
An Analysis of the Capability Maturity Model
Shelly Rush
Department of Computer Science

Florida State University

Tallahassee, FL 32306-4530

e-mail: rush@cs.fsu.edu

Abstract: Software Process Improvement is the basis for the improvement of software quality and customer satisfaction. The Capability Maturity Model was designed to aide organizations in their quest to improve software quality thereby reducing cost of software development and increasing reliability. This paper discusses the Capability Maturity Model framework, the positive results that have reported from organizations that have used the model, and the weaknesses that have been reported about the model.
1. Introduction

Over the past 30 years, software development has become a billion dollar business around the world. For this reason, the need to create correct software on time and within budget has become an essential need within government and private organizations. Software is relied on so heavily in today’s society that it became necessary in the mid 80’s for a process to be put in place to ensure that software was created at a high quality and within budget.

Before the decision was made to establish a process, it was reported that 17 major DOD software contracts found that in 28 month contracts they were over schedule by 20 months. It was also found that no project was on time and that one project that was suppose to be four years was not delivered for seven years [8]. With these statistics and the growing size and complexity of software, the DOD decided a process was needed improve the software process. To answer this need the Software Engineering Institute (SEI), which was established in 1984, was ask for help. SEI is a federally funded research and development center at Carnegie Mellon University. It is sponsored by the Department of Defense (DoD).

In 1986, the US Air Force asked the SEI, to help them find a way to evaluate contractors [1]. SEI joined with Mitre Corporation to come up with something that the Air Force could use to evaluate contractors. What they came up with was a 100 question questionnaire that could be used to decide how mature or immature and organization was at creating software [25]. The questionnaire was also used by contractors to do self-assessments on its own software process capabilities against an objective standard [3].

 This process initially did well for evaluating individual contractors but it was not good for evaluating many contractors that were bidding on a contract [1]. For this reason, the questionnaire was divided into groups that are now called Key Process Areas (KPAs). Each group of questions was assigned to a level and these levels became known as the Capability Maturity Model (CMM). The Capability Maturity Model was released in August 1991 [6,7]. It was designed to be a framework that could be used by organizations and government contractors to achieve process maturity through a five levels. “Process maturity implies that the organization’s software process is well defined, managed, controlled and effective. It also implies potential for growth and consistency in applicability throughout the organization” [2].

The Capability Maturity Model uses key process areas to give organizations the activities they must be completing to achieve a specific level. Each level in the Capability Maturity Model has goals and key process areas. When the key process areas for a level are clustered together, they are used to achieve a specific level’s goals. These key process areas are used as activities that an organization must be performing to be awarded a specific level. As an organization moves up the levels it becomes more mature in its software development process. “The model is used as a standard for appraising the current state of the organization’s software process, as well as a guide for identifying and prioritizing the actions comprising the software process improvement effort” [4].

Although the Capability Maturity Model is the most widely known Software Process Improvement (SPI) model and it is used through the world [11], there are other SPI models that are used. One of the major SPI models that is used today, is ISO-9000 [28,18], which is an international standard. This standard, like the Capability Maturity Model, is based on the common concern of quality and process management [16]. Since ISO-9000 is commonly used for software process improvement, there are many papers that have been written on comparing CMM and ISO-9000 [16] and moving from ISO-9000 to CMM [15].

In addition to ISO-9000, there are other models such as SPICE (Software Process Improvement and Capability dEtermination) [26] and the European BOOTSTRAP [27]. Out of all of these models, CMM is the most management oriented. On the other hand, SPICE is the most organization oriented model and BOOTSTRAP is the most technical oriented model [17].
The newest version of CMM is called the Capability Maturity Model Integration (CMMI). This model incorporates the best parts of past CMM models, such as: Capability Maturity Model for Software (SW-CMM) [6,7], Systems Engineering Capability Maturity Model (SE-CMM) [21], and Integrated Product Development Capability Maturity Model (IPD-CMM) [22]. According the Software Engineering Institutes’ website, many organizations are using the newer CMMI. However, numerous organizations and government agencies continue to use CMM-SW [23]. For this reason, this paper will focus on CMM-SW.
This paper is organized into five sections. Section 1 is the introduction. Section 2 gives a detailed description of the Capability Maturity Model. This section includes a description of each of the five levels and how to implement them. There is also an explanation of how to move between levels. Section 3 provides information on the effectiveness of the Capability Maturity Model on the software development process. This section will discuss the positive feedback of several companies and how the model is used in the government today. Section 4 gives an analysis of the Capability Maturity Model, including its weaknesses and improvements that could be made to the model. Lastly, Section 5 presents the conclusion.
2. Description and Implementing CMM
Since the Capability Maturity Model [5,6] was created in the early 1990’s it has been gaining support among developers and the government. It was based on knowledge acquired from industry and government studies and software-process assessments. The software crisis has become an even greater issue because software is continually getting larger and more complex. For this reason, a process had to be put in place for the government to control software quality. This is why the Capability Maturity Model was created.

