

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS & SCIENCES

FORMALLY EVALUATING WIRELESS SECURITY PROTOCOLS

By

ILKAY CUBUKCU

A Thesis submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Master of Science

Degree Awarded:
Spring Semester, 2005

 ii

The members of the Committee approve the Thesis of Ilkay Cubukcu defended
on April 4, 2005.

 Alec Yasinsac

 Professor Directing Thesis

 Ladislav Kohout
 Committee Member

 Robert A. van Engelen
 Committee Member

The Office of Graduate Studies has verified and approved the above named
committee members.

 iii

To my husband Nihat and baby daughter Ilkem.

 iv

ACKNOWLEDGEMENTS

 I wish to express my sincere gratitude to Alec Yasinsac, my advisor, for

his encouragement, guidance during the course of this study. Thank you for

always being there and helping me whenever I needed. My biggest thanks go to

the past and presents members of the security group meets weekly under the

supervision of Dr. Yasinsac. Your ideas, suggestions were always helpful for my

research. It was also fun to have you around, thank you for the friendship. A

special thanks to John Marshall for the valuable discussions especially on

evaluation of the wireless protocols with CPAL-ES.

 I would like to thank to all of my colloquies and friends for their greatest

support and friendship.

 Finally, my greatest thanks go to my dear husband, daughter and family

for their patience and endless support. This work would not be possible without

your help.

 v

TABLE OF CONTENTS

LIST OF TABLES..viii
LIST OF FIGURES... ix
ABSTRACT ... x

1 INTRODUCTION .. 1

2 PROTOCOL ANALYSIS OVERVIEW... 5
2.1 Common Procedures used for Analyzing Protocols .. 5

2.1.1 BAN Logic.. 5
2.1.2 Strand Spaces ... 8
2.1.3 NRL Protocol Analyzer .. 9
2.1.4 The Cryptographic Protocol Language Evaluation System (CPAL-ES) ... 11

3 PROBLEM DESCRIPTION... 19
3.1 The Secure Protocol .. 19

3.1.1 Protocol Description and Design ... 19
3.1.1.1 Definition .. 19
3.1.1.2 Design .. 19
3.1.1.3 Description ... 23
3.1.1.4 Message Format .. 24

3.1.2 Attacks... 29
3.1.2.1 Meadows Attack... 29
3.1.2.2 Boyd & Mathuria Attack.. 33

3.2 IEEE 802.1X Standard... 36
3.2.1 Protocol Description and Design ... 36

3.2.1.1 Definition .. 36
3.2.1.2 Design.. 36

3.2.1.2.1 IEEE 802.11 Network Design and Security Mechanisms............. 37
3.2.1.2.2 IEEE 802.1X Standard and the Robust Security Network (RSN)
Design and Security issues ... 38

3.2.1.3 Description ... 40
3.2.1.4 Message Format .. 42

3.2.1.4.1 EAP Message Format .. 42
3.2.1.4.2 RADIUS Message Format.. 44

3.2.2 Attacks... 51

 vi

3.2.2.1 Man-In-The-Middle (MIM) Attack.. 51
3.2.2.2 Session Hijacking Attack .. 53
3.2.2.3 Denial of Service Attack ... 54
3.2.2.4 Proposed Solutions for Attacks .. 54

3.2.2.4.1 Per-Packet authenticity and integrity.. 54
3.2.2.4.2 Authenticity and integrity of EAPOL messages............................ 55
3.2.2.4.3 Peer-to-peer authentication model ... 55

4 CPAL EVALUATION... 56
4.1 CPAL-ES Evaluation of the Secure Protocol ... 56

4.1.1 CPAL-ES Evaluation of the Meadows Attack on the Secure Protocol 70
4.1.2 CPAL-ES Evaluation of the Boyd & Mathuria Attack on the Secure
Protocol.. 77
4.1.3 CPAL-ES Evaluation of the Solution to the Boyd&Mathuria Attack on the
Secure Protocol ... 82

4.2 CPAL Evaluation of the IEEE 802.1X Protocol .. 85
4.2.1 CPAL Evaluation of the Man In the Middle (MIM) Attack on the IEEE
802.1X Protocol ... 95
4.2.2 CPAL Evaluation of the solution to the Man-in-the-Middle (MIM) Attack on
the IEEE 802.1X Protocol .. 97

5 CONCLUSIONS ... 99

APPENDIX A: CPAL-ES Encoding of the Secure Protocol................................... 101

APPENDIX B: CPAL-ES Evaluation of the Secure Protocol................................. 103

APPENDIX C: CPAL-ES Encoding of Meadows Attack on the Secure Protocol .. 105

APPENDIX D: CPAL-ES Evaluation of Meadows Attack on the Secure Protocol 108

APPENDIX E: CPAL-ES Encoding of Boyd & Mathuria Attack on the Secure
Protocol ... 111

APPENDIX F: CPAL-ES Evaluation of Boyd & Mathuria Attack on the Secure
Protocol ... 114

APPENDIX G: CPAL-ES Encoding of Solution to Boyd & Mathuria Attack on the
Secure Protocol ... 117

APPENDIX H: CPAL-ES Evaluation of Solution to Boyd & Mathuria Attack on the
Secure Protocol ... 119

APPENDIX I: CPAL-ES Encoding of IEEE 802.1X Protocol................................. 121

 vii

APPENDIX J: CPAL-ES Evaluation of IEEE 802.1X Protocol 125

APPENDIX K: CPAL-ES Encoding of MIM (Man-in-the-Middle) Attack on IEEE
802.1X Protocol ... 129

APPENDIX L: CPAL-ES Evaluation of MIM (Man-in-the-Middle) Attack on IEEE
802.1X Protocol ... 133

APPENDIX M: CPAL-ES Encoding of Solution to MIM (Man-in-the-Middle) Attack
on IEEE 802.1X Protocol ... 137

APPENDIX N: CPAL-ES Evaluation of Solution to MIM (Man-in-the-Middle) Attack
on IEEE 802.1X Protocol ... 141

REFERENCES ... 145

BIOGRAPHICAL SCETCH ... 149

 viii

LIST OF TABLES

Table 2.1.1 Symbols of objects in BAN Logic.. 6
Table 2.1.2 An example protocol flow in SN and CPAL notation............................... 14
Table 3.1.1 List of acronyms for the Secure Protocol.. 20
Table 3.1.2 List of acronyms for the Secure Protocol and attacks 30
Table 3.2.1 List of acronyms for the IEEE 802.1X protocol. 49
Table 4.1.1 List of acronyms for the Secure Protocol in CPAL.................................. 58
Table 4.2.1 List of acronyms for the Secure Protocol in CPAL.................................. 88

 ix

LIST OF FIGURES

Figure 3.1.1 Entire Secure Protocol for wireless networks [AZI94]. 21
Figure 3.1.2 Message-1: Mobile-to-Base (Request-to-join message) 25
Figure 3.1.3 Message-2: Base-to-Mobile .. 26
Figure 3.1.4 Message-3: Mobile-to-Base .. 28
Figure 3.1.5 Original Secure Protocol ... 31
Figure 3.1.6 Meadows Attack.. 32
Figure 3.1.7 Boyd & Mathuria Attack... 34
Figure 3.1.8 Solution to Boyd & Mathuria attack ... 35
Figure 3.2.1 The Classic 802.11 state machine. ... 37
Figure 3.2.2 The EEE 802.1X setup.. 39
Figure 3.2.3 The EAP stack. ... 41
Figure 3.2.4 The EAP Packet. ... 42
Figure 3.2.5 The RADIUS Packet.. 45
Figure 3.2.6 The complete IEEE 802.1X protocol. .. 50
Figure 3.2.7 Man-In-The-Middle (MIM) Attack... 52
Figure 3.2.8 Session Hijack Attack.. 53

 x

ABSTRACT

The Cryptographic Protocol Analysis Language Evaluation System (CPAL-ES) is

a tool used to analyze protocols with formal methods. In this thesis, we exercise CPAL-

ES against two security protocols, the Secure Protocol of Aziz & Diffie, and IEEE

802.1X Standard protocol.

Analyzing cryptographic protocols with formal methods assist us not only finding

the flaws but also in understanding them. CPAL-ES is a nice tool to analyze protocols

with formal methods. It has an ability to evaluate not only protocols works in wired

environment but also wireless protocols. Our analysis with CPAL-ES makes it possible

to explore protocol attacks, prove protocol correctness, and analyze protocols in great

detail, as well as test the capabilities of CPAL-ES on the wireless protocols. We discuss

and analyze several protocols, including The Secure Protocol and IEEE 802.1X

Standard protocol, and show how attacks and solutions are simulated on these

protocols with Cryptographic Protocol Analysis Language (CPAL). We also discuss the

analysis of the interactions between the sub-protocols (EAP and RADIUS) in IEEE

802.1X Standard protocol. Our analysis of the attacks on the IEEE 802.1X Standard

protocol proved that even though it is a useful protocol for wireless LANs, it is not

secure. However, the Secure Protocol has strong confidentiality but is computationally

expensive due to the public key infrastructure.

 1

CHAPTER 1

INTRODUCTION

The Internet and computers are very important part of our lives today (in schools,

banks, battlefields, airports, shopping centers etc.). Life as we know today depend on

these and there will be even more use of them in the future. Wireless technology is an

essential part of this technological area.

Wireless mobile technology was invented in Bell Laboratories at the second half

of the 20th century after the discovery of two way radio communication systems

[BZM01]. Wireless technology became even more popular at the beginning of 21st

century. The first generation wireless mobile cellular systems (1G) were introduced in

early 1980’s. They were entirely analog, based on FDM (frequency division multiplex)

technology and used in mostly briefcase size large phones placed in vehicles. At the

end of 1980s, people needed smaller size phones for communicating. Then, came the

second generation cellular industry (2G) such as GSM (Global System for Mobile

communications) and PDC (Personal Digital Cellular) were based on digital technology

in early ‘90s. 2G systems improved voice quality, capacity and coverage and reduced

the cost. At the beginning of the 21st century, the third generation cellular standard (3G)

further increased the system capacity and provides better voice quality, high speed

data, low cost and efficient systems [BZM01]. The fourth generation cellular system

(4G) is intended for better quality, service and low cost in the 21st century and it is

expected to be introduced around 2010. Data transmission rate for 4G systems is

20mbps while it is 200 kbps for 3G systems and 9.6 kbps for 2G systems.

When we think about sharing data and resources between different machines

through the network, security becomes a very important issue. Increasing dependence

on wireless medium makes it critical to have very secure wireless systems. Wireless

networks introduce new possibilities of eavesdropping on communications. The

potential attacks are categorized in terms of functioning as interruption (system is

 2

destroyed, unavailable and unusable), interception (an unauthorized party gains access

to the system), modification (an unauthorized party gains access and change or corrupt

the system), and fabrication (an unauthorized party inserts a bogus object into the

system) [WIN00]. Another categorization is passive attacks and active attacks [WIN00].

Passive attacks involve eavesdropping and monitoring the transmission system while

active attacks involve modifying the data or creating false data. Since passive attacks

don’t change the data, it is very difficult to detect these attacks. Therefore, preventing

these attacks is much easier than detecting whereas the opposite is true for active

attacks. There are two types of passive attack: Release of message content, and traffic

analysis. Active attacks are four types: Masquerade, reply, modification of messages,

and denial of service. There are many problems inherent in the wireless medium. Any

attacker that has a proper wireless receiver can easily eavesdrop on the system and it

can be virtually undetectable. We need secure wireless communication protocols in

order to prevent attacks [AZI94].

There has been a lot of work done on finding the security flaws and solutions,

and new secure techniques in order to maintain reliable and secure communications

[ABA99, ARB01, AZI94, BOR01, BOY98, COR02, DON98, FAB98, KEL98, LOV96,

MAR03, MEA96, MIS02, SCH96a, SON01, STU01, WIN98, YAS96, YAS00a, YAS00b,

and others]. Nonetheless, there is no perfect security with the existing network

architecture for wireless networks.

Security protocols are important in providing security. They play an important role

for protecting the electronic information shared between parties. Basically, they are the

algorithms used for secure communications between different principals. An

eavesdropper can get the important information anytime if the system is not secure

enough. When principal A wants to communicate securely with principal B, there should

be a secure channel between these parties in order to share the data. The channel

should be well protected from attackers. Even though the protocols are secured

themselves when they execute individually, they may be vulnerable to attacks when

interacted with other simultaneously executing protocols [KEL98].

Application of cryptography is essential for secure communications. It is defined

in the Handbook of Applied Cryptography by A. Menezes Et al. [MOV96] as “The study

 3

of mathematical techniques related to aspects of information security such as

confidentiality, data integrity, entity authentication, and data origin authentication”. They

also mentioned that it is not only providing information security but also set of

techniques [MOV96]. The definition of cryptographic protocol stated in this book as “a

distributed algorithm defined by a sequence of steps precisely specifying the actions

required of two or more entities to achieve a specific security objective” [MOV96].

Security is achieved by using cryptographic tools such as public and private key

cryptography, symmetric key cryptography, certificates, signatures, hashing, key

agreement and some others. These tools are used to achieve the security goals of

authentication, confidentiality and integrity. Addition to these, nonrepudiation prevents

the sender or the receiver from denying a message that is transmitted between the

sender and the receiver, access control limits and controls access to the systems, and

availability prevents system against to attacks due to the loss of availability or reduction

[WIN00]. Authentication assures that the communication is authentic means that both

entities are authentic and the connection is not imperceptible by a third party.

Confidentiality is concerned with protection of the transmitted data by providing the

privacy and secrecy on the message content. The goal is preventing the interception

type of attacks against the system. Integrity deals with the modification of the

transmitted message. It assures that there is no duplication, insertion, modification,

reordering or replays. The system is protected against modification or active attacks.

The method of integrity prevention can be using message digest (MD) functions or

hashing. For more information on MD or Hash functions see [WIN00]. We have some

examples of these in the following sections.

Formal methods are used for modeling and verifying security protocols [PAU97].

Formal methods are tools used for protocol design, verification and then specifications

use mathematically designed and well formed logical statements. Each formal method

uses different modeling and proving techniques (see Chapter 2). Formal methods have

been used by many researchers to investigate the known and unknown attacks and

provide the solutions to these attacks for secure communications [ABA99, BUR90,

BUT99, CHI01, GAA90, KEM89, LOW96, MAR03, MEA95, MEA96, MEA99, MEA00,

MEA03, RUB93, SCH96a, SCH96b, WIN98, WOO93, YAS96, YAS99, and others].

 4

Some of them [BUR90, LOW96, MEA96, SCH96b and others] used Needham-

Schroeder public-key protocol as test case since it is one of the earliest protocol that

has been found, well known and simple. These techniques have been used for the

security analysis of both the wired and wireless communication protocols.

In the following section, we have provided some common techniques that have

been used to analyze cryptographic protocols. Later, the definition, description, design

and message format of both the Secure Protocol [AZI94] and IEEE 802.1X Protocol

[MIS02] are discussed in Chapter 3. In Chapter 4, we have presented the CPAL-ES

protocol evaluation system and using CPAL-ES analyzed the Secure Protocol and IEEE

802.1X Protocol. Finally, the results are discussed in the last chapter.

 5

CHAPTER 2

PROTOCOL ANALYSIS OVERVIEW

2.1 Common Procedures used for Analyzing Protocols

Different techniques have been developed to verify security protocols such as

[BUR90], [DON99], [FAB98], [LOW96], [LOW98], [MEA99], [SON01], [YAS96] and

many others. Most of these verification procedures use formal methods and they are

automated for fast and easy verification on complex protocols. We have chosen the

CPAL-ES to evaluate the selected protocols. CPAL-ES and some other methods are

discussed below.

2.1.1 BAN Logic

BAN Logic, logic of beliefs, is developed by Burrows, Abadi and Needham

[BUR90] in 1989 and published the revised version in 1990. As stated by Meadows

[MEA95], BAN Logic is the well known, most influential of the modal logics developed

for cryptographic analysis of protocols such as Rangan’s logic of trust [RAN88], Moser’s

logic of knowledge and belief [MOS89], Bieber’s logic of communication (CKT5)

[BIE90], Syverson’s logic of cryptographic protocols (KPL) [SYV90], and Yahalom, Klein

and Beth’s logic of trust [YAH93].

With BAN Logic, logical rules are used to analyze protocols by transforming the

protocols into a special form using its own formal notation. BAN Logic is designed for

analyzing protocols by using the predicates to express the assumptions and the final

beliefs for the authentication. Beliefs of the protocols are checked with assumptions to

see whether the goals are reached. BAN Logic supports most of the central concepts in

the protocol, but not all the authentication methods [BUR90].

 6

BAN Logic is built on many-sorted-model logic. Each message is transformed

into a logical formula through idealization, in order to have more useful notation than

conventional methods, which describes the protocols and protocol actions symbolically.

Each idealized protocol is annotated with an assertion which describes believes of the

principals at the point where assertion is inserted in the protocol [BUR90].

Logical formulas, called statements, identify the messages. The encryption keys

are the objects of BAN logic. Typically, the objects are denoted and range over as the

following symbols shown in Table 2.1.1 [BUR90]:

Table 2.1.1 Symbols of objects in BAN Logic.

A, B, and S denote specific principles
Kab, Kas, Kbs denote specific shared keys
Ka, Kb, Ks denote specific public keys
Ka^(-1), Kb^(-1) and Ks^(-1) denote corresponding secret key
Na, Nb, Nc denote specific statements
P, Q, and R range over principles
K ranges over encryption keys
X, Y range over statements

Conjunction is denoted by a comma and it is the only propositional connective

used in BAN Logic. In addition to conjunction, the constructs such as P believes X, P
sees X, P once said X are used to analyze the protocol step by step. These are the

predicates of BAN Logic. More of these and their notations are explained in great detail

in [BUR90].

BAN Logic uses inference rules to deduce the properties of protocol and make

annotations to find the final belief of the protocol. Idealized protocols are annotated with

 7

formulas and these formulas are manipulated with postulates. Annotation for a protocol

is the sequence of assertions that are inserted before the first statement and after the

each statement. The first assertion is the assumptions, and the last assertion is the

conclusion.

The Ban Logic inference rules are jurisdiction rule, message meaning rule and

nonce-verification rule. For more rules and details refer to [BUR90].

There are four steps to analyze the protocols with BAN Logic:

• Deriving the idealized protocol from the original protocol,

• Expressing the assumptions about the initial state as statements,

• Transforming the statements into logical formulas by attaching the

formulas to the statements as assertions about the state of the system

• Applying the inference rules called postulates to assumptions and the

assertions to find beliefs.

These steps repeated when new assumptions are discovered and until there is

no idealized protocol derived.

Authentication of the protocols with the BAN Logic divided into two time epochs,

the past and the present where the presents begins at the start of the particular run of

the protocol consideration. All messages sent before the present are considered to be in

the past. Burrows et al. states that “all the beliefs held in the present are stable for the

entirety of the protocol run... However, beliefs held in the past are not necessarily

carried forward into the present” [BUR90]. This approach is changed by Gaarder et al.

as a formula generated earlier in the past could be still fresh. They extend the freshness

to the past by using durationstamps that could be verified by using the shared time

system. [GAA90]. Another addition by Gaarder Et al. is that BAN Logic is not restricted

to Symmetric Key Crypto System and could be extended to use for Public Key Crypto

System. Therefore, they have added new constructs such as “U possesses good public

 8

key K”, “U possesses some good private key…”, and “The formula X is signed with the
private key...” [GAA90].

Gong et al. (GNY Logic) is another approach that expands the BAN Logic idea by

adding new logical operators such as not-originated-here, reconcilability, the difference

between believing and possessing to run the protocol more precisely.

In addition to these, more problems have been discovered with BAN logic that a

few flaws had been discovered such as by Boyd Et al. They have suggested some

limitations to BAN Logic [BOY93].

2.1.2 Strand Spaces

F. J. T. Fabrega and J. C. Herzog have proposed a protocol analyzing technique

called strand spaces to prove correctness of the protocols. It is a simple model and

produces reliable proofs of protocol correctness. The machinery of strand spaces model

is described in detail in F. J. T. Fabrega Et al. [FAB98]. They have applied this

technique to prove the correctness of Needham-Schroeder-Lowe protocol by having

detailed view of secrecy protection of exchanged values, achieving authentication and

finding the reasons of flaws. It uses partial order technique and induction-like proof

method.

In the strand spaces machinery, a strand represents a sequence of events where

it is the sequence of actions done by a penetrator (such as send and receive operations

of a penetrator) or the execution of legitimate party has a role in a secure protocol (such

as send and receive actions of a party in a particular run of a protocol or specific values

of data items such as keys and nonces). A strand space is a collection of strands for a

legitimate party along with penetrator strands. A bundle is a collection of number of

strands where a strand sends the message with another strand that receives the same

message. In other words, it is a portion of a strand space where it represents a full

exchange of protocol. Each bundle consist of a strand for each legitimate participating

party that all must agree on the participants, session keys and nonce. Penetrator

strands could participate in a bundle too [FAB98].

 9

In this model, all these actions are represented with a graph structure. The

connections between the strands of different kinds represent protocol correctness. The

possible messages exchanged among the principals represents the elements of the set

A are called terms. A positive sign represents sending a term and negative sign

represents receiving a term. A strand space is represented as a set with trace mapping

where the traces may be originated either from the different principals or the same

principals. Therefore the mapping does not need to be injective. A node is represented

as a pair of an element of set of strand spaces (a unique strand) and the length of the

set. The set of nodes becomes an ordered graph where each edge represents a

connection from a node to another node. A bundle is represented as a finite subgraph of

the graph where the edges represent the casual dependencies of the nodes. The graph

structure of strand spaces discussed in great detail in F. J. T. Fabrega Et al. [FAB98].

Some of the advantages of strand spaces approach as mentioned in F. J. T.

Fabrega Et al. [FAB98] are as follows: Strand Spaces offer a few different notions of

proof of protocol correctness by using the authentication and secrecy proving methods.

Second, it gives the assumptions and the reasons of protocol correctness in great

detail. Another advantage is that it has a clear semantics for the assumptions and data

items like nonce and session keys are fresh, unique for each protocol run that is very

important for the security of the protocol. Finally Strand Spaces works with an explicit

model for possible behaviors of a system penetrator. This is important for generating

theorems on the abilities of penetrator.

2.1.3 NRL Protocol Analyzer

A special tool of protocol analyzing with formal methods, NRL Protocol Analyzer,

is designed for cryptographic protocol verification by C. Meadows [MEA99]. It was used

to analyze Internet Key Exchange (IKE) protocol which is developed to provide security

support for Internet protocols by IP Security Protocol (IPSEC) Working Group of the

Internet Engineering Task Force (IETF).

In the NRL Protocol Analyzer Model, protocols are represented as

communicating state machines where each single state machine represents a

 10

participant. An intruder can read, modify or delete the traffic, take a role in cryptographic

operations, or communicate with legitimate users. A round represents a local execution

where a local execution is a role such as responder or initiator, respect to a party or

particular local execution of the protocol. Each round is represented with a round

number. In order to make a decision on whether or not the protocol is secure, the user

of the Analyzer specifies an insecure state and works backwards from that state until it

finds a search space. Therefore each produced path begins with an initial or

unreachable state. In order to limit the search space, the State Unifier tool is used to

store the data that is proved by an Analyzer as unreachable or reachable under certain

conditions. Unreachable states determined and proved by an Analyzer are discarded. If

the state is proved as reachable under certain conditions it will try to prove that the

conditions can hold [MEA99].

