.c)

358

Table 1: Line count for PARAID source files, Linux
modifications, and Raidtools modifications

Table 1 lists the line counts for the PARAID source files
as well as additions and modifications to the Linux and
Raidtools source code. The PARAID logic is
contained for the most part in the Linux Software RAID
implementation. The ease of porting PARAID to future
Linux kernel versions depends on future modifications
to the Linux Software RAID. Because the logic for
PARAID is fairly self-contained, it should be
moderately portable to other software RAID
implementations for other operating systems.

6 Web Trace Replay

Since the study of energy-efficiency approaches to
RAIDs is relatively recent, most prior work on energy
savings has been done analytically or via simulations.

 7

Analytical methods provide us a fundamental
understanding of systems with key variables.
Simulation studies enable us to explore a vast parameter
space to find broad understandings of system behaviors
under a wide range of workload scenarios. However,
we chose implementation and empirical measurements
to see if we could overcome unforeseen physical
obstacles and conceptual blind spots to bring us one step
closer to a deployable prototype. When we designed,
implemented, and evaluated PARAID empirically, we
discovered why an empirical study is difficult for
systems designed to save energy.

• Needless to say, prototyping PARAID was the first

barrier, and the system had to be stable enough to
withstand heavy benchmarking workloads.

• Commercial machines are not designed for energy
measurements, and we had to rewire drives, power
supplies and probes for power measurements.

• The conceptual behaviors of a system are far from
close to its physical behaviors; therefore, we had to
adjust our design along the way.

• Most benchmarks and workload generators measure
the peak performance of a system at steady state,
which is not applicable for measuring energy
savings, where we need to capture daily workload
fluctuations.

• For trace replays, since our physical system
configuration was largely fixed, we had to try to
match different trace environments with our
physical environments in terms of the memory size,
traffic volume, disk space consumption, and so on.

• Although a plethora of research trace replay tools is
available, more sophisticated ones tend to involve
kernel hooks and specific environments.
Incompatibility of kernel versions prevented us
from leveraging many research tools.

• Finally, since it cannot be easily automated and
cheaply parallelized, measuring energy savings on a
server was very time-consuming.

Taking these measurement challenges into
consideration, we document our experimental settings to
obtain our results. We demonstrate the power savings
and the performance characteristics of PARAID via web
trace replays. Although Web workloads are dominated
by reads, they are still representative of a very large
class of useful workloads. We used the PostMark
benchmark [15] (Section 7) to demonstrate PARAID’s
performance characteristics in the presence of writes
and under peak load. The PostMark benchmark also
stresses the gear-shifting overhead.

6.1 Trace Replay Framework

The measurement framework consisted of a Windows
XP client and a Linux 2.6.5 server. The client

performed trace playback and lightweight gathering of
measurement results, and the server hosted a web server
running on a RAID storage device (Table 2). On the
server, one disk was used for bootstrapping, and five
disks were used to experiment with different RAIDs.
The client and server computers were connected directly
to each other by a CAT-6 crossover cable so that
extraneous network traffic would not interfere with the
experiments

 Server Client
Processor Intel Xeon 2.8 Ghz Intel Pentium 4 2.8 Ghz
Memory 512 Mbytes 1 Gbytes
Network Gigabit Ethernet Gigabit Ethernet
Disks Fujitsu MAP3367

36.7Gbytes 15k RPM
SCSI Ultra 320
1 disk for booting
5 disks for RAID
experiments

Seagate Barracuda
ST3160023AS 160
Gbytes 7200 RPM SATA

Table 2: Server and client computer specifications.

To measure the power of the disks, the power
measurement framework included an Agilent 34970A
digital multimeter. Each disk probe was connected to
the multimeter on a unique channel, and the multimeter
sent averaged data to the client once per second per
channel via a universal serial bus. Figure 4 shows the
client and server computers and the multimeter in the
measurement system.

Figure 5: The measurement framework.