The Capability Maturity Model is a measure of how mature an organizations software development process is based on five levels. In the Capability Maturity Model, level one is the most immature and level 5 is most mature an organization can be [7]. In general, an immature process is reactionary and projects are over budget and behind schedule. On the other hand, a mature process means that the organization can manage the development and maintenance process through out their organization.

[image: image1]

This section will describe each of the five levels that the Capability Maturity Model uses to evaluate an organizations maturity, see Figure 1. Sections 2.1 through 2.5 will give a description of each of the levels, starting with level 1 and going through level 5 respectively, and an explanation of the key areas that must be completed in order for the organization to achieve that level will be given. In Section 2.6, the criterion used to evaluate whether an organization has completed each of the areas needed to move to a specific level is described. The following information for this Section was gathered from [5,6,7].
2.1 The Initial Level (level 1)
The initial level of the CMM model is at the bottom of the software development process and it is considered to be very immature in the CMM model.
2.1.1 Description
This is the level that all companies will start at before proceeding to levels 2 through 5. This level is often called ‘ad hoc’ or ‘chaotic’ because there is no defined plan for how the software will be developed and maintained. An organization that is developing software at level 1 is not considered to be developing or maintaining software in a stable environment. The organization’s software projects are often behind schedule and over budget because there is no way to track the projects. For this reason, management will react to crisis by reverting to coding and testing.

The success of a project being developed by an organization at level 1 will depend solely on heroics of key individuals. For a project to be completed and successful, the developers must be experienced and management must be skilled. However, if key developers or management leave the project, the project will most likely fail. Should a project be successful, that success can not be repeated by the organization because there is no defined development process. The only way success can be repeated is when the same individuals are used on other projects. Even though success can not be repeated, software created at this level often works but was done in a controlled environment.
2.1.2 Implementation

Level 1 is not hard to implement. As mentioned before, it is considered to be the most immature of the five levels and is often an ad hoc way of creating software. For an organization to achieve CMM level 1 it does not have to implement any specific key process areas. As will be seen in the implementation sections of the other four level of CMM in the following sections, key process areas must be implemented to achieve those levels. This means that there are no specific activities that an organization must be completing in order to be awarded CMM level 1. Level 1 is just the beginning level that all organizations must build off of to make their software development and maintenance process more mature.
2.2 The Repeatable Level (level 2)
The repeatable level of the CMM model is the second to the bottom of the software development process and it is considered to be immature in the CMM model.
2.2.1 Description

Once an organization has improved their software development process, they may be ready to move from the initial level to the repeatable level. The repeatable level is level 2 in CMM. Organizations that are creating software at level 2 have created policies for managing the software development process and there are procedures in place to make sure that the policies are followed.

In general this level is marked by the ability of an organization to repeat success on similar projects. At this level management has established processes for tracking cost, schedule, and functionality. Planning for future projects is based on statistics from previous projects that are similar. At this stage standards for the project are established and they are followed [7]. Even though this level has a more disciplined software process then level 1, the processes implemented on each project may differ. Furthermore, when problems arise in a project, they are addressed at that time.
2.2.2 Implementation
To progress to CMM level 2 for software development, there are some key process areas that your organization must show are being completed. “Key process areas identify the issues that must be addressed to achieve a maturity level” [7]. For level 2 these areas include requirements management, software project planning, software project tracking and oversight, software subcontract management, software quality assurance, and software configuration management. All of the Key Process Areas for level 2 have to do with establishing basic project management controls. All of the Key Process Areas for this level are issues that management needs to focus on to achieve. Figure 2 is a description of each of the Key Process Areas for level 2.

Once an organization can prove that all of these areas are being completed at a satisfactory level, they will be official awarded CMM level 2. This may sound easier then it is because proof that all the levels are being completed at satisfactory level may differ between organizations. However, the criterion that is used to decide if an organization can move to a new level is discussed in section 2.6 below.
	KPA
	Description

	Requirements management
	A common understanding of the requirements has been established between the customer and the development team. This will be the basis for planning and managing the project.

	Software project planning
	Plans for engineering and managing a project are established.

	Software project tracking and oversight
	This allows management to determine when the project is off track so that action can be taken to get the project back on track.

	Software subcontract management
	Qualified subcontractors must be chosen and they must be managed appropriately.

	Software quality assurance
	This allows management to be able to see into the process being used and the product being built

	Software configuration management
	The integrity of the product must be maintained throughout the products life cycle.