As defined by C. Meadows [MEA99], narrowing is a process that Analyzer

determines whether or not a protocol rule could be used to identify an insecure state.

The narrowing algorithm is used to find all the substitutions to the variables used in the

execution. Terms in the rule output are reducible to the terms in the state description

where a term is an expression made from variables, symbols for functions and

constants, and used in the protocol specifications. Terms are assumed to obey a set of

rewrite rules (for example, the result of decrypting and encrypted term under the same

key reduces to the original term). Terms in the state description are assumed to be

irreducible which means that there are no further rewrite rules apply. However, terms

used as output of rules may not be reducible.

There is no assumption made by analyzer about the limits on the number of

executions such that the number of principals participates in different executions, the

number of protocol executions, and number of interleaved executions or the number of

cryptographic functions used in the executions. Therefore, the search space is originally

infinite. On the other hand, Analyzer specifies and proves inductive lemmas by using

formal methods on the unreachability of infinite state classes. With this result, the user

can narrow the search space. The user provides a seed term to the Analyzer and

Analyzer uses it to generate a formal language to prove it. If an intruder determines the

 11

language then it is possible that it can get the data. Therefore, it is important to prove

that an intruder never learn a term in the language.

If the protocols are using shared or public key encryption, the seed terms will be

master keys, encrypted and decrypted data and terms, concatenation of two terms, and

signed data where none of this information is known by an intruder.

C. Meadows has applied the Analyzer Model to a few different cryptographic

protocols and found flaws in some of them. More information o these flaws, solutions to

the flaws and more details of Analyzer model can be found in [MEA99].

2.1.4 The Cryptographic Protocol Language Evaluation System (CPAL-ES)

CPAL-ES is developed for analyzing cryptographic protocols with formal methods

by A. F. Yasinsac in 1996 [YAS96]. It is based on the Weakest Precondition (WP)

reasoning which is extension of Hoare logic [DIJ76]. Hoare Logic was knowledge of

postconditions to tell us how to find the preconditions where when the program segment

is executed with those initial preconditions then that certain postcondition will hold after

the execution. This is defined with the following notation:

 P {S} Q,

Where P is precondition, S state and Q is the postcondition. We can explain this with

the following example:

 (y ==5) {y := 2x+1} (x == 2)

In this example, in the case of the execution of the statement “y=2x+1”, in order

the postcondition (y==5) to be true after the execution, the precondition x==2 must hold

before the statement is executed.

 12

The extension of Hoare’s precondition and postcondition system is described as

weakest precondition for a program segment by Dijkstra [DIJ76]. The relation between

the weakest precondition Q [DIJ76] for segment S and postcondition R are defined as:

 Q = wp(S, R)

Dijkstra defines the predicate as a rule which informs the designer about how to derive

the corresponding weakest precondition for any postcondition R and an initial state

[DIJ76].

CPAL statements and segments are represented with predicates by using the

weakest precondition mechanism. The weakest precondition definitions of CPAL

statements are given in [YAS96]. For instance, the weakest precondition definition of

CPAL catenation statements is:

wp(S1; S2, P) = wp(S1, wp(S2, P))

Where S1 and S2 are the statements and P is the postcondition. In order for predicate P

to be TRUE after “S1; S2” is executed, the weakest precondition of S2 for P must be

TRUE after execution of S1 for P [YAS96].

As stated by Yasinsac, if a predicate is described that all the states enables the

program segment to the desired result then the preconditions considered to be

“weakest” and the weakest precondition of a segment is Verification Condition (VC) for

that segment. In order to prove that the segment meets its goals by using WP, CPAL

evaluation starts from reverse and the value TRUE is the initial VC. The goal of the

segment is the last statement in the protocol [YAS96].

Weakest precondition is used to find the preconditions to guarantee the

correctness of protocol being analyzed with CPAL-ES. This precondition is called

Verification Condition (VC). It is returned by CPAL-ES evaluation of protocols and plays

 13

an important role during the evaluation process. The three steps of CPAL-ES evaluation

process are:

 1- Encoding the protocols in CPAL,

 2- Translating specifications into VC,

 3- Proving the VC.

A TRUE result of VC guarantees protocol success while FALSE result of VC means

protocol failure. CPAL is automated except, the first step [YAS99].

CPAL-ES uses a language, called the Cryptographic Protocol Analysis Language

(CPAL), to express the protocol actions. Very complex protocols could be specified in

CPAL and it allows automated analysis of coded protocols with formal methods. CPAL

is based on the de facto standard notation (SN) which is used for cryptographic protocol

specification [YAS96], [YAS99]. SN represents all the pseudo codes used to describe

cryptographic protocols evaluated in CPAL-ES. The most important actions in CPAL-ES

are send and receive operations. The send operation is represented with the symbol ->

in SN while there is no symbol for the receiving since the matching receive operation is

assumed within the send operation. On the other hand, the receive operation is as

important as the send operation in CPAL and the symbol <- represents the receive
operation in CPAL. There are two send operations: Secure send is represented with the

symbol => and insecure send represented as ->. Secure send is used for the reliable

transmissions through a secure channel. In case the transmission goes through an

intruder, insecure send is used. In the following example, sending an encrypted

message (msg) under key k through a secure channel from principle A to B is shown

both in SN and CPAL:

 14

Table 2.1.2 An example protocol flow in SN and CPAL notation

Only the send and encrypt operations are explicit while receive, decryption and name

binding operations are implicit in SN. All operations (send, receive, encryption,

decryption, and name binding) are explicit in CPAL [YAS96].

With SN, a global address space is used to store the data. Therefore it is often

not easy to find the origin of data in a protocol. Conversely, specific address spaces are

used in CPAL. Address spaces are identified with a dot notation. For example, A.kab

denotes the key kab is in A’s address space. CPAL uses a queue structure to store the

data during the send and receive operations. As we can see from the table above, when

the sender, A, sends the message to the receiver, B, the message from A’s address

space is placed in B’s queue. This means the message is available for B to receive.

Then the message is extracted from the front of B’s queue to the B’s address space

with the receive statement. In the case of an intruder, CPAL uses an insecure send

which does not assign the message to the receiver B’s queue instead assigns it to the

intruder’s queue. Therefore, there are at least four steps to send the message from

principal A’s address space to principal B’s address space: First the message is sent

with a send operation from originator principal A’s address space to the intruder I’s

queue. Then intruder places the message into its address space by executing a receive

operation. In the next step, I may replace the message from its address space to the

receiver B’s queue by executing an insure send operation. Lastly, the receiver B can

receive the message form B’s queue to the B’s address space by executing a receive

operation.

Protocol specification on CPAL is a sequence of actions where an action may

contain more than one CPAL statement. The statement separator, semicolon, is used

B: msg : = d[msg’]k;

B: <- (msg’);

 A: => B (e[msg]k];

CPAL (secure)

 A: -> B {msg}k
SN

I: <- (msg’);

 A: -> B (e[msg]k];
CPAL (insecure)

B: msg : = d[msg’]k;

I:-> B(msg’);

 15

between two statements. If there is more than one statement, curly braces ({}) is used.

Concatenated values are enclosed in angle brackets (<>) and each value separated by

a comma. Encrypted values are inserted in square brackets ([]) prefixed with an “e” and

suffixed by the key. Decryption is presented the same way except that is prefixed by “d”.

Another feature used with CPAL-ES is functions. Functions are mostly used for security

reasons with the cryptographic protocols such as HASH, XOR, and MD functions. We

can summarize all these with the following example:

 A: Y := MD(RN1, RN2)

 A: X := <Y, e[a1,a2]kab>;

 A: -> B (X);

 I: <- (msg);

 I: = > B (msg);

 B: <-(msg);

 B: (Y, CTfor_a1a2) := msg

 B: X := d[CTfor_a1a2]kab;

In this example, first, the principal A composes the MD function on random

numbers RN1 and RN2, and assigns it to the value Y. Next, A composes the identifier X

by assigning it for the concatenated values, Y and encrypted values a1 and a2 under

the shared key kab, and then sends it to principal B through an insecure channel. An

intruder I, who is a passive intruder listening the traffic, intercepts the message (msg)

and forwards it to principal B. Upon receipt of the message (msg), first B separates the

concatenated values by a reverse operation and decrypts the encrypted value,

CTfor_a1a2, under the key kab. Then assigns the result of decryption to an identifier X

and stores it in its address space.

CPAL-ES uses ASSUME and ASSERT statements as predicates. ASSUME

statement is used to specify assumptions to establish the goals for the truth. In other

 16

words, it gives the truths which could be removed from the predicate. It enables the

analyzer to modify the predicate being defined through logical analysis and replaces the

truths needed to be removed with the boolean value TRUE. ASSERT statement is used

to specify protocol goals needs to be proven with the verification techniques. It adds

conjunctive condition to the predicate and states the postconditions in terms of weakest

precondition. With ASSERT statements, intended goals are inserted in the appropriate

places in the protocol. The goal of the protocol stated in an ASSERT statement should

be the last statement in a protocol because any statement other than ASSERT does not

have any affect on the initial predicate.

Another statement that is identical to the ASSERT statement is GASSERT

(global assert) statement. With the usage of GASSERT, each identifier includes the

acting ID suffix and the values are compared across the address spaces. Basically,

GASSERT allows comparison of data element within the different principal’s address

spaces while ASSERT is used to compare data elements within a single principal’s

address space [YAS96].

Assumptions, assertions and all the actions are used by CPAL-ES form the

preconditions. If the given protocol executes correctly, then the final VC takes the logical

predicate and simplifies to TRUE as seen on the following example [YAS96]:

 X: assume (A.kab == B.kab);

 A: Y := MD(a1);

 A: X := <Y, e[a1]kab>;

 A: => B (X);

 B: <- (msg);

 B: (Y,CTfor_a1) := msg;

 B: X := d[CTfor_a1]kab;

 B: Z := MD(X);

 B: assert(Y == Z);

 17

 B: gassert (A.a1 == B.X);

 *** End of Protocol ***

 TRUE

 ****** Simplified predicate follows.

 TRUE

In this example, it is assumed that the principal A and B share the same key, kab. The

ASSERT and GASSERT statements are used to compare the values sent from the

principal A to B to see whether there is an attacker who changed one of these values.

With the ASSUME statement at the beginning of the protocol, the final VC simplifies to

TRUE.

The syntax of the ASSUME statement used in a public key encryption is different

since the decrypting a value with the same encryption key does not work with the public

key encryption. In order to invert the public key encryption, decryption function should

use a key that is inverse of encryption key which decrypts the encryption (public and

private keys are inverse of each other). The following predicate example shows the

syntax of assumption with public key encryption:

 X: assume(global.decrypt(k1,k2));

With this assumption, it is assumed that the relation between the keys k1 and k2 is

“public key decryption under k2 inverts encryption under k1” [YAS99]. The order is

important. This assumption reduces the following predicate to TRUE:

 A: (dp[ep[A.X]k1]k2) == A.X;

As seen on the predicate above, “ep” represents the public key encryption and “dp”

represents the public key decryption.

 18

ASSUME and ASSERT statements don’t have any action in the protocol run and

on any address space but allows the principals to encode assumptions and goals for the

protocol directly into the specifications increases SN’s functionality. Further details of

syntax and semantics of CPAL-ES can be found in [YAS96], [YAS99].

 19

CHAPTER 3

PROBLEM DESCRIPTION

3.1 The Secure Protocol

3.1.1 Protocol Description and Design

3.1.1.1 Definition

The secure communication protocol is designed by Aziz & Diffie to prevent

unauthorized access to the wireless communication systems. It provides both the

privacy for wireless data communication and the authenticity for communicating

principals [AZI94].

The method used to determine the Secure Protocol by Aziz & Diffie is BAN Logic

developed by Burrows, Abadi and Needham [BUR90]. It is based on the use of modal

logics of knowledge and belief that similar to the one that has been developed for the

evolution of knowledge and belief analysis in distributed systems. In such a system,

there will be a logic which contains many statements about belief and knowledge of

messages and inference rules in order to derive believes from believes or knowledge

that comes from other believes or knowledge or visa versa [SYV90]. BAN logic consists

of statements regarding to the messages sent and received between the stations of the

protocol. The detailed information about BAN Logic is discussed in chapter 2.

3.1.1.2 Design

 20

In order to achieve privacy and authentication for a secure wireless link, public

and shared key cryptographic techniques are used. To achieve privacy, shared-key

cryptography is used and public key is used for authentication and session key setup. A

public and private key pair is generated by each participant in the protocol where the

private key is kept by the owner participant of the key pair securely and the public key is

submitted to a trusted third party called certification authority (CA) over an authenticated

channel. Then the CA will issue a certificate to the participant who is acting on behalf of

the machine whose public key is being certified. CA creates the certificate for each

participant by digitally signing the public key and the machine name pairs of each

machine with CA’s private key. The base and the mobile stations will be able to

communicate in a secure protocol by having a secure backup of the private keys and

obtaining a certificate for each machine [AZI94].

Table 3.1.1 shows the list of acronyms used to define the protocol:

Table 3.1.1 List of acronyms for the Secure Protocol

 the resulting signed message {Y, Sig(X,Y)}
 Signature of Y with key X

 E(X,MD(Y))

 Encryption of Y under key X

 Message Digest function value on contents X
Certificate of Base station

Certificate of Mobile

Private key of CA

Public key of certification authority

Private key of base

Private key of mobile

Public key of base

Public key of mobile host

Signed(X,Y)
Sig(X,Y)
Sig(X,Y)
E(X,Y)
MD(X)
Cert_Base
Cert_Mobile
Priv_CA
Pub_CA
Priv_Base
Priv_Mobile
Pub_Base
Pub_Mobile

 21

This protocol is a challenge-response protocol engagement where two parties

negotiates shared key algorithm by exchanging certificates. It also provides the good

forward secrecy which means that in order to be compromised the communication

between the mobile station and the base station, both the mobile station and base

station’s private keys need to be compromised. Having the private components of the

public-private key pair of either the mobile station or the base station does not

necessarily mean that compromising the wireless link data which has been exchanged

by the machine whose private key is compromised [AZI94].

The entire protocol is summarized in Figure 3.1.1 as defined in [AZI94].

Figure 3.1.1 Entire Secure Protocol for wireless networks [AZI94].

Mobile Certificate
Challenge to base
List of SKCS

Base Certificate

Random #1

Chosen SKCS
Challenge to base
List of SKCS

Base signature

Random #2

Random #1

Mobile Signature

Public Key of Mobile Challenge to Mobile

Base Challenge Response

Public Key of Base

Mobile Challenge Response

1

2

3

MOBILE BASE

 22

As seen on the Figure 3.1.1, encrypted parts are shown in bold. They are

encrypted under either public key for protecting the session key components or private

key for digital signature purposes. The parts shown in italic in the figure are not the part

of the message itself, but part of the signature block. The signature in message #2 has

very important role in the protocol. One of its purposes is to authenticate message #2 in

order to protect it against attacks. Another purpose is to authenticate message #1 along

with the List of SKSCs to protect the list from interposing of other lists of attackers.

Finally, it serves as a challenge response to the message #1. In this case the use of

public key cryptosystem will be minimized and the protocol will be able to run on a

limited computational resource. On the other hand it is a strong security guaranteed

system.

Protocol efficiency is an important parameter for protocol analysis. The private

key operations are usually the computationally expensive portions of the public key

crypto systems such as RSA. Therefore we can count the total number of key

operations in the protocol to rank the protocol efficiency. These systems usually pick the

keys as to minimize the signature verification and public key encryption processes. The

Secure Protocol minimizes the use of public key cryptosystem hence it can be run on

the systems that have limited computational resources with strong security [AZI94].

In the Secure Protocol, there are a number of private key operations. Both the

base and mobile stations have two different private key operations. Mobile station’s first

private key operation is decryption of RN1 and the second is signing message #3. Base

station’s first operation is signing message #2 and the second is decrypting RN2 comes

with message #3. Hence the total numbers of computationally expensive private key

operations of the Secure Protocol are four.

There is no achievement of perfect forward secrecy. Using the combination of

Diffie-Hellman key agreement protocol with digital signatures in order to achieve the

authenticity, the perfect forward secrecy could be obtained [DIF92]. In this case there

would be three computationally expensive operations for each side giving a total of six

computationally expensive operations (that is two more operations than what the

Secure Protocol does with good forward secrecy). Hence, having good forward secrecy

in this protocol is less expensive than having perfect secrecy.

 23

Verifying the authenticity of each side is essential. After this phase, both mobile

station and base station may apply a set of access rules before entering the data

transfer phase. Access control lists (ACLs), which determine all authorized parties,

furnish the access control. Authorization of the parties that are somehow involved in the

protocol is important in order to be able to provide authenticity and privacy guarantees

which are the two main purpose of the protocol. Another important issue of this protocol

is the key exchange. In order to achieve the key exchange, there will be two different

keys (one for each direction) used for data transfer. In this case keystream reuse will be

prevented.

3.1.1.3 Description

At the beginning of the communication, the mobile station that is trying to connect

to the wired network sends the base station it’s host certificate (Cert_Mobile), the
chosen challenge value (CH1), and the list of supported shared-key algorithms which

allow negotiation of the shared-key algorithms with the base station.

CH1 is a randomly chosen 128-bit value. After negotiation of a shared-key
algorithm chosen from the list of shared key algorithms that includes both the algorithm

identifier and the key size is sent by the mobile station, the chosen shared-key algorithm

is used for encrypting the consequent data packets. The host certificate contains a

packet of information which consists of the attributes defined in the following order

[AZI94]:

{Serial Number, Validity Period, Machine Name, Machine Public Key, Certificate
Authority Name}

Here the serial number is a unique identifier for each certificate generated by a

CA. Validity period field is used to indicate the start and end of the time period that the

certificate intended to be used. A certificate carries a pair of time and date indications.

 24

The certificate format is the same as described in CCITT X.509 [CCITT88] and

PEM (Privacy Enhanced Mail) [KEN93, KAL93]. The certificates for the base station and

the mobile station who was trying to connect to the network are generated by CA (the

Certification Authority). CA is defined as “an authority trusted by one or more users to

create and assign certificates” in CCITT X.509. As stated in PEM, the private

component of CA affords a high level of security, otherwise the certificates signed by

CA is voided. CA creates the certificate by signing the certificate contents with CA’s

private key as follows [AZI94]:

Certificate = Signed (Private-key of CA, Certificate Contents)

 = {Certificate Contents, Sig(Private-key of CA, Certificate Contents)}

Where,

Sig(Private-key of CA, Certificate Contents) = E(Private-key of CA,
MD(Certificate Contents))

The Message Digest (MD) function is a noninvertible hash function computed on

certificate contents. In order to authenticate the certificate contents, a trusted third party

CA digitally signs MD by encrypting it with CA’s private key.

3.1.1.4 Message Format

Message 1: Mobile Base (Request-to-join message)

In the first message there are three parameters. The first parameter is the

certificate for mobile station which was created by the third party CA. Second parameter

is CH1 which is a randomly generated 128 bit challenge number. The third parameter,

the list of shared-key algorithms, allows negotiation of the shared-key algorithms with

the base station and includes both key size and algorithm identifier.

 25

Figure 3.1.2 Message-1: Mobile-to-Base (Request-to-join message)

This first message is not signed in order to be able to enclose the list of shared

key algorithms SKCSs for the signature verification by the mobile station upon receipt of

the second message.

When base station receives this first message, the first step it will do is to verify

the signature on Cert_Mobile. If it verifies that the public key in the certificate is the

certified mobile host’s public key, then it will make a decision as it is a valid signature

otherwise it is an invalid signature. After the valid signature verification, the base station

does not know whether certificate belongs to the mobile station that it submitted. It only

knows that the signature belongs to a certified mobile host.

Upon receipt of the first message and signature verification, the base station

rejects the connection if the signature is invalid. If it is a valid signature, then base

station will create a reply message for the mobile station. In the reply message, the

base station will include its certificate which is generated by third party CA, RN1 which

is a random number and encrypted with the public key of mobile station and the chosen
SKCS which is a shared key cryptosystem that is chosen by the base station among the

list sent from mobile station. RN1 is saved internally by the base station for later use.

Base station will chose one SKCS which seems to be the most secure from the

intersection of the two sets of shared-key algorithms that one comes from the mobile

station and another one the base station supports. They also agree on the key size by

Cert_Mobile, CH1, List of SKCSs

 26

negotiating downwards to the minimum of the mobile station’s suggestion and the value

that base station can support for the algorithm it chooses. In order to add the challenge

value CH1 and the list of SKCSs to the message, base station computes the message

signature by signing encrypted RN1, chosen SKCS, CH1 and list of SKCSs under the

private key of base station.

Message 2: Base Mobile

Figure 3.1.3 Message-2: Base-to-Mobile

The second message is sent from base station to mobile station as a reply to

mobile station’s request. This message consists of four parameters. The first parameter

is Cert_Base, the certificate for base station generated by a trusted third party CA. The

second parameter is the encrypted RN1 (random number) value which is encrypted

under mobile station’s public key. The next parameter is the chosen SKCS which was

chosen by base station among the list of algorithms. It identifies both the associated key

size and the chosen algorithm. Finally, the signature signed by base station under

Cert_Base, E(Pub_Mobile, RN1), Chosen SKCS,
Sig(Priv_Base, {E(Pub_Mobile, RN1), Chosen
SKCS, CH1, List of SKCSs})

 27

private key of base station is appended to them. The signature contains the encrypted

random number RN1, the chosen shared key algorithm SKCS, challenge value CH1

and the list of shared key algorithms SKCSs sent from mobile station to base station in

the first message.

When mobile station receives this message, first it will check for the validation of

the Cert_Base by verifying the signature on Cert_Base. If it is a valid signature, which

means that the public key in the certificate belongs to a certified host, then the

certificate will be considered valid. In this case mobile station will verify the certificate on

the message under Pub_Base (public key of the base station).

The signature appended to the message is different than the normal message

signing because it includes a component which is not part of the message body but

inherent in the protocol. The mobile station verifies the signature under the public key of

base station (Pub_Base) by taking the message comes from base station and

appending to this message the challenge value CH1 and the list of shared key

algorithms SKCSs which was originally sent from mobile station to base station in the

first message. Because the list of shared key algorithms are not signed, a listening

attacker can eavesdrop and weaken the list of shared key algorithms by blocking the

original message sent from mobile station to base station and interposing its own list of

shared key algorithms. Mobile station can detect this kind of attack after it receives the

second message and do the signature verification. If the signature matches, mobile

station will consider that base station is a valid host. If it doesn’t match, than the mobile

station will suspect that the original message is tempered with and will reject the

connection because the base station is an intruder and not a valid host.