To measure the power of a disk, we inserted a 0.1-ohm
resistor in series in the power-supply line, as shown in
Figure 5. The multimeter measured the voltage drop
across the resistor, Vr. The current I through the
resistor—which is also the current used by the disk—
can be calculated as Vr/R. Knowing the voltage drop
across the disk, Vd, its power consumption is then Vd
times I.

In the measurement system, we removed each disk from
the server and introduced a resistor into its +12V and
+5V power lines. The +12V line supplied power to the
spindle motor; the +5V line provided power to the disk

multimeter

USB cable

BOOT

client

server

power
supply

12v & 5v
power

power
measurement

probes

SCSI
cable

crossover
cable

Disk 3

Disk 2

Disk 1

Disk 0

Disk 4

 8

electronics. The SCSI cable was connected directly to
the motherboard, which allowed the cable to maintain
the same performance as if the disks were connected to
the SCSI hot swappable backplane in the server.

Figure 6: The resistor inserted in series between the
power supply and the disk adapter.

On the client, the Agilent Multimeter software logged
the data using Microsoft Excel XP. The multi-threaded
trace driver, implemented in Java 1.5, was designed to
replay web access log traces and collect performance
numbers. The driver handled associated requests
generated from the same IP address in separate threads,
to emulate users clicking through web pages. The trace
driver also collected server-side and end-to-end
performance numbers.

The server hosted an Apache 2.0.52 web server on top
of an ext2 file system operating over a RAID storage
device that is described in Table 1.

6.2 Web Server Workload

Workload characteristics affect PARAID’s ability to
save energy. Under a constant high load, PARAID will
not have opportunities to downshift and save energy.
Under a constant light workload, trivial techniques like
turning everything on and off can be used to save
energy. In practice, workloads tend to show cyclic daily
and weekly fluctuations. The chosen workload needs
to capture these cyclic fluctuations to demonstrate
PARAID’s energy savings. In the trace we replayed,
the number of accesses during peak hours can be 10x
higher than that during light hours.

We chose a Web server workload, captured within the
Computer Science Department at Florida State
University. The web server has 512 Mbytes of RAM,
two 1.8 GHz Intel P4 CPUs, and two 120-GByte disks
in a RAID-0 configuration. The activity was captured
from August 2004 to November 2004. The file system
contained approximately 47 Gbytes of data, 44,000
directories, and 518,000 files. A snapshot of the file

system was recreated from the last day of the trace to
account for the files not referenced by the web trace and
associated disk space usage. Although the trace
playback might reference files that were deleted or
moved, web server content tends to persist once created
[2]. Also, the replay did not include dynamic file
content, which accounts for relatively few references.

To protect privacy, the actual file blocks stored on the
web server were refilled with random bits. Also, file
names were encrypted via an SHA-1 algorithm [23], to
anonymize files that were not referenced or not meant to
be available to the public (e.g. homework_solutions.txt).

We chose a 50-hour trace starting from September 19,
2004. The cyclic workload pattern is characteristic
throughout the two-month long trace (Figure 1). The
duration included 26,000 requests, with 1038 Mbytes of
data. Due to the multi-threaded nature, the trace was
replayed five times. The data is presented at the 90%
confidence level.

6.3 Web Trace Replay Experimental Settings

PARAID was compared with a RAID-5 device. The
PARAID device used five disks with four gears: gear N
contains disks 0 to N. Both client and server were
cleanly rebooted before each experiment, and PARAID
was configured to start with the lowest gear, with
content in different gears pre-populated. The client
replayed pre-encrypted trace log entries to the server.
Due to the hardware mismatch and light trace workload,
the collected trace was accelerated at different speeds to
illustrate the range of possible savings with different
levels of workloads. The presented data included 32x,
64x, 128x, and 256x speedup factors. Timing
dependent on human interactions, such as the time
between user mouse clicks on links, was not
accelerated.

6.4 Power Savings

Figure 7 compares PARAID and RAID-5 in terms of
the amount of power consumed over time, with different
speedup factors. In these graphs, each data point is
averaged over 30 minutes.