 Figure 2 – Level 2 KPA Description
2.3 The Defined Level (level 3)
The defined level of the CMM model is the third level of the software development process and it is considered to be becoming mature in the CMM model.
2.3.1 Description

The next level in the model is the defined level or level 3. This level is characterized by the process being well defined. Organizations at level 3 have established a standard software process. This process includes management and software engineering activities to be documented, standardized, and integrated into the standard process [10]. Every time a new software project or maintenance project are started, a tailored version of the organizations standard process is used. This allows flexibility in the standard process since each individual project is unique. There is also a mechanism in place to ensure that all software projects are using a tailored version of the standard process. Using a tailored version of the standard process throughout the organization, allows what has been learned on one project to be applied to other projects within the organization.

Level 3 is more focused on organization orientation, while level 2 was more focused on project orientation [3]. An organization that is creating software at level 3 is completing all of the KPA for level 2 and level 3. The KPA for level 3 are described in section 2.3.2. In addition, level 3 is the first level where new technology can be introduced into the process without a great risk to the projects completion. This level also offers organization-wide training for everyone. In this way the organization can ensure that everyone can perform there role in the organization. At this level the software process is stable and repeatable.
2.3.2 Implementation

The goals of the Key Process Areas for level 3 are to establish a standard software process for the organization and to make the organization aware of its responsibilities in the software development activities. To do this, the organization needs to be able to access, maintain and develop its software process. For this reason, the Key Process Areas for this level address organization and project issues that are needed for the organization to mature.

The Key Process Areas for level 3 allow the organization to make its software process organization-wide. The KPA for level 3 are: organization process focus, organization process definition, training program, integrated-software management, software product engineering, intergroup coordination, and peer reviews. Each of the Key Process Areas is described in more detail in Figure 3.
	KPA
	Description

	Organization process focus
	The organization is responsible for activities that will improve the over-all software process of the organization.

	Organization process definition
	The organization is to develop and maintain process assets that can be used in improve the processes performance throughout the organization and to show long term benefits to the organization.

	Training program
	Training is the responsibility of the organization. It is used to develop and maintain the skills of the employees. Training may be needed for individual projects too.

	Integrated-software management
	The software-engineering process and management activities should be integrated into a well-defined process. The process should be tailored for each project.

	Software product engineering
	Software product engineering describes the technical activities of the project. Technical activities include requirements, design, code, and testing. The organization should consistently perform the same well-defined process where products are correct and consistent due to the integration of the technical activities.

	Intergroup coordination
	Organizations must establish a way for different engineering groups to actively participate with each other so the products better satisfy a customers needs.

	Peer reviews
	Peer reviews can be implemented using walk-throughs and inspections. They all allow defects to be detected early and eliminated.

Figure 3 – Level 3 KPA Description
2.4 The Managed Level (level 4)
The managed level of the Capability Maturity Model is an improved software development process that is considered to be mature in the CMM model.
2.4.1 Description

After level 3 has been achieved, an organization would progress to the managed level which is level 4 in the Capability Maturity Model. The focus of level 4 is process control. The amount of process control that is used at this level allows quality improvement to begin. Comprehensive process measurements and analysis are used to allow the quality to improve. Consequently, level 4 focuses on quality measures that can be used to improve the process and the product. Products being produced at this level are of a high quality.

In order for the quality of the process and product to be evaluated, an organization-wide database is kept of all the products being developed across the organization. This database is used to analyze the process and to establish a quantitative foundation to be used in evaluating the process. These results are used to make sure that all products performance falls within specific ranges and can be used to determine whether variations in the performance are meaningful or not.

Since the process is followed closely and analyzed, trends can be predicted in the quality, processes, and products at this level. The stability and measurements allow variations to be identified. The process is followed carefully so that these variations can be corrected immediately.
2.4.2 Implementation

In order for an organization to move to level 4 in the Capability Maturity Model, they must add the Key Process Areas listed below to the list of activities that they are completing. As mentioned in section 2.4.1 the KPA will help the organization do quantitative analysis of the product and process within the organization. There are only two Key Process Areas for this level.

The two Key Process Areas are: quantitative process management and software quality management. Quantitative process management is an area that management will focus on to achieve while software quality management is a software engineering issue [6]. Figure 4 gives a description of each of the Key Process Areas for this level.
	KPA
	Description

	Quantitative process management
	Projects process performance must be quantitatively understood and controlled so that performance goals can be established. This allows variations in the process performance to be identified and the source to be identified.

	Software quality management
	A quantitative understanding of the quality of the products that are produced for each project, so that quality goals can be established

Figure 4 – Level 4 KPA Description
2.5 The Optimized Level (level 5)
The optimized level of the CMM model is the top of the software development process and it is considered to be the most mature in the CMM model.
2.5.1 Description

The optimized level is the most mature level in the Capability Maturity Model. The main focus of this level is continuous process improvement. This sets it apart from the other levels because continuous process improvement incorporates new technology and process changes into the standard process. In this way the process is continually adapted. Additionally, cost benefit analysis of incorporating new technologies is done. Technologies that give the best results are then incorporated into the standard software process throughout the organization.