Upon receipt of the second message, mobile station will decrypt the encrypted

part under mobile station’s private key (Priv_Mobile) and acquire the RN1 value which is

going to be used in order to calculate the session key. Another random number RN2 will

be generated by mobile station to compute the session key as (RN1⊕RN2). After

generating RN2, mobile station will encrypt RN2 under public key of base station

(Pub_Base). Then it will send this encrypted value to base station in the third message

along with the encrypted first random number RN1 which came in the second message

and obtained by mobile station. After the encryption of random numbers, mobile station

 28

will compute the signature by authenticating the encrypted random numbers under

private key of mobile (Priv_Mobile) and send this in the third message to base station.

Message 3: Mobile Base

Figure 3.1.4 Message-3: Mobile-to-Base

The third message is sent from mobile station to base station as a response to

second message. When base station receives this message, it can obtain second

random number RN2 by decrypting the encryption under private key of base station

(Priv_Base). Then it can compute the session key as (RN1⊕RN2).

It is possible that the private keys of one of mobile station can be compromised.

In this case an intruder can decrypt the encryption and get the random number. To limit

the danger of this kind of attack, two random numbers are used. In this case the

attacker has to get both base station’s and mobile station’s private keys in order to get

both of the random numbers RN1 and RN2 and session key so that it can precede the

communication traffic between mobile station and base station. Therefore getting only

E(Pub_Base,RN2), Sig{Priv_Mobile,
{E(Pub Base, RN2), E(Pub Mobile, RN1)}}

 29

one of the random numbers either RN1 or RN2, attacker gets nothing since both a part

of the session key (RN1⊕RN2) are absolutely random. On the other hand, if an

attacker gets RN1 and the session key (RN1⊕RN2) it can generate RN2 or if it can get

RN2 and the session key (RN1⊕RN2) it can generate RN1.

After obtaining the random number, base station will do the signature verification.

Because base station received mobile station’s certificate Cert_Mobile in the first

message and Cert_Mobile contains the public key of Mobile host Pub_Mobile, it can

verify the signature under Pub_Mobile. If base station can verify the signature, then

mobile station is deemed valid, otherwise it is not a valid host and there may be an

attack. In this case, base station will abort the connection.

Valid signature verification and successful acquirement of random number mean

the connection occurs successfully. In this case mutual authentication occurs and

session key is computed.

3.1.2 Attacks

The Secure Protocol of Aziz & Diffie is vulnerable to attacks. It was critically

examined by Meadows and Boyd & Mathuria They identified possible attacks in their

papers and suggested the necessary modifications in order to prevent the attacks

[MEA95 & BOY98]. Two possible attacks, one proposed by Meadows in 1995 and

another one by Boyd and Mathuria in 1998, are discussed in great detail below.

3.1.2.1 Meadows Attack

Meadows attack has been proposed by Catherine Meadows who is one of the

important people in the area of cryptographic protocol verification with formal methods.

In her publication [MEA95], she gave a survey of formal methods application to analysis

of cryptographic protocols. Aziz & Diffie protocol is one of the examples she used in

order to explain the different approaches to the applications of formal methods to

cryptographic protocol analysis.

 30

The list of acronyms used to define the protocols is listed in the Table 3.1.2:

Table 3.1.2 List of acronyms for the Secure Protocol and attacks

In Aziz & Diffie protocol, certificates are created by a CA as described earlier in

this chapter. More detailed information about how certificates are created will be

discussed with the CPAL evaluation of the protocol.

Random numbers RNB and RNM are used to create the session key. Challenge

value, CHM is a nonce (randomly generated number) that is generated to guarantee

freshness. SKCSs are the shared key cryptosystems where base station chooses from

the list offered by mobile host. The encryptions in the protocol are the messages signed

under either private or public keys and decipherable by the message recipient.

Encryption of Y under key X

Message Digest function value on contents X

Random Number generated by host X
Challenge value of host X

Certificate of X

Private key of host X

Public key of host X

Intruder impersonating X

Impersonated station

Base

Mobile

CHX
CertX
KprvX
KpubX
Ix
C
B
M

E(X,Y)

RNX
MD(X)

 31

The original Secure Protocol of Aziz & Diffie is as follows:

Figure 3.1.5 Original Secure Protocol

The first step of the protocol is sending the message-1 from M to B. When B

receives the message he will check the validity of certificate. A valid signature indicates

that the public key in the certificate belongs to a certified host. He will reject the

message if it is invalid or reply with his message which includes his certificate, the

encrypted random number RNB under mobile host’s public key, and SKCS that base

station chooses out of the list comes from mobile host. This reply message is mapped

to an assertion where B says that RNB is a good key for the communication between B

and M. Upon receipt of the second message, M decrypts the encrypted part of the

message to verify that it is a meaningful message. It can be verified because it is a

meaningful message which means in a recognizable format where M can decrypt it with

her private key since it is encrypted with M’s public key. From this result M concludes as

the message was indented for her. As a result, the message means that RNB is a good

key for the communication between B and M. Another verification in the second

message is the signature on the encrypted message in order to prove that B sent the

message. In this case M concludes as B said that RNB is a good key for the

communication between M and B. When B receives the third message, he gets the

result that the message was intended for him because the message encrypted with B’s

1. M B (CertM, CHM, List_of_SKCSs)

2. B M (CertB, E(KpubM, RNB), chosen_SKCS, E(KprvB, MD(E(KpubM, RNB),
chosen_SKCS, CHM, List_of_SKCSs))

3. M B (E(KpubB, RNM), E(KprvM, MD(E(KpubB, RNM), E(KpubM, RNB))))

 32

key. The message says that RNM is a good key for the communication between M and

B. After B verifies the signed part of the message, he knows that M sent the message

and he concludes that it was M who said that RNM was a good key for the

communication between B and herself.

It is important that the message sent between the participants has to be in such a

format that they can understand it and also in case of an attack they can detect it easily.

This is why it is an assumption that encrypted message is formatted. According to

Meadow’s paper [MEA95], the communication fails if the assumption is violated. In this

case, there is an attack which is called Meadow’s attack. This attack is as follows:

Figure 3.1.6 Meadows Attack

The list of acronyms used in Figure 3.1.6 is described in Table 3.1.2.

As seen above, the first step is sending message from M to B as a request to

join. Instead of B receiving this message, it is intercepted by I which is an intruder that

impersonates C. In this case C is a rogue principal. Intruder I changes only the

certificate part of the message by replacing its own certificate and sends the message

to B. Here the rascal principal C replays the legitimate mobile host M’s challenge,

CHM, in this run. When B receives the message, he does not know that the message is

intercepted by an intruder. Therefore, he sends the package in a format that almost the

 1. M B (CertM, CHM, List_of_SKCSs) (this is intercepted by I)

 2. IC B (CertC, CHM, List_of_SKCSs)

 3. B C (CertB, E(KpubC, RNB), chosen_SKCS, E(KprvB, MD(E(KpubC, RNB),
 chosen_SKCS, CHM, List_of_SKCSs))

 4. IB M (CertB, E(KpubC, RNB), chosen_SKCS, E(KprvB, MD(E(KpubC, RNB),
 chosen_SKCS, CHM, List_of_SKCSs))

 33

same as it was in the second step of the original Aziz & Diffie protocol where RNB is

encrypted under C’s public key instead of M’s. The reason for this is B thinks that he is

communicating with C not M and B trusts C, he does not know that C is an intruder.

Then C passes off the same package to M as it was B’s response. Therefore, once M
receives the forth message, she thinks that it was coming from B. In this package the

partial session key is intended for C but when M receives it, she thinks that it was for M.

Then she verifies the signature and tries to decrypt the encrypted part of the message,

E(KpubC, RNB), under private key of M. She obtains the result as D(KprvM, E(KpubC,
RNB)) and she thinks that this is the key. Since the intruder persuades M that the

nonkey, (KprvM, E(KpubC, RNB)), is a key, we can say that there is an attack on this

communication. This spoof is not detected. On the other hand, it is stated that at worst

this attack results in a denial of service and the intruder cannot know whether M accepts

the nonkey as a key. In this case, the intruder cannot impersonate M or B, read

encrypted traffic. Then the BAN logic result of this protocol that M believes that the key

she receives from B is a good key for the communication between them is not an

adequate conclusion anymore [MEA95].

3.1.2.2 Boyd & Mathuria Attack

Boyd and Mathuria [BOY98] have proposed an attack on Aziz&Diffie protocol

[AZI94]. This is very similar to Meadows attack. In this attack, B is spoofed since he

computes a false session key to use with M. On the other hand, M is not actually in a

communication with B. The attack is shown in Figure 3.1.7 in detail.

As seen on Figure 3.1.7, the first run starts with a message from a rogue

principal C to B which asks for joining to conference. List of keys List_of_SKCSs, C’s

challenge value CHC and Certificate of M, CertM, are included in the first package.

Here C sends CertM instead of C’s certificate CertC since C has CertM from M in the

earlier runs. In this case B thinks that he is communicating with M. Then B replies with

his certificate CertB and random number RNB encrypted under M’s public key along

with the chosen key and the hash value which is the encryption of MD function under

B’s private key. MD function is the encrypted random number RNB under M’s public

key, and chosen_SKSC, M’s challenge CHM and the list of keys. Then C passes off the

 34

same message except sends its certificate CertC instead of B’s and in the signature

RNM is used instead of RNC and the signature is signed with C’s private key not B’s.

Figure 3.1.7 Boyd & Mathuria Attack

Finally, in the last message, M sends her random number RNM encrypted under

C’s public key and the signature is signed with M’s private key. In the signature RNM is

encrypted under public key of C and RNB is encrypted under public key of M. Here

including E(KpubM, RNB) is an assurance to B that the partial session key sent by M is

fresh. After C receives this package it passes the same package to B. When B receives

the message he will think that this message is coming from M. He will verify the

signature and try to decrypt E(KpubC, RNM). Since B does not know KprvC, he will not

be able to obtain RNM instead he will get the result as D(KprvM,E(KpubC, RNB)) and

he will think that this is the key. In this case B will compute a false session key and think

that he can use this with M. On the other hand M is not actually communicating with B in

a protocol run. This is why we can say that B may be spoofed in this attack. The rogue

principal C does not need to know RNB in order to create the message 2’. Since B

 1. C B (CertM, CHC, List_of_SKCSs)

 2. B C (CertB, E(KpubM, RNB), chosen_SKCS, (E(KprvB, MD(E(KpubM, RNB),
 chosen_SKCS, CHC, List_of_SKCSs))))

 1’. M C (CertM, CHM, List_of_SKCSs)

 2’. C M (CertC, E(KpubM, RNB), chosen_SKCS, (E(KprvC, MD(E(KpubM, RNB),
 chosen_SKCS, CHM, List_of_SKCSs))))

 3’. M C (E(KpubC, RNM), E(KprvM, MD(E(KpubC, RNM), E(KpubM, RNB))))

 3. C B (E(KpubC, RNM), E(KprvM, MD(E(KpubC, RNM), E(KpubM, RNB))))

 35

sends E(KpubM, RNB) to C and RNB is always used as encrypted under M’s public key

in the protocol run, C can send the encrypted value without knowing RNB. Therefore in

message 2, if B could sign RNB instead of signing E(KpubM, RNB), this attack could be

prevented. Furthermore, there could be more conventional challenge/response system

to assure freshness of the partial session key sent from M to B in message 3. Below is

the modified version of Aziz&Diffie protocol that has the solutions the Boyd&Mathuria

attack:

Figure 3.1.8 Solution to Boyd & Mathuria attack

As we can see above, the first request to join message sent from mobile host to

base station is the same as original Aziz & Diffie protocol. Second message sent from B

to M is also almost the same except a few changes. The first addition to this package is

B’s challenge, CHB, a 128 bit random number that guarantees the freshness by

changing for every new message therefore it is unique and unpredictable. This protects

the communication against playback attacks. Another change in this package is RNB is

not encrypted in order to prevent the run against to an attacker that spoofs the

communication without the knowledge of RNB. The last addition is M in the hashed

package. Having the receiver’s name in the package ensures the receiver that this

package is sent for her.

 1. M B (CertM, CHM, List_of_SKCSs)

 2. B M (CertB, CHB, E(KpubM, RNB), chosen_SKCS, E(KprvB, MD(E(RNB, M, CHM,
Chosen_SKCS))))

 3. M B (E(KpubB, RNM), E(KprvM, MD(E(RNM, B, CHB))))

 36

Third message that sent form M to B is different than the original third message of

Aziz &Diffie Protocol. In the third message, encrypted RNB is included as in the original

one. Here the changes are in the hash function. Instead of signing the encrypted RNB

and RNM, in the last package RNB, B and CHB values are signed. Again RNB is not

encrypted to prevent to package against to an attacker spoofing. Finally, CHB is added

to the signature of third message as a respond to B’s challenge in order to assure

freshness.

3.2 IEEE 802.1X Standard

3.2.1 Protocol Description and Design

3.2.1.1 Definition

IEEE 802.1X standard protocol is designed to enhance wireless local area

networks (WLANs) security which follows IEEE 802.11 Standard. Because of the

current problems with the security of WLAN based on 802.11 Standard, new security

architecture for 802.11 is needed. Robust Security Network (RSN) which is an approved

IEEE 802.1X Standard for Port based Network Access Control is a new design to solve

problems with 802.11 Standard. 802.1X Standard provides a strong authentication,

access control and key management for WLANs. On the other hand, Mishra [MIS02]

showed that current combination of IEEE 802.11 and 802.1X Standards does not

provide sufficient level of security. Authentication with 802.1X Standard is done by a

central authority in an infrastructure network where each client sends packets to a

central authority called access point (AP), known as the authenticator and AP transmits

them to the destination client.

3.2.1.2 Design

Since IEEE 802.1X standard came as a solution to IEEE 802.11 standard, first

we will talk about the design and security issues of IEEE 802.11 standard. Then, we will

 37

discuss IEEE 802.1X standard protocol and the attacks found by Mishra [MIS02] in

detail.

3.2.1.2.1 IEEE 802.11 Network Design and Security Mechanisms

Classic 802.11 Network design is shown in Figure 3.2.1:

Figure 3.2.1 The Classic 802.11 state machine.

IEEE Standard specifies the Medium Access Control (MAC) mechanism and

indicates one of the two modes which are infrastructure (Basic Service Set) mode and

ad-hoc, infrastructureless, (Independent Basic Service Set) mode. In the ad-hoc

network the clients can directly communicate each other without a trusted third party.

On the other hand, there is a central authority, AP, which receives the packets from a

STATE-I
Unauthenticated

Unassociated

STATE-II
Authenticated
Unassociated

STATE-III
Authenticated

Associated

DeAuthentication
notification

Disassociation
notification

Successful
association or
disassociation

DeAuthentication
notification

Class 1 frame

Class 1 & 2 frames

Class 1, 2 & 3 frames

 38

client and sends them to the destination clients. In Mishra’s work only the security

issues of infrastructure mode is discussed [MIS02].

A wireless client starts a relation with a central authority or access point (AP)

which is called “association”. There are three states that show the complete association

with an AP as stated in [MIS02]. The relationship between these three steps is shown in

the Figure 3.2.1.

IEEE 802.11 standard frame can be a management or a data frame. Using

Authentication management frames, client or STA (station) and AP exchange these

frames in order to pass from state 1 to state 2.

Security goals for 802.11 protocol framework are access-control and mutual

authentication, flexibility, ubiquitous security, strong confidentiality, and scalability. More

information on these can be found in Mishra Et al. [MIS02].

Shared key authentication, open system and MAC-address based access control

lists are the primary authentication and address control methods used for IEEE 802.11

standard protocol. In order to provide confidentiality for the network traffic, Wired

Equivalent Privacy Protocol (WEP) is used. On the other hand insecurity of this system

is shown with the resent work [ARB01, BOR01]. Therefore as solution to these security

problems a new technique for WLAN, called Robust Security Network (RSN), which is

used with IEEE 802.1X standard is designed by IEEE standard group.

3.2.1.2.2 IEEE 802.1X Standard and the Robust Security Network (RSN) Design
and Security issues

Network access authentication is important for the wireless environment since

there is no physical boundary to restrict the network access. Such a system for

restriction on network connectivity at MAC layer is afforded by RSN. RSN provides this

mechanism only via 802.1X standard protocol. A network port which provides the

network connectivity is an association between an access point and the station in

802.11 standard protocol. Along with the usage of authentication methods such as

certificate based authentication, one-time password, smart cards 802.1X standard

 39

protocol provides an architectural framework and port-based network access control for

hybrid network. It is used for wireless 802.11 networks by RSN [MIS02].

RSN security framework is shown below:

Figure 3.2.2 The EEE 802.1X setup.

As seen in the communication setup above and stated in the IEEE 802.1X

standard [IEE01], supplicant, authenticator and authentication server are the three

different roles provided by RSN. Supplicant (Ethernet 802.3, wireless PC card, etc) is an

entity that uses the service for MAC connectivity offered via a port on the authenticator

(Access Point, Ethernet Switch, etc). The network port is an association between the

station and the access point as stated earlier. There could be many ports or access

points available on a single network for supplicant to authenticate a service via

authenticator. Then authenticator connects to a central authentication server (EAP

server, RADIUS) which provides a service after successful authentication.

Authentication server, called backend server, provides strong authentication and

session keys for supplicants. Therefore, both supplicant and authenticator trust the

EAPOL RADIUS
Supplicant

user

Supplicant

Encapsulated EAP
messages on RADIUS

EAP Over Lan
Challenge/Response

Access Point
client

Authenticator

RADIUS
server

Authentication
server

 40

integrity of backend server and backend server needs their identity in order to provide

the session keys. Because of the inherent broadcast nature of the wireless

communications, this authentication process should be protected against to the attacks.

RSN provides the following: Per packet authenticity and integrity framework

between AP and RADIUS, scalability and flexibility, access control, and one-way

authentication. These properties are very important to protect the system against to

attacks and provide strong authentication. For instance, good access control can protect

the system against session-hijack attack and lack of mutual authentication can cause

Man-In-Middle Attack.

3.2.1.3 Description

Two different mechanisms are used by IEEE standard protocol for the

communication between supplicant and authenticator (access point), and authenticator

and authentication server (RADIUS server).

The first one is Extensible Authentication Protocol (EAP) [BLU98] used between

the supplicant and access point. It is assembled on challenge-response communication

system. EAP stack displayed in Figure 3.2.3 shows the communication between EAP

layer, authentication layer, and MAC layers. The EAP over LAN (EAPOL) protocol is

used to communicate with the higher layer and carry the packages, which have the

encapsulated EAP messages, from the authenticator (base station) to the supplicant

(mobile host) and vice versa. Therefore, by using the EAPOL messages, EAP

messages are exchanged between the supplicant and the authenticator [MIS02].

EAPOL can communicate with the higher layers such as Kerberos and TLS. It

has session start and session logoff messages to start and stop the communication.

Both EAP and EAPOL messages don’t have any sanity check for privacy and integrity.

EAP operates on the network layer. Network ports do not need to make their own

decisions. In this case, EAP directs messages to the centralized service such as

RADIUS (Remote Authentication Dial-In User Service) and this EAP server makes the

decisions [MIS02].

 41

Figure 3.2.3 The EAP stack.

The second message type called Remote Authentication Dial-In User Service

(RADIUS) protocol is used for the communication between the access point and the

authentication server called RADIUS Server. NAS (Network Access Server) is used as

the client of RADIUS server where the client is responsible for carrying the necessary

information from user to the RADIUS server and getting the response from server. On

the other hand, the RADIUS server is responsible from receiving the user request,

authenticating the user and sending all the necessary information to client to pass it to

the user [RIG02].

There is integrity check and per packet authenticity between the RADIUS server

and access point. Communication between the client and RADIUS server is

authenticated under a shared secret. This key is never sent over the network, and user

passwords are sent encrypted between these two points in order to stop any

unexpected eavesdropping. RADIUS server can use variety of authentication

EAP (Extensible
Authentication Protocol)

TLS CHAP Kerberos

EAPOL (EAP Over Lan)

PPP 802.3 802.5 802.11

Authentication
layer

EAP layer

MAC layer

 42

techniques. If the username and user passwords are provided then it supports PPP,

PAP, CHAP, UNIX login and some others [RIG02]. RADIUS uses UDP instead of TCP

as a transport protocol for some technical reasons as stated in [RIG02].

EAP message is carried as an attribute in the RADIUS protocol [MIS02].

3.2.1.4 Message Format

3.2.1.4.1 EAP Message Format

A summary of the EAP packet format is shown below where the fields are

transmitted from left to right:

Figure 3.2.4 The EAP Packet.

The first field of the EAP packet is code which is one octet and changes from 1 to

4. Therefore there are four types of messages listed as:

1-EAP Request

Code Identifier EAP packet length

Req/Res
type

Data type

Header

Data

 43

2-EAP Response

3-EAP Success

4-EAP Failure

Identifier field is also one octet and matches responses with the requests. For a

retransmitted request packet due to a timeout, the identifier field will be the same. This

field is modified for each new request. For example, for the first request and first

response to this request, this field could be 1 and for the second request and response

it could be 2. For the situation of a duplicate message, this field again stays the same

and duplicate request is discarded.

The last part of the header, which is the third field, is the length. This field

indicates the length of the EAP package that includes the Code, Identifier, Length,

Req/Res Type and Data Type fields. This is two octet fields and only one type is

specified for each request or response.

Request/Response Type field is one octet that indicates the type of the request

and response. There should be only one type specified for each EAP request and

response. The type field of response and request would be the same except the Nak

response Type (only for response) [BLU98]. The Request/response types are assigned

as follows:

1-Identity

2-Notification

3-NAK(for response)

4-MD5-Challenge

5- One-Time Password (OTP)

6-Generic token card

More information about this field can be found in [BLU98].

 44

The last field is the data type. This field is specified depending on the request

and response types we have just discussed. It is either zero or more octets and must

not be null terminated. This field varies for each request and response type. For

example, for the request/response type 1(identity), response uses this field to return

identity and may contain displayable message in the request. More information could be

found in L. Blunk Et al. [BLU98].

3.2.1.4.2 RADIUS Message Format

The following figure shows the format of the RADIUS packet used in 801.1X

authentication protocol where the fields are transmitted from left to right:

The first field of the RADIUS packet is again the code which includes the type of

the RADIUS packet. This field is one octet. Packets with the invalid code field are

discarded. Following is the list of assigned codes for RADIUS packets that have been

used for 802.1X authentication:

• Access-Request

• Access-Accept

• Access-Reject

• Access-Challenge

The second field is the identifier that is used for matching the requests to the

reply. This field is also one octet. Duplicate requests are detected by the RADIUS

server and invalid packets are discarded where the identifier fields of Access-Request
and Access-Accept does not match or Request Authenticator does not have the correct

response for the Access Request.

The length is the third field in the RADIUS packet and it is two octets. Octets out

of the range of the length (min 20, max 4096) are ignored. The length field shows the

 45

length of the packet which includes the Code, Identifier, Length, Authenticator, and
Attribute fields.

The next field is Authenticator which is sixteen octets. The most important octet

is transmitted and the reply from the RADIUS server is authenticated with this value.

Authenticator field could be either request or respond authenticator.

Figure 3.2.5 The RADIUS Packet.

The authenticator in Access-Request packets called Request authenticator and

value of authenticator is 16 octet random numbers. This value should be unique, and

unpredictable. It is a large secret password for protecting the mechanism against to

attacks and it is shared secret value between the RADIUS server and the client.