Since PARAID started with the lowest gear, the first
finding was that turning off 3 out of 5 drives did not
achieve anywhere near 60% energy savings. Powering
off a disk only stopped it from spinning its platter and
therefore, only the 12V line was shut off.

 power
supply

R

R

5v +

+
-

-
12v

Vr

Vd

Vr

Vd

data
logging

multimeter

client

 9

0

5

10

15

20

25

30

35

40

45

0 3 5 8 10 13 15 18 20 23 25 28 30 33 35 38 40 43 45 48 50
0

5

10

15

20

25

30

35

40

45

0 3 5 8 10 13 15 18 20 23 25 28 30 33 35 38 40 43 45 48 50
 (a) (b)

0

5

10

15

20

25

30

35

40

45

0 3 5 8 10 13 15 18 20 23 25 28 30 33 35 38 40 43 45 48 50
 (c)

0

5

10

15

20

25

30

35

40

45

0 3 5 8 10 13 15 18 20 23 25 28 30 33 35 38 40 43 45 48 50

Time (Hour)

P
ow

er
 (W

)

paraid raid5

 (d)

Figure 7: Power graphs over 256x (a), 128x (b), 64x(c), and 32x (d) speedup factors.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 101 201 301 401 501 601 701 801 901
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 151 301 451 601 751 901 1051 1201 1351 1501 1651 1801
(a) (b)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 251 501 751 1001 1251 1501 1751 2001 2251 2501 2751
(c)

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501

Time (s)

U
til

iz
at

io
n

disk 1 disk 2 disk 3 disk 4 disk 5

 (d)

Figure 8: Disk utilization graphs over 256x(a), 128x(b), 64x(c), and 32x(d) speed-up factors.

0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

1 10 100 1000

Time (ms)

P
er

ce
nt

ag
e

of
 F

ile
 R

eq
ue

st
s

PARAID 256x RAID5 256x PARAID 128x RAID5 128x

PARAID 64x RAID5 64x PARAID 32x RAID5 32x

(a)

0

0.1
0.2

0.3

0.4

0.5
0.6

0.7

0.8
0.9

1

1 10 100 1000

Time (ms)

P
er

ce
nt

ag
e

of
 F

ile
 R

eq
ue

st
s

PARAID 256x RAID5 256x PARAID 128x RAID5 128x

PARAID 64x RAID5 64x PARAID 32x RAID5 32x

(b)

Figure 9: Peak-hour latency (a) and total completion time (b) for PARAID and RAID devices over 256x,
128x, 64x, and 32x speed-up factors.

 10

Power was still needed for the 5V line that powered the
electronics, so that it could listen for a power-up
command and passed commands along the daisy-
chained SCSI cable. Therefore, the power never
dropped to zero for the PARAID cases, even when all of
the disks were powered off. In fact, a disk with the
spindle motor powered off still consumed about three
watts of power for the electronics, which is noticeably
higher than the 1.0W to 2.5W extracted from various
datasheets and used in many simulations [4, 10, 13, 22,
29, 30, 31]. Although these numbers may be hard-
drive- and vendor-specific, they do show that these
variations in physical characteristics can change the
expected results drastically.

The second surprise is that the cyclic patterns observed
in the web log (Figure 1) have a poor correlation with
the energy consumption at the disk-drive level (Figure
7). Although this finding reveals more about the nature
of caching than the energy benefits of PARAID, it does
suggest the value of further investigations into the
relationship between server-level activities and after-
cache device-level activities.

To make sure that the daily cyclic patterns are not
completely lost below the memory cache, we examined
the disk usage level over time (Figure 8). We found that
the cyclic effect is still present, but PARAID had
successfully consolidated the loads to the lowest gear,
so that the remaining disks could be powered off to save
power. The disk utilization graph also reveals that if the
entire RAID is power-switched as a whole, the
opportunity to save power is quite limited.