This level reduces the amount of waste from lack of good quality measures. There is a baseline for performance that is established at this level and mistakes are not repeated. Level 5 eliminates the need to rework a project, which is a waste of an organization’s time and money because the process has been refined. Common mistakes are not repeated on future projects. This is done through defect prevention which identifies the source of defects so that they can be disseminated to other projects.
2.5.2 Implementation

As mentioned in section 2.5.1, the goal for level 5 is to add continuous process improvement to the CMM. An organization being able to continuously improve there process is a sign that the organization is becoming more mature. Part of this process improvement involves the addition of new technologies successfully into the development process and defect prevent. The Key Process Areas for level 5 allow an organization to do process improvement. Furthermore, technology can be added to the process and defects can be prevented.

To implement this level there are three Key Process Areas that the organization must add to the list of Key Process Areas that it is already implementing from levels 2 through 4. These Key Process Areas are defect prevention, technology change management, and process change management. A description of each of the KPA for this level is given in figure 5 below.
	KPA
	Description

	Defect Prevention
	Defects should be detected and the cause of the defect needs to be identified so that the defined process can be changed and the defects do not reoccur

	Technology-change management
	New technologies must be identified and integrated into the process. New technologies include tools, methods, and processes. This is useful since technology is always changing.

	Process-change management
	Improving the organizations process so that the products that are produced will be of a higher quality, have a lower development time, and the organization can be more productive.

Figure 5 - Level 5 KPA Description
2.6 Moving Between Levels
An organizations ultimate goal is to move up the Capability Maturity Model. The higher the level that an organization achieves the more mature their process is and the software that is developed is of a higher quality. As mentioned in the sections above an organization must prove that they are completing Key Process Areas in order to be awarded a specific maturity level. The set of Key Process Areas for each level when grouped together achieve a specific goal that is considered important for enhancing process capability [8].

Although an organization can easily read the Key Process Areas that they must be completing in order to move to a specific maturity level, it may be harder to see how each Key Process Area must be physically achieved. The answer to this question will depend on the organization. The Capability Maturity Model tells organizations what to do not how to do it. Every organization will take a different path to prove that they are completing the goals of each maturity level [5]. This will depend on the environment that the software is created in and the application domain. The Capability Maturity Model is abstract enough that it can be fit into any organization. This is important since every organization is different.

In order for an organization to move from one level to a higher level, you must prove that you are addressing each Key Process Area for that level. To do this you have to have hard evidence that you are completing each Key Process Area. Each Key Process Area is subdivided into (1) goals, (2) commitment to perform, (3) ability to perform, (4) activities performed, (5) measurement and analysis, and (6) verification of implementation [7]. Each of these subareas, except the goals, is further divided into statements that are related to that area. These statements are used to judge if a project or contract meets the criteria. For each of the statements hard evidence must be provided to prove that the statement is completed by the organization. The hard evidence must prove that the statement is consistently performed [8]. The tricky part is that hard evidence can be interpreted differently. For this reason, it may take an organization more then one try to be awarded a level.

To move from on level to the next, the organization must know what the Key Process Areas of the next level are and be working towards them in advanced. Some levels may build on statistics or information form lower levels. Unless the organization has prepared in advance for the need for these statistics, they will not be able to progress. For this reason, an organization that intends to progress to a specific level should always know what the Key Process Areas of that level are so that they will not be prevented from progressing because they did not plan.

Studies have shown that it takes an average of two years for an organization to move to the next level [2]. According to [14], the average time for an organization to move from level 2 to level 3 is less then the amount of time it takes to move from level 1 to level 2. According to the same study, it took an average of 30 months for organizations to move from level 1 to level 2 and an average of 25 months. It also noted that organization should not be concerned if it takes them longer then 25 months to move up to the next maturity level. This study did not have statistics on moving from level 3 to level 4 or from level 4 to level 5.
3. Effectiveness of CMM on the Software Process
The Capability Maturity Model is a Software Process Improvement (SPI) model. For this reason, the use of this model within an organization should help the organization improve its software development process. This section will go through what the Capability Maturity Model can do for an organization and how the Capability Maturity Model is used in the government for contract bidding and organization evaluation.
3.1 What CMM does for a company?

Many studies and research paper [4,8,10,12,13,19,20] have shown that the use of the Capability Maturity Model within an organization reduced the cost of software development, reduced the number of faults in the software that was developed, and reduced the time to development the software. All of these improvements, help organizations stay within budget, improve software quality, and meet their schedule, which means better customer satisfaction. The next few paragraphs will go through statistics from studies that support the fact the Capability Maturity Model continuously improves the software development process within an organization as the organization moves up to higher levels within the model.

When [10] examined a number of different studies that followed companies as they progressed through the maturity levels, they found that there are “substantial business benefits” as the organizations matured. Through a survey, they also found that organizations reported a continuous improvement in the ability to meet schedules, ability to stay within budget, product quality, staff morale, and productivity as the organization moved to higher levels in the Capability Maturity Model. The only negative thing this study found was that customer satisfaction did not start to go up until the organization moved from Level 2 to Level 3.