Code identifier RADIUS packet length

Authenticator

Header

128 bits

EAP message authenticator

EAP message fragment

EAP RADIUS
attribute

255 bytes

128 bits

 46

The authenticator field in Access-Challenge, Access-Accept, and Access-Reject
is called Respond authenticator. It is a MD5 hash value that is calculated on radius

packets that has the Code, the Identifier, the Length, the Request Authenticator fields

along with the attributes comes with the response attributes and shared secret.

The last part of the RADIUS packet is EAP attributes which comes with the EAP

message from the communication between the Access Point and the Supplicant.

So far, we have discussed the general format of the RADIUS package. Now, we

will explore the package format in detail for specific packet types which was determined

by the Code field at the beginning of the packet.

3.2.1.4.2.1 Message Format for Access-Request Type

Access-Request messages are sent from a user to RADIUS server to provide

information about the user whether or not it is allowed to access a specific NAS. The

code field of a RADIUS packet is set to 1 for Access-Request. Access-Request contains

a username attribute. It contains NAS-Identifier and/or NAS-IP-Address attribute and

User Password. It also includes NAS-port and/or NAS-port-type attributes.

User password is hidden in a MD5 message digest function. The shared secret is

shared between NAS and RADIUS server. A one-way 16 octet message digest MD5
hash function on Request Authenticator and the shared secret is xored with the

password entered by the user and this value is used as User-Password attribute.

The message format for Access-Accept type is very similar to a general RADIUS

message format as we have seen earlier. The first field is Code and it is 1 for Access
Request. The next field is Identifier which changes whenever the attributes changes or

a valid reply is received and does not change for retransmission. Request authenticator
is the next field and changes when a new identifier is used. Attributes field has the

username, user-password, client-ID, port_ID, EAP message authenticator and EAP

message which come from the supplicant.

 47

3.2.1.4.2.2 Message Format for Access-Accept Type

RADIUS packets for Access-Accept type are sent from RADIUS server to Access
Point (authenticator). This packet provides the information needed to initiate the delivery

to the user. All of the attributes in the message are checked and if they are acceptable

then the Code filed is set to two for Message-Accept and then RADIUS sent the

message to the authenticator.

The message format is again similar to the format of Access-accept type. First

field is again Code and set to 2 for Access-Accept. Identifier field is a copy of the

identifier field of the Access-request packet that is pending for a response from

RADIUS. Response Authenticator value is a MD5 hash value that is calculated from

Access-Request fields of the Code, the Identifier, the Length, the Request Authenticator
fields along with the Attributes that comes with the response attributes and shared

secret. The attributes field again has the information about the username, user-
password, client and port ID and EAP success message and EAP success
authentication message.

3.2.1.4.2.3 Message Format for Access- Reject Type

This is the message sent when the attributes in the packet are not acceptable. In

this case, The Code field of RADIUS message for Access-Reject type is set to 3.

The packet format of the Access-Reject type starts with the Code field (set to 3).

Identifier field is a copy of the identifier field of Access-Request that reasons the

Access-Reject. The Response Authenticator is calculated from Access_Request value.

It is a MD5 hash value which is calculated from Access-Request fields of the Code, the
Identifier, the Length, the Request Authenticator fields along with the Attributes comes

with the response attributes and shared secret. Attributes are again the same as the

attributes for previous types we have just discussed about.

3.2.1.4.2.4 Message Format for Access- Challenge Type

 48

When The RADIUS server needs to send a challenge message as a response to

a request, the Code field of challenge message should be set to 11. The Identifier field

of Access-Challenge message should match the identifier field of the Access-Request
message which is pending for a response and also the Response Authenticator field is

calculated as described earlier and should have the correct response value for the

Access-Request. If not, then the invalid packets will be discarded. The Attributes field

may contain a few Reply message attributes. Additionally, Vendor-Specific, Proxy-State,
Session-Timeout and Idle Timeout attributes can be included. Other attributes are not

allowed in Challenge message [RIG02].

More information on the attributes and the message format for different message

types could be found in C.Rigney Et al. [RIG02].

3.2.1.4.2.5 Message Format for IEEE 802.1X Protocol

The complete 802.1X Protocol authentication session has both EAP and RADIUS

protocol messages where EAP messages carried as an attribute in RADIUS protocol.

Supplicant, Access Point and the RADIUS are three entities specified in the IEEE

802.1X protocol as we mentioned earlier. The complete 802.1X authentication session

which shows the EAP and RADIUS message communication traffic between these

three entities is shown on Figure 3.2.6.

The Table 3.2.1 shows the list of acronyms used to define the IEEE 802.1X

protocol:

 49

Table 3.2.1 List of acronyms for the IEEE 802.1X protocol.

As seen on Figure 3.2.6, there are two different protocols: The first one is EAP

protocol used for the communication between the access point and the supplicant. The

other one is the RADIUS protocol used between the access point and the RADIUS.

Initial 802.1X communication starts with an unauthenticated client (user, supplicant)

requesting to connect to an access point (authenticator). When access point receives

this message, it responds with a request that the supplicant change its state into an

unauthorized state to enable to send only EAP start message. Then access point

returns the EAP Req/Id message requesting the supplicant’s identity. When supplicant

receives the Id request message, first it changes the code field to 2 for a response and

matches the identifier field with the identifier field of the request message. Then

supplicant returns the identity with the EAP Resp/Id message to access point.

RADIUS Reject message

RADIUS Accept message

RADIUS Access Challenge message
RAIDUS Access Request message

Supplicant’s identity

Optional. Communicates higher layers (i.e. TLS)
EAP Failure message

EAP Success message

EAP Respond message

EAP Request message

Remote Authentication Dial-In User Service
Extensible Authentication Protocol

RAD Reject
RAD Accept
RAD Acc Chal
RAD Acc Req
Id
EAPOL Key
EAP Failure
EAP Succ
EAP Resp
EAP Req
RADIUS
EAP

 50

Figure 3.2.6 The complete IEEE 802.1X protocol.

Upon receipt of the response message from supplicant, access point forwards

the identity for verification by sending the RAD Acc Req (EAP Id) message to the

RADIUS authentication server which locates on the wired side of the access point.

Access point blocks all the traffic such as HTTP, by enabling the port to pass only EAP

packets from user to RADIUS authentication server until the identity verification is done

by RADIUS. RADIUS responds with RAD Acc Chal (EAP Req1) message to the access

point. This message is sent when RADIUS, which requires a response, wants to send a

RADIUSAccess Point Supplicant

EAP Req 1

EAP Resp 1

EAP Req N

EAP Resp N

EAP Succ/Failure

EAPOL Key

EAP Req/Id

EAP Res/Id

.

.

.

RAD Acc Req (EAP Id)

RAD Acc Chal (EAP Req 1)

RAD Acc Req (EAP Resp 1)

RAD Acc Req (EAP Resp N)

RAD Accept (EAP Succ) or
RAD Reject (EAP Fail)

.

.

.

RAD Acc Chal (EAP Req 2)

 51

challenge to the user. Upon receipt of this message, first, access point matches the

identifier field with the identifier field of pending Access-Request message and then

Response Authenticator field is checked to see whether it has the correct response for

the pending Access-Request message. If it is a valid package, then access point sends

the EAP Req-1 message, which is the attribute field of message comes from RADIUS,

to the supplicant. Then supplicant changes the code to respond as 2, matches the

identifier and sends the respond to the request of RADIUS with the EAP Resp 1

message. Access point receives this message and forwards it to the RADIUS as an

attribute with the RAD Acc Req (EAP Resp 1) message. RADIUS receives the message

and sends another challenge message if needed. This is continued until RADIUS is

satisfied with the messages it received to make decision whether or not the user is

accepted. If all the attribute values received in the Access Request messages are

acceptable, then RADIUS server accepts the message, provides necessary

confirmation information in order to start the delivery service to the client and uses an

algorithm to authenticate the user. Then it sends the Access-Request message (RAD
Accept (EAP Succ)) to the access point by setting the code field to 2. Otherwise

RADIUS server rejects the message, sets the code field to 3 and sends RAD Reject
(EAP Fail) message to the access point. If Access point receives the RAD Accept (EAP
Succ) message from RADIUS which means the user is accepted by RADIUS server, it

changes the client’s state to authorized and opens the client’s port to the normal traffic.

Then it sends the EAP Succ message to the supplicant. As an option it may send the

EAPOL key, which is used to communicate to a higher layer (such as TLS), to the

supplicant too. On the other hand, if access point receives a reject message, then it

sends the EAP Failure message to the supplicant and does not authorize the user.

3.2.2 Attacks

3.2.2.1 Man-In-The-Middle (MIM) Attack

The 802.1X protocol provides only one-way authentication. Because 802.1X

authenticator sends only EAP-Request messages to supplicant, and accepts EAP-
response messages from supplicant. On the other hand supplicant does not send any

 52

EAP-request message. The supplicant is authenticated to the access point. Because of

the one-way authentication of the supplicant to access point where absence of mutual

authentication is observed, the supplicant can be exposed to potential Man-In-The-

Middle (MIM) attacks.

Figure 3.2.7 Man-In-The-Middle (MIM) Attack.

As seen in the figure above, the attacker acts as an access point to the supplicant and

client to the access point. After receiving the RADIUS access-Accept message from

RADIUS authentication server, authenticator sends EAP-Success message to the

supplicant. This message does not have any integrity even though an authentication

technique (like EAP-MD5) used in the higher layer. Supplicant state machine contains

an unconditional transfer by setting EAP success message to the eapSuccess flag that

transfers directly to Authenticated state. An adversary can forge this package on behalf

Authentication
Server

Attacker

802.11

Access Point

Supplicant

802.11

802.3

LAN

 53

of the authenticator and can start MIM attack. In this case, the attacker can get all the

network traffic from supplicant [MIS02].

3.2.2.2 Session Hijacking Attack

RSN (Robust Security Network) state machine is similar to 802.11 classic state

machines we have talked about earlier except the addition of state-4 called RSN
Associated. After the RSN association/reassociation, higher layer authentication occurs

with IEEE 802.1X. Therefore RSN and 802.1X state machines work together. Because

of the communication problems between the 802.1X and 802.11 RSN state machines, a

session-hijack attack can be performed [MIS02].

Following figure shows the details of session hijack attack:

Figure 3.2.8 Session Hijack Attack

Access
Point

Legitimate
Supplicant

Attacker

EAP Request

EAP Response

EAP Success

1

2

3

4

5Network traffic

Adversary spoofs
AP’s MAC address

Adversary gains
network connectivity

802.11 MAC
Disassociate

Supplicant
authenticated

 54

As we can observe from the figure above, for the message 1, 2 and 3 a

legitimate supplicant authenticates itself and EAP authentication has at least three

messages (EAP-Request, EAP-Response, and EAP-Success). Message 4 is sending

an 802.11 MAC disassociate message from an adversary by using the APs MAC

address. Therefore the supplicant gets disassociated and RSN state machine condition

changes to unassociated state. On the other hand 802.1X state machine of

authenticator remains authenticated state. In the message 5, the attacker uses the

Authenticated supplicant’s MAC address and communicates with access point since

authenticator is still in authenticated state. Then adversary can access the network

[MIS02].

3.2.2.3 Denial of Service Attack

The EAPOL Start/ EAPOL Logoff messages are sent from the supplicant to

authenticator in order to start the authentication process with authenticator/leave the

authenticated use of the service. All the fields in packet can be spoofed with MIM attack.

In this case an adversary sends an EAPOL start/EAPOL Logoff messages to the access

point on behalf of the supplicant. This may cause an authenticated client to start a

communication with an attacker/logoff session. Similarly an EAP Failure message is

sent from the access point to the supplicant. All these three messages can be spoofed

by an adversary. More information on this could be found in [MIS02].

3.2.2.4 Proposed Solutions for Attacks

3.2.2.4.1 Per-Packet authenticity and integrity

Absence of per-packet authenticity and integrity for IEEE 802.11 data and

management frames is one the big security problem in protocol history. This can cause

the session hijack attack and simple packet forgery attacks. The use of integrity and

authenticity of the management and data frames can prevent such attacks. Integrity for

 55

data frames is added when confidentiality is used. On the other hand, for management

frames there is integrity protection used [MIS02].

3.2.2.4.2 Authenticity and integrity of EAPOL messages

Lack of authenticity can cause MIM attacks as we explained earlier. Therefore,

adding another attribute called EAP-Authenticator at the end of message body (only for

decision message such as EAP-Success) can prevent the packet against MIM attacks.

Another solution could be removing explicit EAP- success message and instead, using

EAPOL-Key to show the success at the EAP layer [MIS02].

3.2.2.4.3 Peer-to-peer authentication model

Building the symmetric and scalable authentication techniques on RSN

framework, the system becomes a peer-to-peer authenticated model which uses central

trusted entity. More details can be found in [MIS02].

 56

CHAPTER 4

CPAL EVALUATION

4.1 CPAL-ES Evaluation of the Secure Protocol

CPAL, Cryptographic Protocol Analysis Language, is a protocol encoding

language that helps for analyzing cryptographic protocols with formal methods. The

more detailed information about CPAL is given in chapter-2. The CPAL Evaluation

System helps us to understand the protocols in detail and proves the correctness of the

protocols, tests known attacks, checks the system for possible new attacks and finds

solutions to them. In this section we will demonstrate how the interactions during the

protocol run could be modeled and represented by CPAL-ES and then, similarly the

attacks and attack solutions. One of our goals is to produce the correct implementation

of the Secure Protocol with CPAL-ES.

CPAL-ES evaluation of protocols is a three step process:

1. Specifying the protocol actions in CPAL,

2. Generating the verification condition by translating the specification into

verification condition,

3. Proving this verification condition with the assumptions [YAS96].

The first step of Aziz&Diffie protocol analysis is implementing the correct version

of encoding of the protocol. Then, we can verify and check whether it satisfies its goals.

All of the actions and relations among the participating principals in the protocol are

checked one by one during the protocol specification. This way we are able to examine

the system against possible known and unknown attacks and find the flaws and

 57

solutions to them. Assumptions about the logical beliefs may be used once the

specification process is done.

As mentioned in Chapter 3, Aziz&Diffie’s Secure Protocol uses both public and

shared key cryptographies for session key setup, authentication and privacy. CPAL-ES

allows us to analyze both public, asymmetric, key protocols, and private, symmetric, key

protocols. A few examples to these can be found in [YAS96]. Not much work has been

done with formal methods in the wireless environment especially with CPAL-ES. Our

evaluation of the Secure Protocol is the first study on the analysis of wireless public key

protocol with CPAL-ES. There is another work which analyses the wireless SRP

protocol in ad-hoc network with CPAL [MAR03]. In our work there is no ad-hoc

environment (infrastructureless networks); the system is supported by a Central

Authority (infrastructure networks). Because CPAL-ES was developed to use in the

wired systems, we had some difficulties to use it with wireless protocols, for example,

the send operator can send to only one principal. In wireless network, every node

should be able to send a message to more than one principal at once if needed. To use

CPAL-ES with wireless networks, we have to make some assumptions. This problem

may not be an issue with the infrastructure network since there is an access point as the

central authority. Whereas, it is a big problem with ad-hoc environment. More on this

could be found in [MAR03].

CPAL-ES encoding of the Secure Protocol is given in Appendix A and Appendix

B shows the CPAL-ES evaluation of the protocol.

Implementing public key protocols with CPAL-ES introduces complexities since

we have to deal with both public and private keys and trusted third party called central

authority (CA). Here CA’s role is distributing the certificates, which includes the public

keys, of the different principles to each other in order to accomplish a secure session by

mostly using the public keys or may be private keys when needed.

The first step of implementation of the Secure Protocol starts with generation of

the certificates by CA. This part is our addition to the protocol since it was not explained

in detail in [AZI94].

The list of acronyms used to define the Secure Protocol in CPAL_ES is shown in

Table 4.1.1:

 58

Table 4.1.1 List of acronyms for the Secure Protocol in CPAL

Before the Secure Protocol communication starts, the participants should have

their certificates created by a CA. First, each principal participating in the protocol run

concatenates and stores its public and private key pairs into a single message and

sends it to the CA by encrypting it in their own address space under a shared key that is

shared between each principal and the CA. This way public and private key pairs are

sent securely by the shared key. This is why, the secure send operator (=>) is used to

send the message here. CA receives these messages in CA’s address space as msgx

where x represents the principal sending message. Then CA decrypts these messages

and stores into its own address space as Kx where x is the sending principal (Appendix

B, line 10). In the next line, the concatenated message Kx splits into its individual

Kxy: Shared key between principals X and Y

Kx+: Public key of principal X
CA: Certificate Authority

MD(Z):The message digest function on contents Z

e[<X.A,X.B>]X.K: Encryption of A and B in X’s address space,
under key K in X’s address space
d[X.msg]X.K: Decryption of msg in X’s address space under
key K in X’s address space
ep[]: encrypt public (public/private key encryption of public key
protocol)
dp[]: decrypt public (public/private key decryption of public key
protocol).
CH: Challenge Value (128 bit random number)

M: Mobile

I: Intruder

Kx-: Private key of principal X

sk: Session Key

f: Function

CertX_contents: Contents of X’s certificate

Cert_X: Certificate of X

sn: Serial Number
vp: Validity Period

RN: Random Number

B: Base

 59

message components as public and private key pairs in CA’s address space. In the next

step, CA concatenates the serial number (sn), validity period (vp), machine name (X),

Machine public key (Kx+), and CA name (CA) in its address space and stores them as

CertX_contents which represents the contents of certificate of principal X in CA’s

address space. In order to generate the certificate of principal X, first CA computes the

MD message digest function on CertX_contents and assigns the result as macCA in its

address space. Then it generates Cert_X, certificate of X, by concatenating

CertX_contents and encryption of macCA under private key of CA (Kca-) in CA’s

address space and sends the certificate to principal X using secure send (=>).

When X receives the message form CA, first, it splits up the Cert_X into its

components as CertX_components and CTforMD that represents the ciphertext for

message digest function MD where all operations are in X’s address space (Appendix

B, line 15-16). Then, it breaks off he CertX_contents into its components in X’s address

space. Finally, X decrypts the CTforMD under public key of CA (Kca+) and stores the

result as macCA in it’s address space and then computes the MD function on

CertX_contents and assigns the result to macX in X’s address space. Then, X

compares the macX and macCA results in the assert statement. If they are not equal

then, we may consider of an attack on the protocol run. All these processes explained

so far are repeated for each individual principal participating in the protocol run to get

the certificate for all parties. In this case, X is replaced by the name of the individual

party.

After generating certificates and sending them to the individual parties by CA, the

Secure Protocol starts running with the first message sent from mobile host (M) to base

station (B) with secure send (=>). The first message is also called as request-to-join

message and a simple one. There is no encryption in the first message. Cert_M, CH1

and the list of key algorithms are concatenated in M’s address space and sent in a

plain-text. B stores the message he receives as msg1 in his address space (Appendix

B, line 37). Next three lines represent the breaking of the msg1 into its components in

B’s site. First, he splits up msg1 as Cert_M, CH1, and List_of_SKCSs in B’s address

space. Then he breaks off Cert_M as CertM_contents and CTforMD which is the cipher

text of MD function in his address space and then CertM_contents spited up as sn2,

 60

vp2, M, km+, CA in his address space. After getting all the information from msg1, B

creates the next message as a reply to the first message. First, B encrypts the RN1

value under Km+ and computes the MD function on encrypted RN1, chosen_SKCS,

CH1, and List_of_SKSCs in his address space and stores them as f1 in his address

space. Then Cert_B, encrypted RN1, chosen_SKCS, and encrypted f1 value under

private key of B, Kb-, are concatenated and stored as msg2 in B’s address space. Then

msg2 is sent from B to M with the secure send (=>). Upon receipt of the second

message, first M splits up the msg2 into its components as Cert_B, CTforRN1 which is

cipher text of RN1, chosen_SKCS, and CTforf1 that is the cipher text of f1 and stores

them in her address space. Then Cert_B is broken off to its components as

CertB_contents and CTforMDb which represents the cipher text for MD function. Finally,

M breaks off CertB_contents as sn1, vp1, B, Kb+ and CA in her address space. M

decipher s RN1 value from CTforRN1 by decrypting it under private key of M, Km-,
since it was encrypted under Km+ and this is a public key protocol and does the same

process for CTforf1 by decrypting it under B’s public key, Kb+, in M’s address space

since it was encrypted under private key of, Kb-. Now M can compute the session key

since she has both RN1 and RN2 values. M computes the XOR function on RN1 and

RN2 values in her address space and stores the result as sk that represents the session

key, in her address space.

The next step is the generation of third message in M’s site. First, M computes

MD function on encrypted RN1 under Km+ and RN2 under Kb+ in address space of M

and the result is stored in M’s address space as f2. Then, M concatenates encrypted

RN1 under Kb+ and encrypted f1 under Km- in her address space and sends it to B

using secure send operator (=>). When B receives the message from M, first, he stores

them as msg3 in his address space. Then, he splits up msg3 as CTforRN2 and

CTforMD which represent the cipher text of RN2 and MD function in B’s address space.

Next, B deciphers CTforRN2 and CTforMD by decrypting them under Kb- and Km+ and

stores the results as RN2 and f2 in address space of B (Appendix B, line 55-56). Finally

the last step is computing MD function on encrypted RN2 under Kb+ and encrypted
RN1 under Km+. B stores the result as f3 in his address space. Here f3 is computed for

security issue, to test that he received the right information of f2. f2 and f3 values

 61

supposed to be the same. If it is so then there is no attack on the system. Then, XOR

function is computed on RN1 and RN2 and stored as sk in B’s address space.

After the specification which is the first step of CPAL-ES process is done all the

syntax errors should be removed. Since CPAL is a parsed language with a syntax

checker, we can use it interactively either in WINDOWS/DOS or UNIX environment to

quickly and easily check the protocol encoding for syntax errors. Once the syntax free

CPAL specification is generated, the specification is translated into verification

condition. Translating the procedural protocol description that is given in CPAL into a

predicate whose ultimate value is either TRUE or FALSE. The final predicate reflects

whether the protocol accomplish its goals within the protocol steps.

Generation of the verification conditions is the second step of evaluation as

mentioned in Chapter 4.1. Formal semantics for the protocol is automatically derived by

CPAL-ES. This is accomplished in two steps [YAS96]:

1. Beginning from the last protocol statement in the specification, the process is

done in reverse to the first statement in the protocol specification and each

statement definition is applied to an initial predicate with value TRUE.

2. The definition of encryption, decryption operators, value catenation and

extraction and assumptions are applied to the predicate when applicable in

the protocol specification. The resulting protocol is scanned for conditions

allowing replacement.

During the verification process, each protocol statement in CPAL is translated to

weakest precondition predicate. All the weakest precondition transformations of the

Secure Protocol as the definition for each statement is applied are shown in Appendix

B. Weakest precondition definitions are applied in reverse order. This is why initial

predicate state of TRUE is at the end of the predicate. The final predicate is the

verification condition for the protocol. If it can be proved from assumptions, then

protocol is guaranteed to meet its specified goals. This could be easier for the simple

protocols but it may be very difficult with more complex protocols [YAS96].