Table 3 lists the energy saved versus the speed-up
factor. When the trace was played back at 128x and
256x the normal speed, PARAID was overloaded and
had to power on all disks over most of the time. As the
speed of the trace was slowed down, PARAID found
opportunities to save power. PARAID was able to use
12% less power than RAID 5 at 64x speedup. At 32x
speedup, PARAID was able to use 19% less power.
The power savings were calculated as the area between
the RAID 5 and PARAID power curves, divided by the
area under the RAID 5 power curve.

Speed-up Power Savings Variance(+/-)
256x 3.3% 0.42%
128x 1.2% 0.57%
64x 12% 0.96%
32x 19% 0.22%

Table 3: The percent energy saved versus the speed-
up factor.

6.6 Performance

For performance, Figure 9 shows the CDFs of per-
request latency and completion time respectively, in
milliseconds. The per-request latency measures the

time from the last byte of the request sent from the
client to the first byte of data received at the client. The
completion time measures the time between sending the
first byte of a request from the client to receiving the
last byte at the client end. Throughput was a less
meaningful metric, since the usability of a Web server
largely depends on the responsiveness of user requests
[16].

As expected, increased trace playback speed lengthens
latencies and completion times. However, the
differences between RAID-5 and PARAID are nearly
identical at a 32x speed-up factor. At 256x speed,
RAID 5 had 85% of the file requests served with
latencies less than 10 ms, compared to 76% for
PARAID. RAID 5 had 79% of the file requests served
with a completion time less than 10 ms, compared to
71% for PARAID.

7 PostMark Benchmark

The PostMark benchmark is a popular ISP synthetic
benchmark, which is used to stress the peak
performance of a storage device for its read- and write-
intensive activity [15]. Running PostMark with
PARAID starting at the lowest gear can be indicative of
overhead and latency of gear-shifts during a request
burst. The PostMark Benchmark was run directly on
the server.

In Figure 10, we present PostMark results comparing
the elapsed times of RAID 5, PARAID starting with the
highest gear, and PARAID starting with the lowest gear
under three different configurations. Each configuration
was measured five times. PARAID propagated updates
synchronously during gear shifts.

0

50

100

150

200

250

300

1k Files, 50k
Transactions

20k Files, 50k
Transactions

20k Files, 100k
Transactions

Ti
m

e
(s

)

RAID 5 PARAID High Gear PARAID Low Gear

Figure 10: Postmark results for a RAID 5 device
compared to a PARAID device starting in the
highest gear and starting in the lowest gear.

Under different PostMark configurations, PARAID
starting with the highest gear demonstrates performance
similar to RAID 5, which is reflective of how we have
preserved the layout of underlying RAID and

 11

0

10

20

30

40

50

60

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Time (s)

Po
w

er
 (W

)
paraid raid5

0

10

20

30

40

50

60

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Time (s)

Po
w

er
 (W

)

paraid lg raid5

 (a) (b)
Figure 11: The power consumption for the Postmark Benchmark experiments at 20k files - 100k transactions
for PARAID starting in a high gear (a) and PARAID starting in a low gear (b).

introduced minimal disturbances to the md data path.
PARAID may actually perform slightly better, partly
due to its intentional caching of some dirty data waiting
to be propagated to lower gears. Figure 11(a) shows
that the energy consumption of PARAID and RAID-5 is
also comparable in these configurations. Note that
during the first 30 seconds of the PostMark benchmark,
the buffered-write interval of ext2 prevented accesses to
be landed on the disk.

Figure 10 also compares the performance of RAID-5
with PARAID starting in the lowest gear. It
demonstrates the current up-shift policy that prevents
PARAID from being responsive to bursts. The
slowdown factor is about two, since it took about two
minutes for gears to up-shift incrementally (spin-up
disk, propagate updates, and determine whether to up-
shift further) (Figure 11b). The most responsive
approach is obviously jumping from gear 1 to gear 4.
However, this would cause too many gear shifts
throughout a day. Fortunately, from what we observed,
daily web workloads tend to cause few gear shifts.
Thus, this overhead is not noticeable. As future work,
we will explore online algorithms to improve the
responsiveness to burst loads while minimizing the
number of gear shifts.