Telcordia Technologies has also reported that the Capability Maturity Model improved their software development process [20]. In 1990 when they began preparing to use CMM and ISO9000, customer satisfaction was down, faults were up, and major software releases on time were down. CMM Level 3 was implemented in 1996 and in May 1999 Telcordia’s software organization achieved Level 5. After implementing CMM in the organization they reported a decrease in field faults density, an increase in major releases shipped on time, and an increase in customer satisfaction. The field fault density was reduced by 94% from the initiative’s start, the number of major software releases that were delivered on time tripled starting in 1995, and customer satisfaction has gone up from 60% in 1992 to over 95%.

In addition to these results, [19] reported improvements from the Capability Maturity Models implementation on various General Dynamics Decision Systems’ Projects. General Dynamic is made up of three divisions: Integrated Systems, Information Security Systems, and Communication Systems. At the time that the research was done on General Dynamics CMM process, all three divisions were assessed at CMM level 5. Although each division is level 5, each project is access and individually categorized in a CMM level by General Dynamics.

[19] analyzed the rework, phase containment, quality, and productivity from implementing CMM based upon history and on approximately 20 current programs at various stages in the software life cycle. Rework was based on the percentage of the development time that was spent reworking the project. The phase containment is a measure of how well defects were contained within the phase that it was created. Quality was based on how many latent defects were found by the customer per thousand source lines of code (KSLOC) and productivity was shown in X factors terms based on the average productivity of all programs with a specific CMM level divided by the productivity average of all Level 2 programs.

General Dynamics showed improvements in all four of the areas that were analyzed. They also found that as the projects moved up the maturity levels, the benefits continued to increased and the software needed less reworking, defects were discovered earlier and contained within their phase, the software had a higher quality, and that productivity went up. The results of the study are shown in Figure 6 and more detailed descriptions of the improvements can be found in [19].

	CMM level
	Percent Rework
	Phase Containment Effectiveness
	CRUD Density per KSLOC
	Productivity (X Factor Relative)

	2
	23.2 %
	25.5%
	3.20
	1x

	3
	14.3%
	41.5%
	0.90
	2x

	4
	9.5%
	62.3%
	0.22
	1.9x

	5
	6.8%
	87.3%
	0.19
	2.9x

 Figure 6 – General Dynamic Decision Systems Project Performance [19]

Additional research on improvements due to the use of the Capability Maturity Model was done by Daniel Galin and Moti Avrahami [12]. Their research, based on a large number of case studies, found that the Capability Maturity Model has many benefits. In their research they examined the investment that was made in the Capability Maturity Model and the quantitative results that the Capability Maturity Model had on the performance of the software process based on the investment. In specific instances they reported that Lockheed Martin M&DS had a 20% reduction in unit software costs and they had a 30% improvement in software development productivity. Also, that Boeing Australia had a 33% decrease in cost to fix an error.

Despite that fact that these statistics are good, they only show the progress within a few specific organizations, so [12] gathered the work from 19 different publications on over 1800 projects and compounded the information. This way they could show hard evidence that the Capability Maturity Model does have economic benefits. What they found was that through the analysis of all the publications that error density, productivity of software development, percentage of rework, cycle time for the completion of a typical software project, schedule keeping, error detection effectiveness, and ROI all improved with the use of CMM and that there was continuous improvement in all of these areas as the maturity level went up. Figure 7 shows the average improvements that were reported when moving from on maturity to the next.

	CMM Benefit
	Average improvement reported in analysis

	Error density
	48%

	Productivity
	52%

	Rework
	39.2%

	Cycle time
	37.5%

	Schedule keeping
	45%

	Error detection effectiveness
	12.7% (higher CMM levels) to 74% (lower CMM levels)

	Return on investment
	1:3.63

Figure 7 – CMM benefits reported in [12]

3.2 CMM use in the government

One of the major reasons that many organizations have begun to use the Capability Maturity Model within their organization is because the government uses the model to evaluate an organizations maturity. For this reason, government contractors and government organizations have been using the Capability Maturity Model for longer then commercial companies [4]. This makes most government contractors at a higher maturity level then commercial organizations. This shows just how influential the government can be on the software contracting industry.

There are two major uses of the Capability Maturity Model: assessments and evaluations. The government uses the model to evaluate an organization. When an acquisition agency wants to identify qualified bidders or to monitor current contracts the Capability Maturity Model is used [8]. The results that are found can be used later to develop risk profiles for contractors. This means that later this information can be used to help select the best vendor for each job.