 62

Because of the public key encryption nature of the Secure Protocol, verification is

a very long process. We cannot use the key used for encryption for the decrypting the

encrypted value. In order to invert the public key encryption, we should use a decryption

key which is the inverse of the encryption key. We can see this in the first few lines of

the protocol evaluation (Appendix B) in the assume statements. In order to represent

the public key encryption and decryption, global.decrypt function is used. We have five

of these in our encoding of Secure Protocol. In general, we can show this predicate as:

global.decrypt(k1,k2)

This proposes that public key decryption under k2 inverts encryption under k1

that shows the relationship between the keys. More on this can be found in [YAS96].

Creating the predicates for ASSUME and ASSERT statements in the verification

conditions plays an important role during the proving process in order to reduce the final

predicate to TRUE.

The final step of the CPAL evaluation system process is proving the verification

conditions with the result of TRUE with the given assumptions in the protocol. During

the verification process, the predicates may have a repetition of logical conditions.

Therefore, CPAL-ES has a feature that it can scan the predicate for such condition and

may reduce them through the simple logical reductions, which is called the simplification

process. After simplification, the predicate is reduced to its simplified form as seen at

the end of Appendix-B for the Secure Protocol of Aziz & Diffie. This makes the proving

process much easier. The simplification process is repeated and combined with the

encryption and catenation operation searches until all of the matches are found and the

predicate is reduced to its most simplified form. The analyst will be left with more

challenging predicate proving process. He has to make a decision of how many

assumptions and assertions necessary in order to prove the final predicate as TRUE

and needs to decrease the number of assumptions and assertions used as possible in

order to get a predicate easier to prove.

ASSERT statement is used to express beliefs of principals in CPAL in order to

specify protocol goals to be proven. A conjunctive condition is added to the predicate

defined so far as a result of the application of ASSERT statement definition. The last

 63

statement in the protocol is usually a goal expressed in ASSERT statement. Only the

ASSERT statement has an effect on the initial predicate, since CPAL-ES evaluation is

based on the values in the predicate. CPAL-ES evaluation does not consider any

statement after the last ASSERT statement in the predicate. ASSERT statement is used

only for comparing the data elements within the address space of only one principal.

When comparison of values in different principal’s address space is necessary we need

use another statement called “GASSERT” to evaluate matters of security [YAS96].

Assumptions are necessary in order to complete the proof. ASSUME statements

enable to modify the predicate based on the logical analysis. They are used to specify

assumptions which are stated as predicates for creating the truth of the goals. When

truths are replaced with the boolean value TRUE, they may be removed from the

predicate. Assumed values are applied continually until no changes to predicate occur

[YAS96].

In the Secure Protocol of Aziz & Diffie, we have used seven ASSUME

statements [Appendix B] in order to express the equality of keys used between different

principals for proving the truth of goals of the protocol.

Consider the following lines from Appendix B where verification condition for

decryption and decryption is shown (Appendix B, lines 8-10):

B: => CA(e[<B.Kb+,B.Kb->]B.Kbca);

CA: <-(CA.msgb);

CA: CA.Kb := d[CA.msgb]CA.Kbca;

In the line 8, B sends CA an encrypted value under Kbca shared key. This

encrypted value is then saved as msgb into CA’s address space. In the line 10, the

verification condition is shown where the decrypted value is stored as Kb in CA’s

address space. We can change the line 10 as:

CA: CA.Kb == d[e[<B.Kb+,B.Kb->]B.Kbca)]CA.Kbca;

In this verification condition, we observe the predicate as the right side of the

equivalence statement fits the form of the decryption of the encryption of Kb+ and Kb-

 64

values under Kbca in CA’s address space. The entire encryption/decryption values

could be replaced by the value Kb in CA’s address space if the keys of the operations

(Kbca in B’s address space and Kbca in CA’s address space) were the same. Therefore

when we add the following statement (line 3, Appendix B) into the protocol specification

that assumes the Kbca in CA’s address space and Kbca in B’s address space are

equal, then final predicate will be reduced to TRUE automatically:

X: assume((CA.Kbca == B.Kbca));

As an alternative to this ASSUME statement, we can describe the preexistence

of the shared key with a sequence of key exchange as shown below:

 B: => CA (Kbca);

CA <- Kbca;

These two lines replaces the ASSUME statement shown above. Having them in

the protocol makes it possible to decrypt the encrypted values with either B.Kbca or

CA.Kbca since evaluation with weakest precondition can detect the values originated

from the same source. In this case, decryption will invert the previous encryption since

these two shared keys are equal.

Similar situation occurs with the following ASSUME statement in the Secure

Protocol specification (line 4, Appendix B):

X: assume((CA.Kmca == M.Kmca));

This statement represents the assumption which states that principal M and CA

shares the common key, Kmca. It is necessary to include this assumption in the

predicate in order to get the final predicate as TRUE.

The situation is different with public key encryption. Recall that both shared key

cryptography and public key cryptography are used with the Secure Protocol of Aziz &

Diffie. The CPAL predicate with shared key cryptography is not much difficult since the

same key is used for encryption and decryption processes. On the other hand, with

 65

public key cryptography, inverse of the encryption key is used for the decryption

function. This is represented with the following special predicate in general:

global.decrypt(k1,k2)

This predicate represents the relationship between keys k1 and k2 where the

public key decryption under the key k2 inverts the encryption under key k1 as stated in

[YAS96]. This situation could be assumed by replacing this relation by an ASSUME

statement.

In the Secure Protocol specification, five of these assumptions are used in order

to get the final predicate as TRUE. The predicate:

(dp[ep[CA.macCA]CA.Kca-]B.Kca+) == B.macCA

will be reduced to TRUE with the given assumption:

X: assume(global.decrypt(B.Kca+,CA.Kca-));

With this assumption (line 1, Appendix B), the relationship between CA’s public

key in B’s address space (B.Kca+) and CA’s private key in CA’s address space

(CA.Kca-) is assumed that the decryption under B.Kca+ inverts the encryption under

CA.Kca-. In this case we can assume that the encryption of macCA, which is the MD

function of certificate contents in CA’s address space, under Kca- could be decrypt as

macCA in B’s address space under Kca+ in B’s address space as seen above.

The similar situation could be observed with the following assumption (line 2,

Appendix B):

X: assume(global.decrypt(M.Kca+,CA.Kca-));

This statement proposes that the relationship between the keys Kca+ in M’s

address space and Kca- in CA’s address space is that decryption under M.Kca+ inverts

encryption under CA.Kca- is reduces to TRUE for the following predicate:

 66

(dp[ep[CA.macCAm]CA.Kca-]M.Kca+) == M.macCAm

where macCAm represents the MD function of certificate contents in CA’s address

space.

Another ASSUME statement is (line 5, Appendix B):

X: assume(global.decrypt(B.Kb-,B.Kb+));

This assumption reduces the following predicate to TRUE:

(dp[ep[M.RN2]M.Kb+] B.Kb-) == B.RN2

In this predicate encryption of random number RN2 in M’s address space under

public key of B in M’s address space, M.Kb+, is decrypted under private key of B under

B’s address space, B.Kb-. The value came out of decryption is equal to RN2 in B’s

address space with the assumption above.

The next ASSUME statement in the predicate is (line 6, Appendix B):

X: assume(global.decrypt(M.Km-,M.Km+));

With this statement it is assumed that there is a relationship between private and

public keys of M (Km+, Km-) such that decryption under Km+ inverts the encryption

under Km-. The predicate below is reduced to TRUE with this ASSUME statement:

M: dp[ep[M.RN1]B.Km+]M.Km- == M.RN1

Where RN1 is a random number generated, encrypted under Km+ and sent to M
by B. As seen above, encrypted RN1 in M’s address space under Km+ in M’s address

space is decrypted under Km- in M’s address space and the result is saved as RN1 in

M’s address space.

Another assumption is (line 7, Appendix B):

 67

X: assume(global.decrypt(B.Kb+,B.Kb-));

This reduces the following predicate to TRUE:

M: M.f1 := dp[ep[B.f1]B.Kb-]M.Kb+;

Where f1 is MD function on RNb, M, CHm and chosen_SKCS in B’s address space.

Here encrypted value of f1 in B’s address space under B.Kb- is decrypted under Kb+ in

M address space and the result stored as f1 to M’s address space. By looking at this

predicate the assumption statement should have the information about Kb- in B’s

address space and Kb+ in M’s address space. On the other hand, as we can see from

the last ASSUME statement above, there is only information about Kb- and Kb+ in B’s

address space. Since Kb+ was originally generated by principal B, sent to CA and

distributed from CA to the other principals needed the information, when B has equal

Kb+ and Kb-, Kb+ in any principal’s address space will be the same and equal to B.Kb-.
Therefore, instead of two different assumptions as seen below that are needed for the

Meadows attack specification (Appendix D), we can have only one assumption as

mentioned above (line 7, Appendix B):

X: assume(global.decrypt(M.Kb+,B.Kb-));

X: assume(global.decrypt(I.Kb+,B.Kb-));

Finally, the last ASSUME statement is (line 8, Appendix B):

X: assume(global.decrypt(M.Km+,M.Km-));

This is very similar to the previous ASSUME statement except the roles of Km+

and Km- are interchanged. By adding this ASSUME statement the verification condition:

B: dp[ep[M.f2]M.Km-]B.Km+ == B.f2

 68

simplifies to TRUE. Here f2 is a MD function of encrypted RN1 and RN2. In this

predicate encrypted f2 in M’s address space under Km- in M’s address space is

decrypted under Km+ in B’s address space and saved as f2 in B’s address space.

In the Secure Protocol specification, there are three ASSERT and three

GASSERT statements used to show the goals of the protocol to be proven. Most of

them are at the end of the specification as mentioned earlier (Appendix B). The first

ASSERT statement is (line 21, Appendix B):

B: assert((B.macB == B.macCA));

Where macCA is the decrypted value, which was encryption of MD function on

certificate contents created in CA’s address space and sent to B’s address space and

macB is MD function on certificate contents in B’s address space. With this ASSERT

statement B expresses the goal that we desired to prove of believing that CA sent the

message by comparing the values one comes from CA but now in B’s address space

and another one derived in B’s address space. When this statement is proved we can

be sure that certificate contents are the original as created by CA and no one in the

middle possibly intercept and change the message.

The next ASSERT statement is (line 35, Appendix B):

M: assert((M.macM == M.macCAm));

This statement is very similar to the previous one, except it compares the values

originated in CA’s and M’s address space and compared when they both are in M’s

address space. macCAm represents the MD function on certificate contents in CA’s

address space and macM represents the MD function on certificate contents in M’s

address space. Proving this goal again confirms that the message is not changed.

The last ASSERT statement expresses the goal as whether the third message

send form M to B is changed as seen below (line 58, Appendix B):

B: assert((B.f3 == B.f2));

 69

where f2 represents the MD function on encrypted RN1 and RN2 values originated in

M’s address space and came to B’s queue and the address space when B received the

third message from M. f3 is MD function again on encrypted values of RN1 and RN2

where originated in B’s address space.

The GASSERT statements shown below create the goal as to whether the

random numbers are the same (line 59 & 60, Appendix B):

X: gassert((M.RN1 == B.RN1));

X: gassert((M.RN2 == B.RN2));

Since this is the assessment of values in different principals, GASSERT is used

instead of ASSERT statement. First GASSERT statement compares RN1 in M’s

address space and B’s address space which was originated by B. Second GASSERT

represents the similar goal that checks whether RN2 value that was created by M in M’s

address space and sent to B. Therefore proving the equality of RN2 in M’s address

space and B’s address space results as that RN1 and RN2 values sent from/to B and M
are the same and not intercepted by an eavesdropper.

Finally, the last GASSERT statement and also last statement of the predicate is

(line 62, Appendix B):

X: gassert((B.sk == M.sk));

The goal of this statement is to compare the session key values, sk, in B’s and

M’s address spaces. Both B and M calculates XOR function on RN1 and RN2 values

and save the result as sk in their address space. Proving this predicate as TRUE means

that protocol reaches its goal since both B and M has the same RN1, RN2 and session

key, sk, values and they are not changed by an intruder.

 CPAL-ES encoding of protocols and attacks is easy to follow and the result of

evolution is very simple to understand. CPAL-ES captures the essence of the protocol

and shows how the attacks work in great detail. Correctness of each field in a data

packet which comes to the receiver by a send operation can be easily checked with

assert/gassert statements. Therefore, receive operation feature of CPAL-ES plays very

 70

important role in doing the detailed comparison of data values which comes from

mobile-to-base and base-to-mobile stations. This way, problems can be easily found as

they occur. In the following sections, some of the attacks on the Secure Protocol are

verified by CPAL-ES evaluation.

4.1.1 CPAL-ES Evaluation of the Meadows Attack on the Secure Protocol

CPAL-ES encoding of the Meadows attack on the Secure Protocol is given in

Appendix C and Appendix D shows the CPAL-ES analysis of the attack. We have

discussed the attack in detail. Here we will only mention the CPAL-ES analysis of the

attack. Recall that ASSERT and ASSUME statements play very important role during

the analyzing process since ASSERT statements are the goals of the predicate, and

ASSUME statements are the predicates that are verified as the truth of the goals. Some

of the ASSUME and ASSERT statement are the same as in the Secure Protocol

encoding. We will not mention them here again since they play the same role in the

protocol. Therefore we will not discuss the assumptions (lines 1&2, Appendix D):

X: assume(global.decrypt(B.Kca+,CA.Kca-));

X: assume(global.decrypt(M.Kca+,CA.Kca-));

One of the ASSUME statement that is not in the Secure Protocol simplification is

(line 3, Appendix D):

X: assume(global.decrypt(I.Kca+,CA.Kca-));

This statement proposes that the relationship between the keys Kca+ in intruder I’s

address space and Kca- in CA’s address space is that decryption under CA.Kca- inverts

encryption under I.Kca+. This assumption reduces to TRUE for the following predicate:

(dp[ep[CA.msgi]CA.Kca-]I.Kca+) == I.macCA

 71

where msgi represents the encrypted public and private keys of I, Ki+ and Ki-, in CA’s

address space and macCA is the decryption of encrypted Ki+ and Ki- under Kca+ in I’s

address space.

The next ASSUME statement that is not in the Secure Protocol encoding is (line

4, Appendix D):

 X: assume((CA.Kica == I.Kica));

With this statement it is assumed that the Kica, the key shared between CA and I, in

CA’s address space and I’s address space are equal in order to result the following

predicate as TRUE:

CA: CA.Ki := d[CA.e[<I.Ki+,I.Ki->]I.Kica]CA.Kica;

As it seen above, CA decrypts the encrypted public and private keys of I, Ki+ and Ki-,
under Kica in CA’s address space and stores it as Ki in CA’s address space.

Similarly following two assumptions is used for reducing the similar predicates, in

B’s and M’s address spaces, to TRUE as explained in the Secure Protocol evaluation

(line 5&6, Appendix D):

X: assume(CA.Kbca == B. Kbca)

X: assume(CA.Kmca == M. Kmca)

As we discussed in the Secure Protocol evaluation, the following predicate

reduces to TRUE with the following assumption (line 7, Appendix D) in Meadows attack:

 B: B.RNm:=dp[B.(ep[M.RNm]M.Kb+)]B.Kb-

 X: assume(global.decrypt(B.Kb-,B.Kb+));

Another ASSUME statement is (line 8, Appendix D):

 X: assume(global.decrypt(B.Kb+,B.Kb-));

 72

where, Kb+ and Kb- are the public and private keys of B and decryption under Kb+

inverts the encryption under Kb- in order to result the following predicates to TRUE,

I: I.f1 := dp[I.ep[B.f1]B.Kb-]I.Kb+;

M: M.f1 := dp[M.ep[B.f1]B.Kb-]M.Kb+;

where f1 is the MD function on encrypted RNb under Ki+, chosen_SKCS, CHm and

List_of_SKCSs in B’s address space. In the first predicate above, encrypted f1 value

under Kb- in B’s address space is decrypted under Kb+ in I’s address space and stored

as f1 in I’s address space. In the second one, same process is done in M’s address

space instead of I’s address space.

The assume statement below is discussed earlier in the Secure Protocol

evaluation (line 9, Appendix D):

X: assume(global.decrypt(M.Km+,M.Km-));

This time it reduces the different predicate to TRUE as seen below:

I: I.f2 := dp[I.ep[M.f2]M.Km-]I.Km+

where f2 Km- and Km+ are the private and public keys of M and f2 in M’s address

space is MD function on encrypted RNm under Kbi+ in M’s address space and

encrypted RNb under Ki+ in B’s address space. Here encrypted f2 value under Km- in

M’s address space is decrypted under Km+ in I’s address space.

Finally the last two assume statements are (lines 10&11, Appendix D):

 X: assume(global.decrypt(I.Ki+,I.Ki-));

 X: assume(global.decrypt(I.Ki-,I.Ki+));

It is proposed that the relationship between the keys Ki+ and Ki- in intruder I’s address

space is that decryption under I.Ki+, inverts encryption under I.Ki- or vise versa. The

 73

following predicates (lines 82&109, Appendix D): are reduced to TRUE with the

assumptions above:

I: I.RNb := dp[I.ep[B.RNb]B.Ki+]I.Ki-;

B: B.f3 := dp[B.ep[I.f2']I.Ki]B.Ki+;

where RNb is the random number generated by B, encrypted under Ki+ in B’s address

space and decrypted under Ki- and stored as RNb in I’s address space. In the second

predicate f2’ represents the MD function on encrypted RNm and encrypted RNb values

in I’s address space.

There are number of ASSERT statements in Meadows attack specification.

Again we will only discuss the once are not in The Secure Protocol specifications. The

first ASSERT statement is (line 25, Appendix D):

 I: assert((I.macI == I.macCA));

Where macI is the MD function on certificate contents in I’s address space and macCA

is the decryption of MD function on certificate contents under CA’s public key Kca+ that

comes from CA’s address space. Here I checks whether he receives the correct version

of certificate contents.

In the next ASSERT statement I does another similar checking operation on

certificate contents by comparing macMI and macCAmi in I’s address space as seen

below (line 63, Appendix D):

 I: assert((I.macMI == I.macCAmi));

Here macMI is the MD function on certificate contents in I’s address space and

macCAmi is the decryption of encrypted MD function on certificate contents for M under

public key of CA, Kca+ in I’s address space.

Following is the next ASSERT statement in Meadows attack specification (line

71, Appendix D):

 74

 B: assert((B.macIB == B.macCAib));

where macIB represents MD function on certificate contents of I in B’s address space

and macCAib represents MD function on certificate contents of I in B’s address space.

Here again the certificate contents in B’s address space is checked to see whether it is

the correct version. Another check is done on the certificate contents of B in I’s address

space, macBI, and decryption of the encrypted certificate contents of B in I’s address

space, macCAbi as seen below (line 81, Appendix D):

 I: assert((I.macBI == I.macCAbi));

 The following statement checks f1 and f1' values in I’s address space (line 85,

Appendix D):

 I: assert((I.f1' == I.f1));

where f1' is MD function on encrypted RNb, chosen key, CHm and the list of keys in I’s

address space and f1 is the decryption of encrypted group of values in B’s address

space as listed above in I’s address space.

 Following is another ASSERT statement where macBM is MD function on

certificate contents in M’s address space and macCAbm is decryption of encrypted MD

function on certificate contents of B in M’s address space (Line 93, Appendix D):

 M: assert((M.macBM == M.macCAbm));

These ASSERT statements reflect the knowledge that an intruder has the

information such as certificate contents for the statements above. With this, l assert

statement, M compares the values as seen above. If macBM in M’s address space is

equal to macCAbm in M’s address space then, certificate content is not changed by an

intruder. On the other hand we will not be sure that whether the intruder is only listener

and has gotten the information without changing it.

The following three ASSERT statements are the next ones in Meadows attack on

 75

the Secure Protocol specifications (Lines 96,103 & 111, Appendix D):

 M: assert((M.f1' == M.f1));

 I: assert((I.f2' == I.f2));

 B: assert((B.f3' == B.f3));

With the first ASSERT statement, M compares the f1' and f1 values in her address

space where f1' is MD function on encrypted RNb, chosen key, CHm, and list of keys

and f1 is decryption of encrypted f1 value that comes from I originally from B and

includes the MD function on list of variables as mentioned above. The next statement

shows whether f2' and f2 values in I’s address space are equal. Here, f2' is MD function

on encrypted RNm and RNb values and f2 is decryption of encrypted MD function on

encrypted RNm and RNb originally in M’s address space, sent from M to B but received

by I therefore in I’s address space. Finally the last one checks whether f3' and f3 are

equal where f3' represents again MD function on encrypted random numbers RNb and

RNm in B’s address space and f3 is decryption of encrypted f2' that was sent from I to B

and now in B’s address space.

The last two assert statements are the last ones in the Secure Protocol Meadows attack

specification that are similar to the last two statements in the Secure Protocol

specification (Lines 112 & 113, Appendix D):

 X: gassert(M.RNm == B.RNm);

 X: gassert(I.RNb == B.RNb);

Recall that GASSERT statements are used when the values in two different principals

are compared. Here in the first GASSERT statement, RNm in M’s address space and

RNm in B’s address space are compared to see whether they are the same values. In

the second statement RNb in I’s address space and RNb in B’s address space are

checked to see if both B and I are the same values.

 After starting with the last predicate and checking all the ASSUME and ASSERT

statements in the specifications, verification conditions for Meadows attack simplifies to

TRUE. With this result, CPAL-ES evaluation of the Secure Protocol captures the core of

 76

the protocol, provides a detailed evaluation and proves the Meadows attack on the

Secure Protocol.

 When we run the Meadows attack, all the comparisons with assert/gassert
statements in the protocol encoding prove the correctness of data fields in the packets

that comes from base-to-mobile stations or vice versa. This result confirms that an

intruder can spoof the message sent from mobile-to-base and base-to-mobile stations.

Then, neither base station nor mobile station can prove that the message is spoofed by

an intruder because the intruder impersonates C and B. In other words, even the mobile

host M sends the first message to the base station B, when B receives the first

message that comes from the intruder he thinks that it is coming from C who B thinks

that is a certified host since it has a certificate from CA, Cert_C. Then he starts

communicating with C by sending his certificate, Cert_B, and the random number RNb

he creates to construct the session key. This way, the intruder gets some information

but not all that is necessary to calculate the session key. On the other hand, when M

gets the reply message from the intruder, the followings happen:

• M thinks that the message came from B since the intruder sends B’s certificate,

Cert_B as his certificate,

• In this case, M thinks that she received the random number, RNb, as it is

encrypted under M’s public key, Km+,

• Then, she tries to decrypt it under her private key, Km-,

• In fact, RNb is encrypted under C’s public key, Kc+, by the intruder

impersonating C.

• Then, mobile station M thinks that the random number comes from B is the

decrypted value (dp[ep[RNb]Kc+]Km-).

• Therefore M gets the wrong random number in order to calculate the session

key.

 As a result, even the intruder does not get all the necessary information in order

to get the session key, it causes the mobile station M to get the wrong random value

and therefore wrong session key. As a result, the Secure Protocol becomes vulnerable

to Meadows attack as it is proved by CPAL-ES evaluation.