8 Related Work

Prior energy-reduction studies have been mostly in the
area of mobile computing [7, 12]. Only recently have
energy reductions been a concern in server-class
computing. Various approaches range from the
hardware level and the RAID level to the file system
level and the server level.

Reducing power consumption in hard disks: Based
on simulations, Carrera, et al. [4] suggested using
hypothetical two-speed disks such that during periods of

high intensity, the disk runs at maximum throughput,
using the most power. During periods of lower
intensity, the disk spins at a lower speed before possibly
going into an idle state. The simulation reports disk
energy savings between 15% to 22% for web servers
and proxy servers, with throughput degradation of less
than 5%.

Energy-efficient RAIDs: Hibernator [31] aims to
reduce energy consumption in arrays of disks without
degrading performance. Hibernator explores the
possibility of using disks that can spin at variable speeds
to achieve energy savings. According to demand, data
blocks are placed at different tiers of disks spinning at
different speeds. A novel disk block distribution
scheme moves disk content among tiers to match disk
speeds. When performance guarantees are violated,
Hibernator spins disks at full speed to meet the demand.
In simulation, Hibernator shows a 65% energy savings.

Colarelli et al. [6] introduced the idea of massive arrays
of idle disks, the primary purpose of which is archival.
A small set of cache disks are on to serve requests.
Their simulation has reported comparable performance
to traditional RAID, while using 1/15th of the power.
PARAID is designed with a very different mindset,
where energy savings are achieved with fluctuating
loads that exercise all drives daily.

Popular data concentration (PDC) [22] centers on the
popularity, or the frequency, of file access. PDC puts
the most popular data on the first disk, the second most
popular on the second disk, and so on. Disks are
powered off in PDC based on an idleness threshold.
Without striping, PDC does not exploit disk parallelism.

With the absence of disk striping, the power-aware
cache management policy (PA-LRU) [29] saves power
by caching more data blocks from the less active disks.
Lengthening the access interval for less active disks

 12

allows them to be powered off for longer durations.
Partition-based cache management policy (PB-LRU)
[30] divides the cache into separate partitions for each
disk. Each partition is managed separately by a
replacement algorithm such as LRU. PB-LRU provides
similar energy savings of 16% to that of PA-LRU.

Energy-aware storage systems: Nightingale et al. [19]
suggest BlueFS, a distributed file system, which uses a
flexible cache hierarchy that adaptively decides when
and where to access data, based on the energy
characteristics of each device. In measurements of an
actual implementation, BlueFS achieved a 55% reduc-
tion in file system energy usage. When used in combi-
nation, PARAID can extend the energy benefits with
BlueFS.

The Conquest-2 file system [27] uses inexpensive
persistent RAM to store small files to save energy
consumed by disks. PARAID can be readily used as a
counterpart to serve large files while conserving energy.

Saving power in server clusters: Chase, et al. [5] and
Pinheiro, et al. [22] have developed methods for energy-
conscious server switching to improve the efficiency of
server clusters at low request loads. They have reported
energy reductions of 29% to 43% for Webserver
workloads.

The PARAID approach can be combined with the server
paradigm, so that over-provisioned servers used to
cushion highly bursty loads or pre-powered to anticipate
load increases can turn off many PARAID drives. Since
powering on disks is much faster than booting servers,
PARAID pays a lighter latency penalty to respond to
traffic bursts.

Further, in the case where traffic loads involve a
mixture of reads and writes, disk switching in PARAID
avoids data movement across machines and associated
stress on the network infrastructure.

9 Ongoing Work

PARAID is an ongoing project. Our top priority is to
understand PARAID under a wider range of workloads.
We are currently measuring PARAID with a UCLA
web server workload. Also, we are preparing to replay
the cello99 trace [11] and a financial trace [26] from
the UMass Trace Repository.

Our next priority is to implement gear-centric parity
schemes, so that single-drive failures can be recovered
with minimal data loss. We will incorporate the
S.M.A.R.T tools [24] to monitor the health of disk
drives continuously, to make more informed decisions
on rationing power cycles, and to rotate the gear-
membership of disks.