In order to bid on most government contracts, organizations must be performing a specific CMM level that is designated by the contract [9]. This means that organizations must be CMM certified in order to even think about bidding on a contract. In addition to CMM level requirements, every contractor will be required to go through a software capability evaluation (SCE) in order to win a government contract. The SCE team is an outside team such as the government or a software contractor. The team will assess the organization on current projects and identify potential risk areas within the organization, as structured by the CMM, before selecting one of the bidders for a specific contract [8]. The evaluation can be very extensive and take weeks to complete. Whether an organization wins a contract can depend on how the organization performs during the evaluation. For this reason, organizations will need to spend lots of time getting ready for each evaluation. These evaluations can also be used to evaluate contracts that are in progress.

4. Analysis of the Capability Maturity Model Levels

As we saw in Section 3, many studies have shown that the Capability Maturity Model can improve performance and reduce cost within an organization when applied correctly. Despite these studies, there have been a number of articles written on the negative aspects of the Capability Maturity Model. This section will explore the weaknesses of the model and some possible improvements that can be made to it in the future.
4.1 Weaknesses of CMM

The Capability Maturity Model has many critics that disagree with the software improvement that the model offers. Although, many organizations have shown that improvements when using the Capability Maturity Model, as noted in Section 3, there are other issues besides error density, productivity, rework time, schedule keeping, etc, that have caused people to criticize the model. This section will discuss the weaknesses of the Capability Maturity Model.

First, the Capability Maturity Model has been criticized for failing to deal with the social aspects within an organization and for making false assumptions about the organizational culture of an organization. The Capability Maturity Model, as a Software Process Improvement, “is an intervention in the organizational culture with the objective of changing it” [11]. For this reason, the model needs to take into account the social aspects of the organization that it is going to change. Organizational culture is defined as the “basis upon which organizational actions are constructed and enacted” [11].

One study of the organizational culture of organizations and the use of the Capability Maturity Model found that some of the social issues that an organization must deal with include: values, ideologies, goals, communication (jargon, slogans, etc.) and assumptions [11]. The deeper the culture of an organization the harder it will be to change the organization. For this reason, there is a need for the Capability Maturity Model to make accurate assumptions about the organizational culture in order to make changes within the organization to improve its software process. False assumptions about the organizational culture of an organization, means resistance to change which is essential to implementing the Capability Maturity Model within an organization.

Second, organizations that used the Capability Maturity Model to improve there software process criticized it for causing them to neglect issues that were not important to the Capability Maturity Model. One of the issues the model does not address is creativity within an organization. The model causes the organization to become rigid and bureaucratic restricting the ability for engineers to come up with creative solutions to technical problems [10]. Also, it is believed that the restrictions from the model demoralize the workforce and limits innovations [3].

In addition, the model does not address managerial and engineering practices that are important for a project to be successful [8]. Some of these issues include expertise in a specific application domain and issues related to human resources. There is no mention of methods or technologies for specific application domains or how to hire, retain, and motivate works by human resources. All of these issues are considered essential to a projects success by many organizations.

Third, according to statistics that were gather from a number of studies by [10], the cost and time that it took to implement software process improvement took longer then expected and cost more then was expected. This study showed that 77% of organizations felt that implementing software process improvement, took longer then they expected and 68% of the organizations said that it cost more then expected too. These results may reflect that organizations did not know what results to expect when they started out to implement the Capability Maturity Model. This is supported by the fact that the study also found that 49% of organizations were disillusioned by the lack of progress that they made.

Fourth, organization found that the Capability Maturity Model did not give them enough guidance on how to implement the model. The model tells organizations what to do rather then how to do it. One study found that 67% of organizations knew what they needed to do but they needed more guidance on how to how to improve and that 57% of organizations “needed more individual mentoring and assistance” [4]. As mentioned in Section 2.6, many organizations find that they are not sure how to prove they are completing all of the KPA’s for a specific level or the best way to implement each KPA. For this reason, organizations need more guidance implementing the Capability Maturity Model.

Fifth, the Capability Maturity Model has been criticized for not being designed for projects and organizations of all sizes. It works well for large organization. However, it does not work well for small organizations [1,2]. Part of the reason it does not work well is because it was initially designed for large-scale military oriented projects [1]. This means that it may be hard to implement it in smaller organizations since part of model is not relevant to small organizations. Also, smaller organizations may be looking to improve quickly and the average time to move between levels is two years [10]. The Capability Maturity Model requires long term commitment, if an organization is looking for quick results, then the model may not work well for the organization.

In addition, the Capability Maturity Model requires an increase in the management structure, which will cause an increase in over head cost [1]. The increase in cost may be more then a small organization can afford. “The availability of resources and personnel are the most obvious problems in applying CMM” [2]. In an organization with resource and cost limitations, the Capability Maturity Model may not be suitable.

Lastly, organizations have complained that when they had two software capability evaluations for a project, the evaluation teams came up with different results [8]. This type of inconsistency between evaluation teams is not acceptable since many organizations depend on the evaluation for contract bidding on government projects. In addition, there have been inconsistencies in maturity level evaluations. Some of these evaluation inconsistency happened by different teams at the same time or by same team at different times [8]. Consistencies among evaluations need to be reached for the Capability Maturity Model to become more widely accepted.