 77

4.1.2 CPAL-ES Evaluation of the Boyd & Mathuria Attack on the Secure
Protocol

CPAL-ES encoding of the Boyd&Mathuria Attack on the Secure Protocol is given

in Appendix E and Appendix F shows the CPAL-ES evaluation of the attack.

As mentioned in Chapter 2.1.4, we check the ASSUME and ASSERT statements

in order to evaluate the Boyd&Mathuria attack. All of the assumptions in the

specification of Boyd&Mathuria attack are discussed either in the Secure Protocol

specification or Meadows attack on the Secure Protocol specification since

Boyd&Mathuria attack is similar to the Meadows attack. Therefore, we will not discuss

these assumptions here again. On the other hand, some of the predicates that are

reduced to TRUE by these assumptions are different predicates than they are in the

Secure Protocol and Meadows attack Therefore we will talk about them here again.

The following assumptions are already discussed in Meadows attack and some

in the Secure Protocol (lines 1-6, Appendix F):

X: assume(global.decrypt(B.Kca+,CA.Kca-));

X: assume(global.decrypt(M.Kca+,CA.Kca-));

X: assume(global.decrypt(I.Kca+,CA.Kca-));

X: assume((CA.Kica == I.Kica));

X: assume((CA.Kbca == B.Kbca));

X: assume((CA.Kmca == M.Kmca));

The next ASSUME statement is also in the Secure Protocol specification but it

reduces the following predicate to TRUE which is almost the same predicate used in the

Secure Protocol specification where only RNb is used instead of RN2 (line 7, Appendix

F):

X: assume(global.decrypt(M.Km-,M.Km+));

M: M.RNb := dp[ep[B.RNb]B.Km+]M.Km-

 78

Another assumption is (line 8, Appendix F) the same as in Meadows attack but f1

in the predicate is different here:

X: assume(global.decrypt(B.Kb+,B.Kb-));

where there is a relation between the public and private keys of B, Kb+ and Kb-, such

that the decryption under Kb+ in B’s address space inverts the encryption with Kb- in

B’s address space. This assumption reduces the following predicate to TRUE:

I: I.f1 := dp[I.ep[B.f1]B.Kb-]I.Kb+;

where f1 is the MD function on encrypted RNb under Km+, chosen_SKCS, CHi and

List_of_SKCSs in B’s address space. Here encrypted f1 value under Kb- in B’s address

space is decrypted under Kb+ in I’s address space and stored as f1 in I’s address

space.

Following is the next ASSUME statement in Boyd&Mathuria attack specification

where there is a relation between public and private keys of M, Km+ and Km-, that

decryption under Km+ inverts the encryption under Km- (line 9, Appendix F):

X: assume(global.decrypt(M.Km+,M.Km-));

This assumption reduces the predicate below to TRUE:

B: B.f2 := dp[ep[M.f2]M.Km-]B.Km+

where f2 is the MD function on encrypted RNm under Ki+ in M’s address space and

encrypted RNb under Kb+ in M’s address space.

The next assumption is (line 10, Appendix F):

X: assume(global.decrypt(I.Ki+,I.Ki-));

 79

where the relation between public and private keys of I, Ki+ and Ki-, is that decryption

under Ki+ inverts the encryption under Ki-. Following predicate is reduced to TRUE with

this assumption:

M: M.f1:= dp[ep[I.f1]I.Ki-]M.Ki+;

Here f1 is a MD function on encrypted RNb under Km+ originally in B’s address space,

but later stored in I’s address space, chosen_SKCS, CHm and List_of_SKCSs in I’s

address space. The result is stored as f1 in M’s address space.

Finally the last assumption is (line 11, Appendix F) that reduces the predicate

followed by the assumption is reduced to TRUE:

X: assume(global.decrypt(I.Ki-,I.Ki+));

I: I.RNm := dp[ep[M.RNm] M.Ki+]I.Ki-;

where encrypted RNm under Ki+ in M’s address space is decrypted under Ki- in I’s

address space and stored as RNm in I’s address space. This decryption under Ki-
inverts the encryption under Ki+.

There are few ASSERT statements that are the same as in Meadows attack

(lines 25, 39, 55, 73, 84, 112 and 114, Appendix F):

I: assert((I.macI == I.macCA));

B: assert((B.macB == B.macCA));

M: assert((M.macM == M.macCAm));

I: assert((I.macBI == I.macCAbi));

I: assert((I.macMI == I.macCAmi)

X: gassert((M.RNb == B.RNb));

X: assert((B.sk == M.sk));

We will not discuss these again here. The first ASSERT statement that is not in the

Secure Protocol and Meadows attack is (line 63, Appendix F):

 80

B: assert((B.macMB == B.macCAmb));

where macMB in B’s address space is MD function on certificate contents of M in B’s

address space and macCAmb is the decryption of the encrypted certificate contents of

M under Kca+ in B’s address space. With this assertion B checks the CertM_contents in

its own address space but came there earlier from I and certificate contents of M comes

from CA but actually from intruder. If these are the different values, than I changes the

certificate contents of M.

The next assertion is (line 76, Appendix F):

I: assert((I.f1' == I.f1));

Here f1' in I’s address space is the MD function on encrypted RNb under Km+ in B’s

address space, chosen_SKCS, CHi, List_of_SKCSs in I’s address space and f1 is MD

function on encrypted RNb under Km+ in B’s address space, chosen_SKCS, CHi,
List_of_SKCSs in B’s address space. I checks these to see if he receives the correct

version of MD functions.

Another assertion is (line 94, Appendix F):

M: assert((M.macIM == M.macCAim));

With this ASSERT statement M checks macIM and macCAim values in M’s address

space where macIM is MD function on CertI_contents in M’s address space and

macCAim is decryption of encrypted MD function on CertI_contents in M’s address

space under Kca+.

Lastly, the next assertion is (line 111, Appendix F):

assert((B.f3' == B.f3));

where f3' is MD function on encrypted RNm under Ki+, and encrypted RNb under Km+

in B’s address space and f3 is decryption of encrypted f2 under Km+ in M’s address

space that f2 represents encryption on RNm under Ki+ and encryption of RNb under

 81

Km+ in M’s address space. With this comparison B checks to see whether MD function

in his address space is the same as MD function in M’s address space. This way an

attacker trying to spoof the MD functions could be caught.

Finally, we could also add the following assertions to the Boyd & Mathuria

specification after the lines 97 and 105 (Appendix F):

M:assert (M.f1==M.f1');

M:assert (M.f2==M.f2');

Where f1' is MD function on encrypted RNb under Km+ in M’s address space,

chosen_SKCS, CHm, and List_of_SKCSs in M’s address space and f1 is decryption of

encrypted f1 under Ki+ in M’s address space. Here encrypted f1 is encryption of MD

function on encrypted RNb, chosen_SKCS, CHm, List_of_SKCSs in I’s address space.

f2 is decryption of encrypted f2 which is MD function on encrypted RNm under Ki+ and

encrypted RNb under Km+. f2' is MD function on encrypted RNm under Ki+ and

encrypted RNb under Km+ in M’s address space.

Encoding works with them also and reduces the result of TRUE but in this case

computation time increases. Therefore we did not add these in our specification.

In the end, going back from last predicate to the first predicate, all the evaluation

of the Boyd&Mathuria Attack on the Secure Protocol reduces to TRUE meaning that

the Secure Protocol is vulnerable to the Boyd&Mathuria attack.

CPAL-ES encoding of the Boyd&Mathuria attack shows the attack in great detail.

All the values in the data packets are checked with assert/gassert statements in detail

by the received party. The evaluation clearly shows that TRUE result of all of the

assert/gassert predicates result in final predicate as TRUE which confirms the attack.

When we run the Boyd&Mathuria attack encoded with CPAL-ES, we get a similar

result as we get from Meadows attack. In Boyd&Mathuria attack, the intruder spoofs B

by intercepting the message that comes from mobile station M. M communicates with C

whom M thinks that of a certified party. B thinks that he is communicating with M but

actually communicating with the intruder C. The intruder that impersonates C receives

M’s certificate, Cert_M, and the random number cretated by M, RNm, in the message

sent from the mobile host M to the intruder. Then, the intruder keeps Cert_M in the

 82

message, changes the challenge value with her own challenge value, CHi, and sends

the message to the base station B. Therefore, when B receives the message he thinks

that it is coming from M. He encrypts his random value, RNb, under M’s public key,

Km+, since he thinks that M will get his message. He also puts the same encrypted

value along with his challenge value CHi, the list of keys, and chosen key in a hash

function and signs it with his private key, Kb-. When C receives the packet, she keeps

almost the same information in the packet as it comes from B, except she replaces

Cert_B with Cert_C, and CHi with CHm, and signs the values under Ki-. When M

receives the message, she thinks that the message comes from certified host C and

replies back to him with her encrypted RNm value under Ki+ along with an encrypted

RNm under Ki+ and encrypted RNb under Km+. Consequently she signs these two

encryptions under Km-. Finally, C forwards the same packet without changing it to the

base station B. In this case, when B receives the packet he thinks that the message

comes from M and tries to decrypt the encrypted RNm value under Kb-, and considers

the result as random number RNm (actually it is d[e[RNm]Ki+]Kmb- not RNm). In reality,

this value was encrypted under Ki+ and it should have been decrypted under Ki-. At this

time, B has the wrong RNm value. As a result, the base station B has the false RNm

value and therefore computes a false session key. This proves that the Secure Protocol

is vulnerable to Boyd&Mathuria attack. A solution to this attack is given in the following

section.

4.1.3 CPAL-ES Evaluation of the Solution to the Boyd&Mathuria Attack on
the Secure Protocol

CPAL-ES encoding of the solution to Boyd&Mathuria Attack on the Secure

Protocol is given in Appendix G and Appendix H shows the CPAL-ES evaluation of the

solution to the attack.

Again some of the assumptions and assertions in the solution of Boyd&Mathuria

Attack are already discussed with evaluation of either the Secure Protocol, or Meadows

Attack, or Boyd&Mathuria attack. Therefore the following assumptions and assertions

will not be mentioned again (lines 1, 2, 3, 4, 5, 6, 22, 36, 62, 63, 65, Appendix H):

 83

X: assume(global.decrypt(B.Kca+,CA.Kca-));

X: assume(global.decrypt(M.Kca+,CA.Kca-));

X: assume((CA.Kbca == B.Kbca));

X: assume((CA.Kmca == M.Kmca));

X: assume(global.decrypt(B.Kb-,B.Kb+));

X: assume(global.decrypt(M.Km-,M.Km+));

B: assert((B.macB == B.macCA));

M: assert((M.macM == M.macCAm

X: gassert((M.RNb == B.RNb));

X: gassert((M.RNm == B.RNm));

X: gassert((B.sk == M.sk)); --in sec. pro.

The first assumption different than all evaluations discussed earlier is (line 7,

Appendix H):

X: assume(global.decrypt(B.Kb+,B.Kb-));

Where there is a relation such that decryption under Kb+ inverts the encryption under

Kb-. This assumption reduces the following predicate to TRUE:

M: M.f1 := dp[ep[B.f1]B.Kb-]M.Kb+];

Here f1 in B’s address space is MD function on RNb, M, CHm and chosen_SKCS in B’s
address space. As seen above, encrypted f1 under Kb- in B’s address space is

decrypted under Kb+ in M’s address space and the result is stored as f1 in M’s address

space. As we mentioned earlier we assumed the relation between Kb+ and Kb- in B’s

address space. On the other hand, we need a relation between Kb+ in M’s address

space and Kb- in B’s address space. This is fine since B sends both keys to CA which is

a trusted authority and all the principals get this information in the certificates from CA.

 84

Next is the last assumption in specification of solution to Boyd&Mathuria attack

that assumes the relation where decryption under Km+ inverts the encryption under Km-
(line 8, Appendix H):

X: assume(global.decrypt(M.Km+,M.Km-));

Following predicate is reduced to TRUE with this assumption:

B: B.f2 := dp[ep[M.f2]M.Km-]B.Km+;

where f2 in M’s address space is MD function on RNm, B, and CHb in M’s address

space. Encryption of f2 under Km- in M’s address space is decrypted under Km+ in B’s

address space and the result stored as f2 in B’s address space.

Next two assertions are the only different assertions that are not mentioned

earlier (lines 52 and 61, Appendix H):

M: assert((M.f1' == M.f1));

B: assert((B.f2' == B.f2));

With the first ASSERT statement f1' and f1 values in M’s address space are compared.

Here f1' is MD function on RNb, M, CHm,chosen_SKCS in M’s address space and f1 is

decryption of encrypted B.f1 under Kb+ in M’s address space where B.f1 is MD function

on Rnb, M, CHm, chosen_SKCS in B’s address space.

Second ASSERT statement above checks f2' and f2 values in B’s address space

where f2' is MD function on RNm, B and CHb in B’s address space and f2 is decryption

of encrypted M.f2 under Km+ in B’s address space. Here M.f2 is MD function on RNm,

B, and CHb in M’s address space. By comparing f2 values in M’s and B’s address

spaces B is aware of an attack by any intruder.

Finally, after all these evaluations from the last predicate to the first predicate, the

evaluation of the solution to Boyd & Mathuria attack on the Secure Protocol of Aziz &

Diffie reduces the result as TRUE. This proves that the protocol is not vulnerable to

Boyd&Mathuria attack with the solution provided (RNb is signed instead of e[RNb]Km+

 85

in the 2nd and 3rd messages) (see Figure 3.1.8). Because the intruder C has the

encrypted RNb value not RNb value, she cannot use RNb in the signature and can

easily be determined as an intruder. CPAL-ES evaluation of this solution shows the

solution to the Boyd&Mathuria attack and provides a detailed output which clearly

shows the communication between the base station and mobile host. This way we can

follow each step easily and see how the solution works. Another result of this solution is

that it is computationally less expensive since there is less encryption in the 3rd

message of the solution than the 3rd message of the original secure protocol.

4.2 CPAL Evaluation of the IEEE 802.1X Protocol

Recall that there are three steps in evaluating the protocols with CPAL: First step

is specifying protocol actions, second step is generating the verification conditions and

the last step is proving these verification conditions [YAS96].

CPAL evaluation of the IEEE 802.1X protocol starts with the correct implementation of

the protocol [Appendix I]. Then, verification conditions are created. All the actions and

relations among the participating principals are checked one by one in order to examine

the system against possible attacks and find the flaws and solutions to them.

IEEE 802.1X protocol uses shared-key authentication method which is also

known as symmetric key cryptography. It is different than the public key cryptography

since there is only one key, shared key, used for encryption and decryption while

different keys used for encryption and decryption with public key cryptography as we

have discussed in the earlier sections. Securing the system with shared key (symmetric

key) cryptography is much easier and cheaper than the securing the system with public

key cryptography. On the other hand, there is a security problem with it. Since the

shared key is needed to be delivered to the recipient for decryption, it could be captured

by an adversary. Sharing the shared key between the clients may not have big security

problems on a limited scale while it could be a big problem on large scale.

Additionally, MAC-address based access control list and the Wires Equivalent

Privacy protocol (WEP) are used to provide confidentiality and security. On the other

hand, the system is still not secure. Therefore, Robust Security Network (RSN) is used

with IEEE 802.1X protocol. RSN provides such a mechanism that it restricts the network

 86

connectivity at MAC layer to the only authorized users via 802.1X. IEEE 802.1X protocol

standard offers an architectural framework on top of authentication methods such as

certificate-based authentication, one-time passwords and smartcards. Additionally, it

provides port-based network access control. Supplicant, authenticator and access

server are the three entities used by RSN to provide security framework as we

mentioned earlier. There is a central authority since this is an infrastructure network.

Access server authenticates the user via access point. Extensible Authentication

Protocol (EAP) which is built on challenge/response communication mechanism is used

to permit different variety of authentication mechanisms. On the other hand, they do not

have any controlling mechanism for integrity and privacy protection. Remote

Authentication Dial-In User Service (RADIUS) protocol provides a mechanism for per

packet authenticity and integrity verification [MIS02].

CPAL-ES encoding of the IEEE 802.1X Protocol is given in Appendix I and

Appendix J shows the CPAL-ES evaluation of the protocol.

After encoding of IEEE 802.1X is done in CPAL-ES, it is checked for syntax

errors easily since CPAL is a parsed language with syntax checker. The final version of

our encoding is syntax free. The next step is translating the specification into verification

condition. Weakest precondition definitions are applied starting from last statement to

the first statement by starting the initial predicate with TRUE value. The definition of

encryption, decryption operators, value catenation and extraction and assumptions are

applied to the predicate when stated in the protocol specification. During the verification

process, CPAL reduces verification for repeated logical conditions with the simple

logical reductions called simplification process. Once this process is done, predicate is

reduced to its simplified form as seen at the end of Appendix-J. Simplification process is

repeated and combined with the encryption. The catenation operation searches until all

of the matches are found and the predicate is reduced to its most simplified form.

The final predicate is the verification condition for the protocol. If it can be proved

from the assumptions, that the final predicate is TRUE, then, protocol is guaranteed to

meet its specified goals. Appendix J has the details of this verification and proving

process. As it is clearly seen in Appendix J, the final predicate of CPAL-ES verification

of IEEE 802.1X comes TRUE at the end of the verification since all the predicates for

ASSUME and ASSERT statements reduced to TRUE. ASSSUME statement is used

 87

when there are ASSUMPTIONS needed to prove the predicates to TRUE. In order to

specify protocol goals to be proven, ASSERT statement is used to express beliefs of

principals in CPAL. GASSERT is used when comparison of values in different principal’s

address space is necessary. ASSERT and ASSUME statements are necessary in order

to prove the protocol correctly. More information about these could be found in the

previous chapter and A.Yasinsac [YAS96].

There are not many assumptions used for the specification of IEEE 802.1X

protocol. Whereas, number of ASSERT and GASSERT statements used in order to

prove the predicates. They are not all necessary in order to run the protocol without any

error. We just wanted to check all the possible predicates to make the final predicate

TRUE.

Since the shared key cryptography is used for authenticating the IEEE 802.1X

protocol, the protocol specification is not complicated. The same shared key is used for

both encryption and decryption. The protocol specifications of IEEE 802.1X protocol

starts with the ASSUME statements. There are only two of them used for 802.1X

protocol (Appendix J, line 1-2):

X: assume((S.kas == A.kas));

X: assume((R.secret == A.secret));

With the first assumption, kas in supplicants address space and kas in access point’s

address space are compared where kas is a shared key between the supplicant and

access point. The second assumption compares the value secret in access point’s

address space and RADIUS’s address space. The shared secret value is shared

between the access point and RADIUS server. It is used for the calculation of User-
Password where the request authenticator and the secret value put through a one way

MD5 hash function for creating a 16 octet digest value and the result is xored with the

password comes from user and used as the User-Password attribute of the Access-
Request message. With these assumptions we assume that both the supplicant and

access point has the same kas, shared key, value and both the RADIUS and access

point has the same secret value.

 88

The list of acronyms used to define the IEEE 802.1X Protocol in CPAL_ES as

follows:

Table 4.2.1 List of acronyms for the Secure Protocol in CPAL

First, the protocol starts with message, which has the encrypted passw value

under kas in supplicant address space, sent from supplicant to access point. Upon

receipt of the msg, A decrypts it. The passw value A has from decryption and the

passwd value S has in its address space are compared with the following GASSERT

statement to see whether or not they are the same values (Appendix J, line 6):

X: gassert((A.passw == S.passw));

Kxy: Shared key between principals X and Y

R: RADIUS (Remote Authentication Dial-In User Service) server

A: Access Point (authenticator)

secret: Shared secret between A & R. Used to calculate u passw

e[<X.A>]X.K: Encryption of A in X’s address space, under key K in
X’s address space
d[X.msg]X.K: Decryption of msg in X’s address space under
key K in X’s address space

RADAccReq: RADIUS Access-Request Message

RADAccChal: decrypt public (public/private key decryption of
public key protocol).

CH: Challenge Value (128 bit random number)

passw: password entered by the user

rs code: Code field for EAP-r message

r_type: Type field for EAP-r message
rs_leng: Length field for EAP-r message

r_type_data: Type-Data filed for EAP-r message

EAPreqID: EAP-Request message asking for Id

rs_id: Identifier field for EAP-r message

Id: client’s identification
EAPrespID: EAP-Response msg responding with Id

RN: Random Number

 S: Supplicant (user, client)
r: request / respond

MD5(Z):The message digest function on contents Z

RADrcs code: Code field for RAD-rc message

RADrcs_auth: authenticator field for RAD-rcs message

RADrcs_leng: Length field for RAD-rc message

RADrcs attr: attributes filed for RAD-rcs message

RADrcs_id: Identifier field for RAD-rc message

rcs: request / challenge / success(accept)

u name: user name field for RADrcs-attr field

u_paswd: user_password field for RADrcs-attr field

client id: user-identifier field for RADrcs-attr field

port_id: port number field for RADrcs-attr field

s: success

EAPsucc: EAP-Success message

RADaccept: RADIUS-Accept message

I: intruder (adversary, attacker)

XOR(M,N): xored value of M and N msg: message

 89

Then, A creates EAPreqID in her own address space and sends it to S. When S

receives the message first she parses the message into individual variables. After this,

each variable in S’s address space and A’s address space are compared with the

following statements to find if there is an attacker who changed any of the values sent

(Appendix J, lines 11-16):

X: gassert((A.EAPreqID == S.EAPreqID));

X: gassert((A.req_code == S.req_code));

X: gassert((A.req_id == S.req_id));

X: gassert((A.req_leng == S.req_leng));

X: gassert((A.req_type == S.req_type));

X: gassert((A.req_type_data == S.req_type_data));

Next, S sets the identifier and type fields of the respond message that she is

planning to send same as those that come from A with the request message and she

creates the response message and sent it to A. Upon receipt of the message, A parses

the packet into individual variables, stores in her address space and compares each

one of them with the ones in S’s address space against to attacks. This process can be

seen from the following statements (Appendix J, lines 23-30):

X: gassert((S.EAPrespID == A.EAPrespID));

X: gassert((S.res_code == A.res_code));

X: gassert((S.res_id == A.res_id));

X: gassert((S.res_leng == A.res_leng));

X: gassert((S.res_type == A.res_type));

X: gassert((S.res_type_data == A.res_type_data));

A: assert((A.res_id == A.req_id));

A: assert((A.res_type == A.req_type));

In the next step, A calculates the user password. First, she generates the random

number RN1, creates the MD5 message digest function on RN1 and stores the result as

 90

RADreg1_auth which is going to be used as request authenticator field for the next

request message. Then another MD5 function is created on RADreg1_auth and secret
values and it is xored with the passw value and the result is stored as u_passw1 in A’s

address space to use as user password attribute in the next request message. Then the

attributes field of the request message is created by including the necessary attributes

along with the EAP message A receives from S in the previous response message and

MD5 function on EAP message is also attached for security reasons. After all these, A

sets the RADAccReq1 message including the authenticator and attributes fields we

have just mentioned and sends the request message to R. When R receives the

message, first he parses the whole packet and then the attributes field. Next R

calculates a new MD function on EAPrespID it received with the package in the

attributes field and then compares this value with the one he received in the attributes

field. Having different MD5 values mean of an attack. R also compares each individual

value comes into his address space and the ones in A’s address space. Again having

unmatched value means of an attack. Following statements are used for this purpose

(Appendix J, lines 43-56):

X: gassert((A.RADAccReq1 == R.RADAccReq1));

X: gassert((A.RADreq_code == R.RADreq_code));

X: gassert((A.RADreq1_id == R.RADreq1_id));

X: gassert((A.RADreq1_leng == R.RADreq1_leng));

X: gassert((A.RADreq1_auth == R.RADreq1_auth));

X: gassert((A.RADreq1_attr == R.RADreq1_attr));

X: gassert((A.u_name == R.u_name));

X: gassert((A.CT_u_passw == R.CT_u_passw));

X: gassert((A.client_id == R.client_id));

X: gassert((A.port_id == R.port_id));

X: gassert((A.EAPrespID == R.EAPrespID));

X: gassert((S.EAPrespID == R.EAPrespID));

X: gassert((A.CT_EAPrespID == R.CT_EAPrespID));

R: assert((R.CT_EAPrespID' == R.CT_EAPrespID));

 91

Additionally EAPrespID in R’s address space and S’s address space are also checked

to see whether or not it is the same EAPrespID message S sent to R through A.
Next step is creating a new message as response to a request comes from A.