Currently PARAID is not optimized in the sense that the
selection of the number of gears, the number of disks in
each gear, and gear-shifting policies are somewhat
arbitrary. Since empirical measurement is not suitable
for exploring a large parameter space, we are
constructing a simulation for this purpose, and
PARAID-validated simulation will give us much greater
confidence in obtained results. At the same time, we are
exploring analytical approaches to develop online
algorithms with provable optimality.

Further, we will modify our disk synchronization
scheme to explore the potential asynchrony of update
propagation, to allow newly powered-on drives to serve
requests immediately.

Finally, we plan to mirror a PARAID server to FSU’s
department server for live testing, and deploy PARAID
in a real-world environment.

10 Lessons Learned

The concept of PARAID was born as a simple concept
to mimic the gear-shifting analogy in vehicles to
conserve fuel. However, turning this concept into a
kernel component for practical deployment has been
much more difficult than we anticipated.

First, design-to-fit matters. Our early design and
prototype of PARAID involved cloning and modifying
RAID-0. As a result, we had to bear the burden of
inventing replication-based reliability mechanisms to
match different RAID levels. However, our second-
generation design now can largely inherit the RAID
encoding scheme, which makes the evolution of new
RAID levels independent of PARAID. Although the
resulting energy savings and performance
characteristics can be comparable, the architecture of
PARAID can significantly affect its structural
complexity, development time, and potential for
practical deployment.

Second, measuring energy consumption is difficult
because of data alignment problems and a lack of
integration of tools. With continuous logging, aligning
data sets is largely manual. For multi-threaded
experiments and physical disks, the alignment of data
sets near the end of the experiment is significantly
poorer than at the beginning of the experiment. At the
beginning, the results obtained from averages were not
explainable, since unaligned square waves can be
averaged into anything but squares.

Third, measuring systems under normal loads is harder
than measuring systems under peak loads. We could
not simply replay traces as quickly as possible, and we
had to explore a range of speedup factors to see how

 13

PARAID reacts to a different range of loads. Since we
are interested in server loads with constant streams of
requests, we cannot apply the trick of skipping idle
periods [21], since such opportunities are relatively
infrequent.

Fourth, modern systems are complex. As modern
hardware and operating systems use more complex
optimizations, our perception of system behaviors
increasingly deviates from their actual behaviors.
Memory caching can reduce disk activity, while file
systems can increase the burstiness of RAID traffic
arrivals due to delayed write-back policies. Disks are
powered in spikes of current, making it difficult to
compute power consumption with the areas under the
spike. Disk drives can still consume a significant
amount of power even when they are spun down.

Fifth, matching the trace environment to our
benchmarking environment is difficult. If we use a
memory size larger than that of the machine being
traced, we may encounter very light disk activity. The
opposite situation can saturate the disks and achieve no
power savings. Cyclic workload patterns before the
cache may poorly reflect the workload patterns after the
cache. Additionally, traces might not be using RAIDs,
some traces may be too old, and the RAID geometry
might not match our experimental settings. The base
system might have more than one CPU, which makes it
difficult to judge whether a single modern CPU is
powerful enough. Although the operating system
research community is well aware of these problems,
the solutions still seem to be achieved largely by trial
and error.

11 Conclusion

PARAID is a file system designed to save energy for
large computing installations that currently rely upon
RAID systems to provide fast, reliable data storage.
PARAID maintains the desirable characteristics of
standard RAIDs, while decreasing their energy use by
up to 19%. Since PARAID is not currently optimized,
and since we measured only 5 drives (among which 2
are always powered), we believe that optimized
PARAID with many disks can achieve significantly
more energy savings. Since disk drives consume over
27% of the entire energy use of a major data center, the
use of PARAID via a simple software update can reduce
total electricity costs by 5%, an improvement worth
pursuing in a large data center.