The weaknesses of the Capability Maturity Model are numerous. However, organizations have also reported that they do not suffer from the problems that other organizations have reported [4]. The effects of the problems mentioned in this section, may be over shadowed by the positive aspects of the Capability Maturity Model. Organizations will have to decide if they can live with the negative aspects in order to benefit from the positive aspects of using the model.
4.2 Improving the Capability Maturity Model
There are several improvements that could be made to the Capability Maturity Model. These improvements all stem from the weaknesses mentioned in Section 4.1. They include expanding the model to eliminate some of the weaknesses, creating classes to better educate organizations, and creating more defined ways to evaluate organizations. All of the suggested improvements are described below.

First, the Capability Maturity Model needs to be expanded to take into consideration the social aspects of an organization. The model could benefit from a better understanding of the organization theory [11]. This includes the design, culture and change of the organization. If organizational aspects are taken into consideration, change within the organization would be easier and more effective. Since the Capability Maturity Model is based on change in order to create software process improvement, the addition of social aspects to the model would be beneficial.

Second additional aspects that are not covered by the Capability Maturity Model that are important to software improvement should be added to the model. Some of these improvements include selecting, hiring, developing, and/or retaining competent people. Although they do not directly related to the development of software, a mature organization should be able to retain people. These issues are significant for organizations at all levels of maturity, but currently they are largely outside the scope of the Capability Maturity Model [7]. For this reason, the model should be expanded to include human resource activities.

Third organizations should be educated on what to expect when they implement the Capability Maturity Model. Part of the model could be an introductory course before beginning the implementation process. In this way organizations would not feel that it cost more and took more time then they expected because the introductory course would explain the expected cost and resources needed to implement the model.

In addition, further work should be put into educating organizations on how to implement the Capability Maturity Model. Since 67% of organizations say that they know what to do but not how to do it [2], this type of information would be beneficial to more then two-thirds of the organizations that are currently implementing the Capability Maturity Model. One way to help organizations with how to implement the model would be to have individual assistance available to organizations that are willing to pay experts in the area to help them implement the model. This type of assistance would help organizations improve faster and reduce the number of evaluations they might have to go through before reaching the next maturity level.

Fourth, a separate Capability Maturity Model should be designed for small organizations. In view of the fact that not all organizations are large, a model for small organizations would be beneficial. Then small organizations would not have to weed through the KPA’s to see which ones are not relevant to them.

Lastly, evaluation teams should be better educated on how to evaluate an organization. There should be a strict protocol that is followed when organizations are evaluated for maturity levels. The Software Engineering Institute should educate the evaluation teams on exactly what evidence is needed to prove that a maturity level is reached. Having a better defined list of what is expected when an evaluation team arrives would also help organizations with the question of “how to implement CMM”.
5. Conclusion

Today the Department of Defense requires that software be developed using disciplined software engineering principles [24]. DoD-STD-2167A [3] used to be the de facto standard for software project management. However in April 1995, MIL-STD-498 replaced DoD-STD-2167A. When organizations want to create software for the Department of Defense, they must follow these standards. The Capability Maturity Model assists organizations in understanding how to create software in an efficient manner. It is a guide for task that need to be completed by software project management within a project and within an organization.

Despite the use of software improvement techniques, such as CMM, statistics still show that a large number of projects fail. In 2000, 76% of taxpayer’s money was spent on software that was never delivered or never used and then only 2% of taxpayer’s money was spent on software that was usable [9]. In 2003, software projects still had a failure rate of around 70% according to SEI [11]. In addition to projects failing, projects also come in over budget. In 2000 more then half of software projects in the United States were about 180% over budget [9]. These statistics show that additional process improvement needs to be done in software development.
References

[1] Baskerville, R., Pries-Heje, J., “Knowledge Capability and Maturity in Software Management,” ACM SIGMIS Database, Volume 30, Issue 2, pp. 26-43, 1999.

[2] Biberoglu, E., Haddad, H., “A Survey of Industrial Experiences with CMM and the Teaching of CMM practices,” Journal of Computing Sciences in Colleges, Volume 18, Issue 2, pp. 143-152, 2002.

[3] Snyder, C., “The Software Development Plan: A Key to Achieve SEI Capability Maturity Model Compliance,” Washington Ada Symposium, McLean, Virginia, pp. 106-112, 1992.

[4] Hervsleb, J., Goldenson, D., “A Systematic Survey of CMM Experience and Results,” International Conference on Software Engineering, Berlin Germany, pp. 323-330, 1996.

[5] Paulk, M., Curtis, B., Chrissis, M., “Capability Maturity Model, Version 1.1,” IEEE Software, Volume 10, Issue 4, pp. 18-27, July 1993.
[6] Paulk, M., et al., “Key Practices of the Capability Maturity Model, Version 1.1”, Tech. Report CMU/SEI-93-TR-25, Software Eng. Institute, Pittsburgh, 1993.