First R calculates an MD5 value on the request message he sent previously to A

(RADAccReq1) and the secret value in R’s address space and stores the result as

authenticator field for the response message (RADResp1_auth). Then he creates a new

EAP request message (EAPreq1) and MD function on it, and then the attributes field for

response message, which is going to be a challenge including the EAPreq1 and MD5

on it. After that, he sets the identifier field of the challenge message same as the

identifier field of the previous request message comes from A (RADreq1). Then he

creates the challenge message (RADAccChal) by including the RADResp1_auth and

RADchall-attr fields and sent it to A.

When A creates the challenge message, again she parses the package into

individual variables and creates her own authenticator value by calculating a new MD5
function on RADAccReq1 and secret values and also calculates another MD5 on

EAPReq1 since she has these values earlier. Then compares the results with the ones

come with the challenge message in order the check whether or not they are changed

by an adversary. Additionally, all the other variables came into A’s address space are

compared with the ones in R’s address space with the following GASSERT statements

(Appendix J, lines 70-84):

X: gassert((R.RADAccChal == A.RADAccChal));

X: gassert((R.RADchal_code == A.RADchal_code));

X: gassert((R.RADchal_id == A.RADchal_id));

X: gassert((R.RADchal_leng == A.RADchal_leng));

X: gassert((R.RADresp1_auth == A.RADresp1_auth));

X: gassert((R.RADchal_attr == A.RADchal_attr));

X: gassert((R.u_name == A.u_name));

X: gassert((R.CT_u_passw == A.CT_u_passw));

X: gassert((R.client_id == A.client_id));

X: gassert((R.port_id == A.port_id));

X: gassert((R.EAPreq1 == A.EAPreq1));

 92

X: gassert((R.CT_EAPreq1 == A.CT_EAPreq1));

A: assert((A.RADreq1_id == A.RADchal_id));

A: assert((A.RADresp1_auth == A.RADresp1_auth'));

A: assert((A.CT_EAPreq1 == A.CT_EAPreq1'));

A takes the EAPreq1 field that comes with the challenge message from R and

sends it to S as next message. Upon receipt of the EAPReq1 message, S parses it into

individual pieces again and compares each value in her address space with the ones in

A’s address space by using the following statements (Appendix J, lines 88-93):

X: gassert((A.EAPreq1 == S.EAPreq1));

X: gassert((A.req_code == S.req_code));

X: gassert((A.req1_id == S.req1_id));

X: gassert((A.req1_leng == S.req1_leng));

X: gassert((A.req1_type == S.req1_type));

X: gassert((A.req1_type_data == S.req1_type_data));

Then S sets the identifier and type fields for the next response message same as

the ones that come with the request message, creates the EAPresp1 message and

sends it to A. When A receives this message again she parses the packet and

compares each value in her address space with the ones in S’s address space as seen

on the following statements (Appendix J, lines 100-107):

X: gassert((S.EAPresp1 == A.EAPresp1));

X: gassert((S.res_code == A.res_code));

X: gassert((S.res1_id == A.res1_id));

X: gassert((S.res1_leng == A.res1_leng));

X: gassert((S.res1_type == A.res1_type));

X: gassert((S.res1_type_data == A.res1_type_data));

A: assert((A.res1_id == A.req1_id));

A: assert((A.res1_type == A.req1_type));

 93

Next, A starts setting another request message to sent R. First, she generates a

new random number (RN2), calculates MD5 function on this value and stores it as

RADreq2_auth (authenticator field for second request message). A calculates another

MD5 message digest function on RADreq2_auth and the secret value she has. Then it

xores this MD5 function and user’s password and stores the result as a new

password,u_passw2, for User-Password attribute in the packet and calculates an MD5

message digest function on u_passw2 and another MD5 on EAPresp1. Next, she sets

the attributes field by including the necessary fields along with EAPresp1 and MD5

function on EAPresp1.

The next step is creating the RADAccReq2 message including the authenticator,

attributes field and all the others. Once it is ready, A sends the second request message

to R. Upon receipt of the message, first R parses everything in the package and the

attributes field. Next, he calculates a new MD5 function on EAPresp1 in his own

address space and compares this one with EAPresp1 in A’s address space. R checks

all the values in his address space with the ones in A’s address space. EAPresp1 in R’s

address space is also compared with the EAPres1 in S’s address space. Once all the

following GASSERT statements (Appendix J, lines 120-133) are proved than R gets

ready for the next response message:

X: gassert((A.RADAccReq2 == R.RADAccReq2));

X: gassert((A.RADreq_code == R.RADreq_code));

X: gassert((A.RADreq2_id == R.RADreq2_id));

X: gassert((A.RADreq2_leng == R.RADreq2_leng));

X: gassert((A.RADreq2_auth == R.RADreq2_auth));

X: gassert((A.RADreq2_attr == R.RADreq2_attr));

X: gassert((A.u_name == R.u_name));

X: gassert((A.CT_u_passw2 == R.CT_u_passw2));

X: gassert((A.client_id == R.client_id));

X: gassert((A.port_id == R.port_id));

X: gassert((A.EAPresp1 == R.EAPresp1));

X: gassert((S.EAPresp1 == R.EAPresp1));

X: gassert((A.CT_EAPresp1 == R.CT_EAPresp1));

 94

R: assert((R.CT_EAPresp1' == R.CT_EAPresp1));

If R needs more information from S through A in order to authenticate S, then

above communication between S, A and R repeated. Once S is accepted by R, then R
needs to send the accept message. First, R calculates MD5 message digest function on

RADAccReq2 and secret value in R’s address space. Then creates the EAPsucc
message and MD function on it and sets the attributes field by including EAPSucc and

MD function on EAPSucc. Next, he sets the identifier field of RADsucc message and

identifier filed of RADreq2 message. Finally sets the RADaccept message including all

the necessary fields along with the RADsucc-auth and RADsucc_attr and sends it to A.

Once A receives the message, she parses to individual pieces. Then she calculates

another MD5 digest function on RADAccReq2 and secret values in her address space

and MD message digest function on it. She calculates another MD5 on EAPSucc in A’s

address space. At the end of all these, A checks each individual variable came into her

address book, with the ones are in R’s address space as seen o the following

statements (Appendix J, lines 147-158):

X: gassert((R.RADaccept == A.RADaccept));

X: gassert((R.RADsucc_code == A.RADsucc_code));

X: gassert((R.RADsucc_id == A.RADsucc_id));

X: gassert((R.RADsucc_leng == A.RADsucc_leng));

X: gassert((R.RADsucc_auth == A.RADsucc_auth));

X: gassert((R.RADsucc_attr == A.RADsucc_attr));

X: gassert((R.u_name == A.u_name));

X: gassert((R.CT_u_passw2 == A.CT_u_passw2));

X: gassert((R.client_id == A.client_id));

X: gassert((R.port_id == A.port_id));

X: gassert((R.EAPsucc == A.EAPsucc));

X: gassert((R.CT_EAPsucc == A.CT_EAPsucc));

Additionally, A checks whether or not RADreq2_id and RADsuccID,

RADsuccc_auth come with the message and RADsuccc_auth’ (calculated in A’s

 95

address space), MD5 on AEPsucc comes to A’s address space with the message and

EAPsucc’ calculated in A’s address space are matches. The ASSERT statements used

for this purpose is below (Appendix J, lines 159-161):

A: assert((A.RADreq2_id == A.RADsucc_id));

A: assert((A.RADsucc_auth == A.RADsucc_auth'));

A: assert((A.CT_EAPsucc == A.CT_EAPsucc'));

Finally, A takes the EAPsucc message that comes with the attributes field for the

RADAccept message, and sends it to the S as last message. When S receives it, first

she parses message into individual items as usual, and compares each item that comes

into her address from A with the ones in A’s address space as it can be seen from the

following GASSERT statements (Appendix J, lines-165-169):

X: gassert((A.EAPsucc == S.EAPsucc));

X: gassert((R.EAPsucc == S.EAPsucc));

X: gassert((A.succ_code == S.succ_code));

X: gassert((A.succ_id == S.succ_id));

X: gassert((A.succ_leng == S.succ_leng));

At the end of the evaluation of IEEE 802.1X protocol, the result reduces to

TRUE. This means that the CPAL-ES evaluation of IEEE 802.1X protocol works but

does not guarantee that it is not vulnerable to possible attacks. CPAL-ES captures the

essence of the protocol and helps the analyzer understand the protocol in great detail. It

shows how the attacks work in detail in the following sections.

4.2.1 CPAL Evaluation of the Man In the Middle (MIM) Attack on the IEEE
802.1X Protocol

CPAL-ES encoding of the MIM attack on the IEEE 802.1X Protocol is given in

Appendix K. Appendix L shows the CPAL-ES analysis of the attack. Since we have

discussed the attack in detail earlier, here we will only mention the CPAL-ES analysis of

 96

the attack. CPAL encoding of MIM attack is almost the same as CPAL encoding the

IEEE.1X Protocol except the last message sent from A to S. Hence, we will not discuss

the other messages here again.

Recall that ASSERT and ASSUME statements are very important during the

analyzing process since ASSERT statements are the goals of the predicate, and

ASSUME statements are the predicates verified as the truth of the goals. Therefore, we

will talk about the ASSUME and ASSERT statements during the evaluation process.

Again there are only two assumptions needed in order to run the program on MIM

protocol attack. These are the same assumptions we mentioned earlier for evolution of

the IEEE 802.1X protocol.

The last message sent from A to S could be eavesdropped by an adversary

since there is no integrity (Appendix L). Intruder I forges the message on behalf of the

authenticator (access point) instead of S receiving it and gets all the traffic from S. He

gets information from incepted message into his address space by parsing the

message. I checks the messages to see whether or not he received them from A or R’s

address spaces with the following GASSERT statements (Appendix L, lines 140-144):

X: gassert((A.EAPsucc == I.EAPsucc));

X: gassert((R.EAPsucc == I.EAPsucc));

X: gassert((A.succ_code == I.succ_code));

X: gassert((A.succ_id == I.succ_id));

X: gassert((A.succ_leng == I.succ_leng));

Then I forward the message to S, and when S receives it she does not know that

it is coming from an attacker since she trusts I, and thinks that he is the authenticator
(access point). Then S parses the message into single variables and checks them.

The CPAL-ES evaluation of MIM attack on IEEE 802.1X protocol reduces the

result of TRUE which means that MIM attack works. CPAL-ES evaluation of MIM attack

shows how the attack works as seen in Appendix L, lines 137-152. Access point A

sends the EAP success (EAPsucc) message to the supplicant S after he receives the

RADIUS access accept message (RADaccept) from authentication server RADIUS R.

EAPsucc message could be forged by an adversary due to lack of two-way

 97

authentication (there is only one-way authentication of supplicant S to the access point

A). The attacker acts as an access point to the supplicant S and supplicant to the

access point A. This result proves that IEEE 802.1X protocol is not secure and

vulnerable to MIM attack. Next section provides a solution to this attack.

4.2.2 CPAL Evaluation of the solution to the Man-in-the-Middle (MIM)
Attack on the IEEE 802.1X Protocol

 CPAL encoding of the solution to the MIM attack is shown in Appendix M and

Appendix N shows the evaluation of the solution on the MIM attack.

As a solution to MIM attack on IEEE 802.1X protocol, the last message sent from

A to S could be changed as following (Appendix N, lines 137-142):

A: A.succmsg := <A.EAPsucc,f.MD5(A.EAPsucc)>;

A: => S(A.succmsg);

S: <-(S.succmsg);

S: (S.EAPsucc,S.CT_forsucc) := S.succmsg;

S: (S.succ_code,S.succ_id,S.succ_leng) := S.EAPsucc;

S: S.succmsg' := <S.EAPsucc,f.MD5(S.EAPsucc)>;

where MD5 message digest function on EAPsucc message is sent along with EAPsucc
message. If an adversary intercepts the message and changes EAPsucc, S can find

this out easily by getting a new MD5 function on EAPsucc she receives and comparing

the result with MD5 value she received from the message. This checking process is

shown on the following GASSERT statement (Appendix N, line 148):

S: assert((S.succmsg' == S.succmsg));

All the other parts of the encoding and evaluation of solution to MIM attack on the

IEEE 802.1X protocol is the same as the encoding and evaluation of the IEEE 802.1X

protocol. Therefore, we will not discuss them again here.

 98

Finally, the evaluation of solution to MIM attack on the IEEE 802.1X protocol

reduces to TRUE. This verifies that the solution to MIM attack works. CPAL-ES

evaluation of this solution is described in Appendix N lines 137-142. Since the attack

has occurred due to lack of authentication, the success message (EAPsucc) sent from

access point A to supplicant S is authenticated with an MD5 message digest function.

This way, no one will be able to forge the message. As a result, even IEEE 802.1X

protocol is vulnerable to attacks; there are some solutions that could reduce the

vulnerability. On the other hand none of these solutions will make the IEEE 802.1X

protocol hundred percent secure because of the nature of the wireless communications.

 99

CHAPTER 5

CONCLUSIONS

Wireless security became a very important issue after the extensive usage of

wireless communication tools in these days. Cryptographic protocols, used for the

communication between the principals, are analyzed with different techniques to check

the system against vulnerabilities, find flaws and propose solutions to flaws, understand

the protocols deeply to increase the efficiency and prove the correctness. One of the

most efficient cryptographic protocol analysis techniques is formal methods that uses

mathematical techniques. In chapter-2, we have an overview of a few techniques

designed with formal methods. Each method uses different proving techniques. There

are not many wireless protocol tested with formal methods.

In this work, we have analyzed two different wireless communication protocols

with CPAL_ES, a tool used to analyze protocols with formal methods: The Secure

Protocol of Aziz & Diffie and 802.1X protocol. The Secure Protocol has very complex

communication features due to the use of public key cryptography. It has a very long

output of WP predicate and specification process that is computationally expensive.

802.1X is the most common, widely used protocol with today’s technology ((e.g.

802.11a and 802.11b used for the wireless LANs effective in the short range

communications). CPAL-ES evaluation of 802.1X protocol has much shorter output (see

Appendix-J) than The Secure Protocol’s evaluation. We have also analyzed the known

attacks on these protocols and solutions to them. Our evaluation of these attacks

confirmed that even though 802.1X protocol is useful especially for wireless LAN

communications, it is not secure. The Secure Protocol is also vulnerable to attacks but

has strong confidentiality because of the public key cryptography future of the design.

Our analysis of these protocols with CPAL-ES assists us to understand them in

great detail and test the capabilities of CPAL-ES especially on wireless protocols.

Because of the wireless nature of the communication, a principle could send a message

 100

to more than one principle. In this case, only one “send” operator should send a

message to more than one principle at the same time. Unfortunately, this is not possible

with the current design of CPAL-ES. As Marshall mentioned, CPAL_ES needs

extensions for testing in wireless broadcast environment [MAR03]. There are only a few

wireless protocols analyzed with CPAL-ES [MAR03]. More of the wireless protocols

could be analyzed with CPAL-ES. The protocols we have analyzed are not too long in

communication process. Protocols such as WAP (Wireless Application Protocol) could

be analyzed with CPAL-ES in the future after CPAL-ES is extended for the evaluations

in wireless environment.

Though CPAL-ES is not designed for wireless communications, we were able to

analyze two wireless protocols with CPAL-ES and prove some known attacks. We were

not able to find unknown attacks on these protocols. Nevertheless, we showed in great

detail the analysis of two wireless protocols that increases the credibility of these

protocols and may contribute some other research on this field since there is not much

work done on analysis of wireless protocols with formal methods in the literature.

 101

APPENDIX A

CPAL-ES ENCODING OF THE SECURE PROTOCOL

--Initial assumptions
X: assume (global.decrypt(B.Kca+, CA.Kca-));
X: assume (global.decrypt(M.Kca+, CA.Kca-));
X: assume (B.Kbca == CA.Kbca);
X: assume (M.Kmca == CA.Kmca);
X: assume (global.decrypt(B.Kb-, B.Kb+));
X: assume (global.decrypt(M.Km-, M.Km+));
X: assume (global.decrypt(M.Km+, M.Km-));

--Message#0B: Base --> Certification Authority
B: => CA (e[<Kb+,Kb->]Kbca);
CA: <- (msgb);
CA: Kb := d[msgb]Kbca;
CA: (Kb+, Kb-) := Kb;

--CA generates the certificate for B
CA: CertB_contents := <sn1, vp1, B, Kb+, CA>;
CA: macCA := MD(CertB_contents);
CA: Cert_B := < CertB_contents,ep[macCA]Kca- >;

--Message#0CA1: Certification Authority --> Base
CA: => B (Cert_B);
B: <- (Cert_B);
B: (CertB_contents,CTforMD) := Cert_B;
B: (sn1, vp1, B, Kb+, CA):=CertB_contents;
B: macCA := dp[CTforMD]Kca+;
B: macB := MD(CertB_contents);
B: assert (macCA == macB);

--Message#0M: Mobile --> Certification Authority
M: => CA (e[<Km+, Km->]Kmca);
CA: <- (msgm);
CA: Km := d[msgm]Kmca;
CA: (Km+, Km-) := Km;

--CA generates the certificate for M.
CA: CertM_contents := <sn2, vp2, M, Km+, CA>;
CA: macCAm := MD(CertM_contents);
CA: Cert_M := < CertM_contents,ep[macCAm]Kca- >;

--Message#0CA2: Certification Authority --> Mobile
CA: => M (Cert_M);
M: <- (Cert_M) ;
M: (CertM_contents,CTforMDm) := Cert_M;
M: (sn2, vp2, M, Km+, CA) := CertM_contents;
M: macCAm := dp[CTforMDm]Kca+;
M: macM := MD(CertM_contents);
M: assert (macCAm == macM);

 102

--Message#1: Mobile --> Base
M: => B (<Cert_M, CH1, List_of_SKCSs>);
B: <- (msg1);
B: (Cert_M, CH1, List_of_SKCSs) := msg1;
B: (CertM_contents, CTforMDm) := Cert_M;
B: (sn2, vp2, M, Km+, CA) := CertM_contents;

--Message#2: Base --> Mobile
B: f1 := MD(ep[RN1]Km+, chosen_SKCS, CH1, List_of_SKCSs);
B: msg2 := <Cert_B, ep[RN1]Km+, chosen_SKCS, ep[f1]Kb- >;
B: => M (msg2);
M: <- (msg2);
M: (Cert_B, CTforRN1, chosen_SKCS, CTforf1) := msg2;
M: (CertB_contents,CTforMDb) := Cert_B;
M: (sn1, vp1, B, Kb+, CA) := CertB_contents;
M: RN1 := dp[CTforRN1]Km-;
M: f1 := dp[CTforf1]Kb+;

--Message#3: Mobile --> Base
M: sk := XOR(RN1, RN2);
M: f2 := MD(ep[RN2]Kb+, ep[RN1]Km+);
M: => B(<ep[RN2]Kb+, ep[f2]Km->);
B: <- (msg3);
B: (CTforRN2, CTforMD) := msg3;
B: RN2 := dp[CTforRN2]Kb-;
B: f2 := dp[CTforMD]Km+;
B: f3 := MD(ep[RN2]Kb+, ep[RN1]Km+);
B: assert (f2 == f3);
X: gassert (B.RN1 == M.RN1);
X: gassert (B.RN2 == M.RN2);
B: sk := XOR(RN1,RN2);
X: gassert (M.sk == B.sk);

 103

APPENDIX B

CPAL-ES EVALUATION OF THE SECURE PROTOCOL

1. X: assume(global.decrypt(B.Kca+,CA.Kca-));
2. X: assume(global.decrypt(M.Kca+,CA.Kca-));
3. X: assume((CA.Kbca == B.Kbca));
4. X: assume((CA.Kmca == M.Kmca));
5. X: assume(global.decrypt(B.Kb-,B.Kb+));
6. X: assume(global.decrypt(M.Km-,M.Km+));
7. X: assume(global.decrypt(M.Km+,M.Km-));
8. B: => CA(e[<B.Kb+,B.Kb->]B.Kbca);
9. CA: <-(CA.msgb);
10.CA: CA.Kb := d[CA.msgb]CA.Kbca;
11.CA: (CA.Kb+,CA.Kb-) := CA.Kb;
12.CA: CA.CertB_contents := <CA.sn1,CA.vp1,CA.B,CA.Kb+,CA.CA>;
13.CA: CA.macCA := f.MD(CA.CertB_contents);
14.CA: CA.Cert_B := <CA.CertB_contents,ep[CA.macCA]CA.Kca->;
15.CA: => B(CA.Cert_B);
16.B: <-(B.Cert_B);
17.B: (B.CertB_contents,B.CTforMD) := B.Cert_B;
18.B: (B.sn1,B.vp1,B.B,B.Kb+,B.CA) := B.CertB_contents;
19.B: B.macCA := dp[B.CTforMD]B.Kca+;
20.B: B.macB := f.MD(B.CertB_contents);
21.B: assert((B.macB == B.macCA));
22.M: => CA(e[<M.Km+,M.Km->]M.Kmca);
23.CA: <-(CA.msgm);
24.CA: CA.Km := d[CA.msgm]CA.Kmca;
25.CA: (CA.Km+,CA.Km-) := CA.Km;
26.CA: CA.CertM_contents := <CA.sn2,CA.vp2,CA.M,CA.Km+,CA.CA>;
27.CA: CA.macCAm := f.MD(CA.CertM_contents);
28.CA: CA.Cert_M := <CA.CertM_contents,ep[CA.macCAm]CA.Kca->;
29.CA: => M(CA.Cert_M);
30.M: <-(M.Cert_M);
31.M: (M.CertM_contents,M.CTforMDm) := M.Cert_M;
32.M: (M.sn2,M.vp2,M.M,M.Km+,M.CA) := M.CertM_contents;
33.M: M.macCAm := dp[M.CTforMDm]M.Kca+;
34.M: M.macM := f.MD(M.CertM_contents);
35.M: assert((M.macM == M.macCAm));
36.M: => B(<M.Cert_M,M.CH1,M.List_of_SKCSs>);
37.B: <-(B.msg1);
38.B: (B.Cert_M,B.CH1,B.List_of_SKCSs) := B.msg1;
39.B: (B.CertM_contents,B.CTforMDm) := B.Cert_M;
40.B: (B.sn2,B.vp2,B.M,B.Km+,B.CA) := B.CertM_contents;
41.B: B.f1 := f.MD(ep[B.RN1]B.Km+,B.chosen_SKCS,B.CH1,B.List_of_SKCSs);
42.B: B.msg2 := <B.Cert_B,ep[B.RN1]B.Km+,B.chosen_SKCS,ep[B.f1]B.Kb->;
43.B: => M(B.msg2);
44.M: <-(M.msg2);
45.M: (M.Cert_B,M.CTforRN1,M.chosen_SKCS,M.CTforf1) := M.msg2;
46.M: (M.CertB_contents,M.CTforMDb) := M.Cert_B;
47.M: (M.sn1,M.vp1,M.B,M.Kb+,M.CA) := M.CertB_contents;
48.M: M.RN1 := dp[M.CTforRN1]M.Km-;