A second important conclusion arises from the research
described in this paper. Actual implementation and
measurement of energy savings systems are vital, since
many complex factors such as caching policies, memory
pressure, buffered writes, file-system-specific disk
layouts, disk arm rescheduling, and many physical

characteristics of disk drives are difficult to fully
capture and simultaneously validate using only simula-
tion. Also, implementations need to address compatibi-
lity with legacy systems, the use of commodity
hardware, and empirical evaluation techniques, all of
which are necessary for practical deployments.

Unfortunately, our research also shows that there are
considerable challenges to performing such
experiments. We overcame several unforeseen
difficulties in obtaining our test results, and had to
invent techniques to do so. This experience suggests the
value of developing standard methods of measuring the
energy consumption of computer systems and their
components under various conditions. We believe this
is another fruitful area for study.

Acknowledgements

We would like to acknowledge Ted Baker, Kartik
Gopalan, and Nancy Greenbaum for their early
comments. We also thank Noriel Lu, Sean Toh, Daniel
Beech, Carl Owenby, and Nicholas Wallen for their
early contributions to the measurements of PARAID.
Additionally, we thank Jason Flinn, Daniel Peek, Margo
Seltzer, Daniel Ellard, Ningning Zhu, HP, and
StorageTek (now Sun Microsystems) for providing
accesses to various tools and traces. This work is
sponsored by NSF CNS-0410896.

References

[1] M. Abd-El-Malek, W.V. Courtright II, C. Cranor, G.R. Ganger, J.
Hendricks, A.J. Klosterman, M. Mesnier, M. Prasad, B. Salmon, R. R.
Sambasivan, S. Sinnamohideen, J.D. Strunk, E. Thereska, M. Wachs,
J.J. Wylie, Proceedings of the 4th USENIX Conference on File and
Storage Technology (FAST '05), San Francisco, CA. December, 2005.

[2] O. Brandman, J. Cho, H. Garcia-Molina, N. Shivakumar, Crawler-
Friendly Web Servers, SIGMETRICS Performance Evaluation
Review, 2005.

[3] P. Cao, E.W. Felten, K. Li, Implementation and Performance of
Application-Controlled File Caching, Proceedings of the 1st
Operating Systems Design and Implementation Symposium, 1994.

[4] E. Carrera, E. Pinheiro, R. Bianchini, Conserving Disk Energy in
Network Servers, Proceedings of the 17th Annucal ACM International
Conference on Super Computers, 2003.

[5] J. Chase, D. Anderson, P. Thakar, A. Vahdat, R. Doyal, Managing
Energy and Server Resources in Hosting Centers, Proceedings of the
18th ACM Symposium on Operating System Principles, 2001.

[6] D. Colarelli, D. Grunwald, Massive Arrays of Idle Disks For
Storage Archives, Proceedings of the 2002 ACM/IEEE Conference on
Supercomputing, November 2002.

[7] F. Douglis, P. Krishnan, B. Bershad Adaptive Disk Spin-down
Policies for Mobile Computers Proceedings of the 2nd USENIX
Symposium on Mobile and Location-Independent Computing, 1995.

[8] Fujitsu, MAP Series Disk Drive, 2005.

 14

http://www2.fcpa.fujitsu.com/sp_support/ext/enterprise/datasheets/ma
p10krpm-datasheet.pdf

[9] J. Gray, Keynote Address Greetings from a Filesystem User, the
4th USENIX Conference on File and Storage Technologies, 2005.

[10] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, H. Franke,
DRPM: Dynamic Speed Control for Power Management in Server
Class Disks, Proceedings of the International Symposium on
Computer Architecture, pages 169-179, June 2003.

[11] HP Labs, Tools and Traces, 2005.
http://www.hpl.hp.com/research/ssp/software/

[12] D.P. Helmbold, D.D.E. Long, B. Sherrod, A dynamic disk spin-
down technique for mobile computing, Proceedings of the 2nd Annual
Internacional Conference on Mobile Computing and Networking
(MobiCon’06), 1996.