[7] Paulk, M., et al., “Capability Maturity Model for Software, Version 1.1,” Tech. Report CMU/SEI-93-TR-24, Software Eng. Institute. Pittsburg, 1993.
[8] Saiedian, H., Kuzara, R., “SEI Capability Maturity Model’s Impact on Contractors,” Computer, Volume 28, Issue 1, pp. 16-26, Jan. 1995

[9] Conwell, C., Enright, R., “Capability Maturity Models Support of Modeling and Simulation Verification, Validation, and Accreditation,” Simulation Conference Proceedings, Orlando, FL, Volume 1, pp. 819-828, Dec. 2000
[10] Herbsleb, J., et al., “Software Quality and the Capability Maturity Model,” Communication of the ACM, Volume 40, Issue 6, pp. 30-40, June 1997.

[11] Ngwenyama, O., Neilsen, P., “Competing Values in Software Process Improvement: An Assumption Analysis of CMM from an Organizational culture perspective”, IEEE Transactions on Engineering Management, Volume 50, No 1, pp. 100-112, 2003.

[12] Galin, D., and Avrahami, M., “Do SQA programs work – CMM works. A meta analysis”, IEEE International Conference on Software- Science, Technology and Engineering, pp. 95-100, Feb. 2005
[13] Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., and Zubrow, D., “Benefits of CMM-Based Software Process Improvement: Initial Results“, Tech. Report CMU/SEI-94-TR-13, Software Eng. Institute, August 1994.
[14] Hayes, W. and Zubrow, D., “Moving on up: Data and experience doing CMM-based process improvement”, Tech. Report CMU/SEI-95-TR-08, Software Eng. Institute, August 1995.

[15] Jalote, P. “Moving from ISO9000 to the Higher Levels of the Capability Maturity Model (CMM)”, (tutorial Session), Proceedings of the 22nd international conference on Software engineering, p.823, June 04-11, 2000, Limerick, Ireland.
[16] Paulk, M.C., “How ISO 9001 Compares with the CMM”, IEEE Software, Volume 12, Issue 1, pp. 245-256, January 1995.
[17] Wang, Y., et al. “Quantitative Evaluation of the SPICE, CMM, ISO 9000 and BOOTSTRAP”, IEEE Software, 1997.

[18] ISO [1991], Quality Management and Quality System Elements (Part 3) – Guidelines for Development, Supply and Maintenance of Software, ISO 9000-3.
[19] Diaz, M. and King, J., “How CMM Impacts Quality, Productivity, Rework, and the Bottom Line”, CrossTalk, Volume 15, pp.9-14, March 2002.
[20] Pitterman, B., “Telcordia Technologies: The Journey to High Maturity”, IEEE Software, Volume 17, Issue 4, pp. 89-96, 2000.
[21] Bate, R., et al., “A Systems Engineering Capability Maturity Model, Version 1.1”, Tech. Report CMU/SEI-95-MM-003, Software Eng. Institute, Pittsburgh, 1995.
[22] “Integrated Product Development (IPD) –CMM draft”, 1997, Available @ http://www.sei.cmu.edu/cmm/ipd-cmm.html
[23] Zubrow, D., “Current Trends in Adoption of the CMMI Product Suite”, Proceedings 27th Annual International Computer Software and Applications Conference, pp. 126-129, Nov. 2003.

[24] Department of Defense. 1999. Department of Defense Regulation 5000.2-R Change 4. Mandatory Procedures for major Defense Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition Programs. May. http://www.deskbook.osd.mil/
[25] Humphrey, W.S. and Sweet, W.L., “A Method for Accessing the Software Engineering Capability of Contractors”, Software Engineering Institute, CMU/SEI-87-TR-23, September, 1987.

[26] Emam, K., Drouin, J., and Melo, W., “SPICE: The Theroy and Practice of Software Process Improvement and Capability Determination”, Wiley-IEEE Computer Society Press, Los Alamitos, CA, 1997.
[27] Kuvaja, P., et al, “Software Process Assessment & Improvement- The Bootstrap Approach”, Blackwell, Oxford, U.K., 1994.
[28] ISO [1994], Quality Systems – Model for Quality Assurance in Design/Development, Production, Installation, and Servicing, ISO 9001, Revised Edition

Level 1: Very high risk

	Ad hoc software development process

Level 2: High risk

	The software development process is supported 	by process management policies

Level 3: Moderate risk

	Well defined organization-wide software 	development process

Level 4: Low risk

	Well defined organization-wide software 	development process with quality control	

Level 5: Low risk

	Well defined organization-wide software 		development process with quality control, 		continuous process improvement, defect 	prevention, and technology-process change 	management

Figure 1 CMM Levels and Security risk

Optimized Level

Managed Level

Defined Level

Repeatable Level

Initial Level

Page 1