[13] H. Huang, P. Pillai, K.G. Shin, Design and Implementation of
Power Aware Virtual Memory, Proceedings of the 2003 USENIX
Annual Technical Conference, 2003.

[14] A. Iyengar, J. Challenger, D. Dias, P. Dantzig, High-performance
Web Site Design Techniques, IEEE Internet Computing, 4(2):17–26,
March 2000.

[15] J. Katcher, PostMark: A New File System Benchmark, Technical
Report TR3022, Network Appliance Inc., October 1997

[16] S. Manley, M. Seltzer, M. Courage, A Self-Scaling and Self-
Configuring Benchmark for Web Servers, Proceedings of the 1998
ACM SIGMETRICS Joint International Conference on Measurement
and Modeling of Computer Systems, Madison, Wisconsin, 1998

[17] E. Miller, R. Katz, An analysis of file migration in a Unix
supercomputing environments, Proceedings of the 1993 USENIX
Winter Technical Conference, pages 421-433, 1993.

[18] J. Moore, J. Chase, P. Ranganathan, R. Sharma, Making
Scheduling "Cool": Temperature-Aware Workload Placement in Data
Centers, Proceedings of the 2005 USENIX Annual Technical
Conference, 2005.

[19] E.B. Nightingale, J. Flinn, Energy-Efficiency and Storage
Flexibility in the Blue File System, Proceedings of the 6th Symposium
on Operating Systems Design and Implementation, December 2005.

[20] D.A. Patterson, G. Gibson, RH Katz, A case for redundant arrays
of inexpensive disks (RAID). ACM SIGMOD International
Conference on Management of Data, 1(3):109-116, June 1988.

[21] D. Peek, J. Flinn, Drive-Thru: Fast, Accurate Evaluation of
Storage Power Management, Proceedings of the 2005 USENIX
Annual Technical Conference, 2005.

[22] E. Pinheiro, R. Bianchini, Energy Conservation Techniques for
Disk Array-Based Servers, Proceedings of the 18th Annual ACM
International Conference on Supercomputing (ICS'04), June 2004.

[23] RFC-3174 - US Secure Hash Algorithm 1, 2001.
http://www.faqs.org/rfcs/rfc3174.html

[24] SANTools, Inc. 2005. http://www.santools.com/smartmon.html

[25] D.S. Santry, M.J. Feeley, N.C. Hutchinson, A.C. Veitch, R.W.
Carton, J. Ofir, Deciding when to forget in the Elephant File System,
Proceedings of the 17th ACM Symposium on Operating Systems
Principles, 1999.

[26] UMass Trace Repository, Storage Traces, 2005.
http://signl.cs.umass.edu/repository/walk.php?cat=Storage

[27] R. Xu, A. Wang, G. Kuenning, P. Reiher, G. Popek, Conquest:
Combining Battery-Backed RAM and Threshold-Based Storage
Scheme to Conserve Power, Work in Progress Report, 19th
Symposium on Operating Systems Principles (SOSP), October 2003.

[28] X. Yu, B. Gum, Y. Chen, R. Wang, K. Li, A. Krishnamurthy, T.
Anderson, Trading Capacity for Performance in a Disk Array,
Proceedings of the 4th Symposium on Operating Systems Design and
Implementation, October 2000.

[29] Q. Zhu, F.M. David, C. Devaraj, Z. Li, Y. Zhou, P. Cao,
Reducing Energy Consumption of Disk Storage Using Power-Aware
Cache Management, Proceedings of the 10th International Symposium
on High Performance Computer Architecture, February 2004.

[30] Q. Zhu, A. Shanker, Y. Zhou, PB-LRU: A Self-Tuning Power
Aware Storage Cache Replacement Algorithm for Conserving Disk
Energy, Proceedings of the 18th Annual ACM International
Conference on Supercomputing (ICS'04), June 2004.

[31] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, J. Wilkes,
Hibernator: Helping Disk Arrays Sleep through the Winter,
Proceedings of the 20th ACM Symposium on Operating Systems
Principles, 2005.