 104

49.M: M.f1 := dp[M.CTforf1]M.Kb+;
50.M: M.sk := f.XOR(M.RN1,M.RN2);
51.M: M.f2 := f.MD(ep[M.RN2]M.Kb+,ep[M.RN1]M.Km+);
52.M: => B(<ep[M.RN2]M.Kb+,ep[M.f2]M.Km->);
53.B: <-(B.msg3);
54.B: (B.CTforRN2,B.CTforMD) := B.msg3;
55.B: B.RN2 := dp[B.CTforRN2]B.Kb-;
56.B: B.f2 := dp[B.CTforMD]B.Km+;
57.B: B.f3 := f.MD(ep[B.RN2]B.Kb+,ep[B.RN1]B.Km+);
58.B: assert((B.f3 == B.f2));
59.X: gassert((M.RN1 == B.RN1));
60.X: gassert((M.RN2 == B.RN2));
61.B: B.sk := f.XOR(B.RN1,B.RN2);
62.X: gassert((B.sk == M.sk));

*** End of Protocol ***

TRUE

****** Simplified predicate follows.

TRUE

 105

APPENDIX C

CPAL-ES ENCODING OF MEADOWS ATTACK ON THE SECURE PROTOCOL

--Initial assumptions
X: assume (global.decrypt(B.Kca+, CA.Kca-));
X: assume (global.decrypt(M.Kca+, CA.Kca-));
X: assume (global.decrypt(I.Kca+, CA.Kca-));
X: assume (I.Kica == CA.Kica);
X: assume (B.Kbca == CA.Kbca);
X: assume (M.Kmca == CA.Kmca);
X: assume (global.decrypt(B.Kb-, B.Kb+));
X: assume (global.decrypt(B.Kb+, B.Kb-));
X: assume (global.decrypt(M.Km+, M.Km-));
X: assume (global.decrypt(I.Ki+, I.Ki-));
X: assume (global.decrypt(I.Ki-, I.Ki+));

--Message#0I: Intruder --> Certification Authority
I: => CA (e[<Ki+, Ki->]Kica);
CA: <- (msgi);
CA: Ki := d[msgi]Kica;
CA: (Ki+, Ki-) := Ki;

--CA generates the certificate for I
CA: CertI_contents := <sn3, vp3, I, Ki+, CA>;
CA: macCA := MD(CertI_contents);
CA: Cert_I := < CertI_contents, ep[macCA]Kca- >;

--Message#0CA1: Certification Authority --> Base
CA: => I (Cert_I);
I: <- (Cert_I);
I: (CertI_contents, CTforMD) := Cert_I;
I: (sn3, vp3, I, Ki+, CA) := CertI_contents;
I: macCA := dp[CTforMD]Kca+;
I: macI := MD(CertI_contents);
I: assert (macCA == macI);

--Message#0B: Base --> Certification Authority
B: => CA (e[<Kb+, Kb->]Kbca);
CA: <- (msgb);
CA: Kb := d[msgb]Kbca;
CA: (Kb+, Kb-) := Kb;

--CA generates the certificate for B
CA: CertB_contents := <sn1, vp1, B, Kb+, CA>;
CA: macCA := MD(CertB_contents);
CA: Cert_B := < CertB_contents, ep[macCA]Kca- >;

--Message#0CA1: Certification Authority --> Base
CA: => B (Cert_B);
B: <- (Cert_B);
B: (CertB_contents, CTforMD) := Cert_B;

 106

B: (sn1, vp1, B, Kb+, CA) := CertB_contents;
B: macCA := dp[CTforMD]Kca+;
B: macB := MD(CertB_contents);
B: assert (macCA == macB);

--Message#0M: Mobile --> Certification Authority
M: => CA (e[<Km+, Km->]Kmca);
CA: <- (msgm);
CA: Km := d[msgm]Kmca;
CA: (Km+, Km-) := Km;

--CA generates the certificate for M
CA: CertM_contents:= <sn2, vp2, M, Km+, CA>;
CA: macCAm := MD(CertM_contents);
CA: Cert_M := < CertM_contents, ep[macCAm]Kca- >;

--Message#0CA2: Certification Authority --> Mobile
CA: -> M (Cert_M);
I: <- (Cert_M);
I: => M (Cert_M);
M: <- (Cert_M) ;
M: (CertM_contents, CTforMDm) := Cert_M;
M: (sn2, vp2, M, Km+, CA) := CertM_contents;
M: macCAm := dp[CTforMDm]Kca+;
M: macM := MD(CertM_contents);
M: assert (macCAm == macM);

--Meadows Attack
--message#1
M: -> B (<Cert_M, CHm, List_of_SKCSs>);
I:<- (msg1);
I: (Cert_M, CHm, List_of_SKCSs) := msg1;
I: (CertM_contents,CTforMDm) := Cert_M;
I: (sn2, vp2, M, Km+, CA) := CertM_contents;
I: macCAmi := dp[CTforMDm]Kca+;
I: macMI := MD(CertM_contents);
I: assert (macCAmi == macMI);

--message#1'
I: => B (<Cert_I, CHm, List_of_SKCSs>);
B:<- (msg1);
B: (Cert_I, CHm, List_of_SKCSs) := msg1;
B: (CertI_contents,CTforMDi) := Cert_I;
B: (sn3, vp3, I, Ki+, CA) := CertI_contents;
B: macCAib := dp[CTforMDi]Kca+;
B: macIB := MD(CertI_contents);
B: assert (macCAib == macIB);

--message#2
B: f1:= MD(ep[RNb]Ki+, chosen_SKCS, CHm, List_of_SKCSs);
B: msg2 := <Cert_B, ep[RNb]Ki+, chosen_SKCS, ep[f1]Kb- >;
B: => I (msg2);
I: <- (msg2);
I: (Cert_B, CTforRNb, chosen_SKCS, CTforf1) := msg2;
I: (CertB_contents,CTforMDb) := Cert_B;
I: (sn1, vp1, B, Kb+, CA) := CertB_contents;
I: macCAbi := dp[CTforMDb]Kca+;
I: macBI := MD(CertB_contents);
I: assert (macCAbi == macBI);
I: RNb := dp[CTforRNb]Ki-;

 107

I: f1 := dp[CTforf1]Kb+;
I: f1' := MD(ep[RNb]Ki+, chosen_SKCS, CHm, List_of_SKCSs);
I: assert(f1 == f1');

--message#2'
I: => M (msg2);
M: <- (msg2);
M: (Cert_B, CTforRNb, chosen_SKCS, CTforf1) := msg2;
M: (CertB_contents,CTforMDb) := Cert_B;
M: (sn1, vp1, B, Kb+, CA) := CertB_contents;
M: macCAbm := dp[CTforMDb]Kca+;
M: macBM := MD(CertB_contents);
M: assert (macCAbm == macBM);
M: f1 := dp[CTforf1]Kb+;
M: f1' := MD(CTforRNb, chosen_SKCS, CHm, List_of_SKCSs);
M:assert (f1 == f1'); --worked. 04.21.03

--message#3
M: f2 := MD(ep[RNm]Kb+, CTforRNb);
M: -> B(<ep[RNm]Kb+, ep[f2]Km->);
I: <- (msg3);
I: (CTforRNm, CTforf2) := msg3;
I: f2 := dp[CTforf2]Km+;
I: f2' := MD(CTforRNm, ep[RNb]Ki+);
I: assert(f2 == f2');

--message#3'
I: msg3':= <CTforRNm, ep[f2']Ki->;
I: => B(msg3');
B: <- (msg3');
B: (CTforRNm, CTforf2') := msg3';
B: RNm := dp[CTforRNm]Kb-;
B: f3 := dp[CTforf2']Ki+;
B: f3' := MD(ep[RNm]Kb+, ep[RNb]Ki+);
B: assert (f3 == f3');
X: gassert (B.RNm == M.RNm);
X: gassert (B.RNb == I.RNb);
B: sk := XOR(RNb, RNm);

 108

APPENDIX D

CPAL-ES EVALUATION OF MEADOWS ATTACK ON THE SECURE PROTOCOL

1. X: assume(global.decrypt(B.Kca+,CA.Kca-));
2. X: assume(global.decrypt(M.Kca+,CA.Kca-));
3. X: assume(global.decrypt(I.Kca+,CA.Kca-));
4. X: assume((CA.Kica == I.Kica));
5. X: assume((CA.Kbca == B.Kbca));
6. X: assume((CA.Kmca == M.Kmca));
7. X: assume(global.decrypt(B.Kb-,B.Kb+));
8. X: assume(global.decrypt(B.Kb+,B.Kb-));
9. X: assume(global.decrypt(M.Km+,M.Km-));
10. X: assume(global.decrypt(I.Ki+,I.Ki-));
11. X: assume(global.decrypt(I.Ki-,I.Ki+));
12. I: => CA(e[<I.Ki+,I.Ki->]I.Kica);
13. CA: <-(CA.msgi);
14. CA: CA.Ki := d[CA.msgi]CA.Kica;
15. CA: (CA.Ki+,CA.Ki-) := CA.Ki;
16. CA: CA.CertI_contents := <CA.sn3,CA.vp3,CA.I,CA.Ki+,CA.CA>;
17. CA: CA.macCA := f.MD(CA.CertI_contents);
18. CA: CA.Cert_I := <CA.CertI_contents,ep[CA.macCA]CA.Kca->;
19. CA: => I(CA.Cert_I);
20. I: <-(I.Cert_I);
21. I: (I.CertI_contents,I.CTforMD) := I.Cert_I;
22. I: (I.sn3,I.vp3,I.I,I.Ki+,I.CA) := I.CertI_contents;
23. I: I.macCA := dp[I.CTforMD]I.Kca+;
24. I: I.macI := f.MD(I.CertI_contents);
25. I: assert((I.macI == I.macCA));
26. B: => CA(e[<B.Kb+,B.Kb->]B.Kbca);
27. CA: <-(CA.msgb);
28. CA: CA.Kb := d[CA.msgb]CA.Kbca;
29. CA: (CA.Kb+,CA.Kb-) := CA.Kb;
30. CA: CA.CertB_contents := <CA.sn1,CA.vp1,CA.B,CA.Kb+,CA.CA>;
31. CA: CA.macCA := f.MD(CA.CertB_contents);
32. CA: CA.Cert_B := <CA.CertB_contents,ep[CA.macCA]CA.Kca->;
33. CA: => B(CA.Cert_B);
34. B: <-(B.Cert_B);
35. B: (B.CertB_contents,B.CTforMD) := B.Cert_B;
36. B: (B.sn1,B.vp1,B.B,B.Kb+,B.CA) := B.CertB_contents;
37. B: B.macCA := dp[B.CTforMD]B.Kca+;
38. B: B.macB := f.MD(B.CertB_contents);
39. B: assert((B.macB == B.macCA));
40. M: => CA(e[<M.Km+,M.Km->]M.Kmca);
41. CA: <-(CA.msgm);
42. CA: CA.Km := d[CA.msgm]CA.Kmca;
43. CA: (CA.Km+,CA.Km-) := CA.Km;
44. CA: CA.CertM_contents := <CA.sn2,CA.vp2,CA.M,CA.Km+,CA.CA>;
45. CA: CA.macCAm := f.MD(CA.CertM_contents);
46. CA: CA.Cert_M := <CA.CertM_contents,ep[CA.macCAm]CA.Kca->;
47. CA: -> M(CA.Cert_M);
48. I: <-(I.Cert_M);

 109

49. I: => M(I.Cert_M);
50. M: <-(M.Cert_M);
51. M: (M.CertM_contents,M.CTforMDm) := M.Cert_M;
52. M: (M.sn2,M.vp2,M.M,M.Km+,M.CA) := M.CertM_contents;
53. M: M.macCAm := dp[M.CTforMDm]M.Kca+;
54. M: M.macM := f.MD(M.CertM_contents);
55. M: assert((M.macM == M.macCAm));
56. M: -> B(<M.Cert_M,M.CHm,M.List_of_SKCSs>);
57. I: <-(I.msg1);
58. I: (I.Cert_M,I.CHm,I.List_of_SKCSs) := I.msg1;
59. I: (I.CertM_contents,I.CTforMDm) := I.Cert_M;
60. I: (I.sn2,I.vp2,I.M,I.Km+,I.CA) := I.CertM_contents;
61. I: I.macCAmi := dp[I.CTforMDm]I.Kca+;
62. I: I.macMI := f.MD(I.CertM_contents);
63. I: assert((I.macMI == I.macCAmi));
64. I: => B(<I.Cert_I,I.CHm,I.List_of_SKCSs>);
65. B: <-(B.msg1);
66. B: (B.Cert_I,B.CHm,B.List_of_SKCSs) := B.msg1;
67. B: (B.CertI_contents,B.CTforMDi) := B.Cert_I;
68. B: (B.sn3,B.vp3,B.I,B.Ki+,B.CA) := B.CertI_contents;
69. B: B.macCAib := dp[B.CTforMDi]B.Kca+;
70. B: B.macIB := f.MD(B.CertI_contents);
71. B: assert((B.macIB == B.macCAib));
72. B: B.f1 := f.MD(ep[B.RNb]B.Ki+,B.chosen_SKCS,B.CHm,B.List_of_SKCSs);
73. B: B.msg2 := <B.Cert_B,ep[B.RNb]B.Ki+,B.chosen_SKCS,ep[B.f1]B.Kb->;
74. B: => I(B.msg2);
75. I: <-(I.msg2);
76. I: (I.Cert_B,I.CTforRNb,I.chosen_SKCS,I.CTforf1) := I.msg2;
77. I: (I.CertB_contents,I.CTforMDb) := I.Cert_B;
78. I: (I.sn1,I.vp1,I.B,I.Kb+,I.CA) := I.CertB_contents;
79. I: I.macCAbi := dp[I.CTforMDb]I.Kca+;
80. I: I.macBI := f.MD(I.CertB_contents);
81. I: assert((I.macBI == I.macCAbi));
82. I: I.RNb := dp[I.CTforRNb]I.Ki-;
83. I: I.f1 := dp[I.CTforf1]I.Kb+;
84. I: I.f1' := f.MD(ep[I.RNb]I.Ki+,I.chosen_SKCS,I.CHm,I.List_of_SKCSs);
85. I: assert((I.f1' == I.f1));
86. I: => M(I.msg2);
87. M: <-(M.msg2);
88. M: (M.Cert_B,M.CTforRNb,M.chosen_SKCS,M.CTforf1) := M.msg2;
89. M: (M.CertB_contents,M.CTforMDb) := M.Cert_B;
90. M: (M.sn1,M.vp1,M.B,M.Kb+,M.CA) := M.CertB_contents;
91. M: M.macCAbm := dp[M.CTforMDb]M.Kca+;
92. M: M.macBM := f.MD(M.CertB_contents);
93. M: assert((M.macBM == M.macCAbm));
94. M: M.f1 := dp[M.CTforf1]M.Kb+;
95. M: M.f1' := f.MD(M.CTforRNb,M.chosen_SKCS,M.CHm,M.List_of_SKCSs);
96. M: assert((M.f1' == M.f1));
97. M: M.f2 := f.MD(ep[M.RNm]M.Kb+,M.CTforRNb);
98. M: -> B(<ep[M.RNm]M.Kb+,ep[M.f2]M.Km->);
99. I: <-(I.msg3);
100. I: (I.CTforRNm,I.CTforf2) := I.msg3;
101. I: I.f2 := dp[I.CTforf2]I.Km+;
102. I: I.f2' := f.MD(I.CTforRNm,ep[I.RNb]I.Ki+);
103. I: assert((I.f2' == I.f2));
104. I: I.msg3' := <I.CTforRNm,ep[I.f2']I.Ki->;
105. I: => B(I.msg3');
106. B: <-(B.msg3');
107. B: (B.CTforRNm,B.CTforf2') := B.msg3';
108. B: B.RNm := dp[B.CTforRNm]B.Kb-;

 110

109. B: B.f3 := dp[B.CTforf2']B.Ki+;
110. B: B.f3' := f.MD(ep[B.RNm]B.Kb+,ep[B.RNb]B.Ki+);
111. B: assert((B.f3' == B.f3));
112. X: gassert((M.RNm == B.RNm));
113. X: gassert((I.RNb == B.RNb));
114. B: B.sk := f.XOR(B.RNb,B.RNm);

 *** End of Protocol ***

TRUE

****** Simplified predicate follows.

TRUE

 111

APPENDIX E

CPAL-ES ENCODING OF BOYD & MATHURIA ATTACK ON THE SECURE
PROTOCOL

--Initial assumptions
X: assume (global.decrypt(B.Kca+, CA.Kca-));
X: assume (global.decrypt(M.Kca+, CA.Kca-));
X: assume (global.decrypt(I.Kca+, CA.Kca-));
X: assume (I.Kica == CA.Kica);
X: assume (B.Kbca == CA.Kbca);
X: assume (M.Kmca == CA.Kmca);
X: assume (global.decrypt(M.Km-, M.Km+));
X: assume (global.decrypt(B.Kb+, B.Kb-));
X: assume (global.decrypt(M.Km+, M.Km-));
X: assume (global.decrypt(I.Ki+, I.Ki-));
X: assume (global.decrypt(I.Ki-, I.Ki+));

--Message#0I: Intruder --> Certification Authority
I: => CA (e[<Ki+, Ki->]Kica);
CA: <- (msgi);
CA: Ki := d[msgi]Kica;
CA: (Ki+, Ki-) := Ki;

--CA generates the certificate for I
CA: CertI_contents := <sn3, vp3, I, Ki+, CA>;
CA: macCA := MD(CertI_contents);
CA: Cert_I := < CertI_contents,ep[macCA]Kca- >;

--Message#0CA1: Certification Authority --> Base
CA: => I (Cert_I);
I: <- (Cert_I);
I: (CertI_contents, CTforMD) := Cert_I;
I: (sn3, vp3, I, Ki+, CA):=CertI_contents;
I: macCA := dp[CTforMD]Kca+;
I: macI := MD(CertI_contents);
I: assert (macCA == macI);

--Message#0B: Base --> Certification Authority
B: => CA (e[<Kb+, Kb->]Kbca);
CA: <- (msgb);
CA: Kb := d[msgb]Kbca;
CA: (Kb+, Kb-) := Kb;

--CA generates the certificate for B
CA: CertB_contents := <sn1, vp1, B, Kb+, CA>;
CA: macCA := MD(CertB_contents);
CA: Cert_B := < CertB_contents, ep[macCA]Kca- >;

--Message#0CA1: Certification Authority --> Base
CA: => B (Cert_B);

 112

B: <- (Cert_B);
B: (CertB_contents, CTforMD) := Cert_B;
B: (sn1, vp1, B, Kb+, CA) := CertB_contents;
B: macCA := dp[CTforMD]Kca+;
B: macB := MD(CertB_contents);
B: assert (macCA == macB);

--Message#0M: Mobile --> Certification Authority
M: => CA (e[<Km+, Km->]Kmca);
CA: <- (msgm);
CA: Km := d[msgm]Kmca;
CA: (Km+, Km-) := Km;

--CA generates the certificate for M
CA: CertM_contents := <sn2, vp2, M, Km+, CA>;
CA: macCAm := MD(CertM_contents);
CA: Cert_M := < CertM_contents, ep[macCAm]Kca- >;

--Message#0CA2: Certification Authority --> Mobile
CA: -> M (Cert_M);
I: <- (Cert_M);
I: => M (Cert_M);
M: <- (Cert_M) ;
M: (CertM_contents, CTforMDm) := Cert_M;
M: (sn2, vp2, M, Km+, CA) := CertM_contents;
M: macCAm := dp[CTforMDm]Kca+;
M: macM := MD(CertM_contents);
M: assert (macCAm == macM);

--Boyd-Mathuria Attack

--message#1
I: => B (<Cert_M, CHi, List_of_SKCSs>);
B: <- (msg1);
B: (Cert_M, CHi, List_of_SKCSs) := msg1;
B: (CertM_contents, CTforMDm) := Cert_M;
B: (sn2, vp2, M, Km+, CA) := CertM_contents;
B: macCAmb := dp[CTforMDm]Kca+;
B: macMB := MD(CertM_contents);
B: assert (macCAmb == macMB);

--message-2
B: f1 := MD(ep[RNb]Km+, chosen_SKCS, CHi, List_of_SKCSs);
B: msg2 := <Cert_B, ep[RNb]Km+, chosen_SKCS, ep[f1]Kb- >;
B: => I (msg2);
I: <- (msg2);
I: (Cert_B, CTforRNb, chosen_SKCS, CTforf1) := msg2;
I: (CertB_contents,CTforMDb) := Cert_B;
I: (sn1, vp1, B, Kb+, CA) := CertB_contents;
I: macCAbi := dp[CTforMDb]Kca+;
I: macBI := MD(CertB_contents);
I: assert (macCAbi == macBI);
I: f1 := dp[CTforf1]Kb+;
I: f1':= MD(CTforRNb, chosen_SKCS, CHi, List_of_SKCSs);
I: assert(f1 == f1');

--message#1'
M: => I (<Cert_M, CHm, List_of_SKCSs>);

 113

I: <- (msg1);
I: (Cert_M, CHm, List_of_SKCSs) := msg1;
I: (CertM_contents,CTforMDm) := Cert_M;
I: (sn2, vp2, M, Km+, CA) := CertM_contents;
I: macCAmi := dp[CTforMDm]Kca+;
I: macMI := MD(CertM_contents);
I: assert (macCAmi == macMI);

--message#2'
I: f1 := MD(CTforRNb, chosen_SKCS, CHm, List_of_SKCSs);
I: msg2 := <Cert_I, CTforRNb, chosen_SKCS, ep[f1]Ki- >;
I: => M (msg2);
M: <- (msg2);
M: (Cert_I, CTforRNb, chosen_SKCS, CTforf1) := msg2;
M: (CertI_contents,CTforMDi) := Cert_I;
M: (sn3, vp3, I, Ki+, CA) := CertI_contents;
M: macCAim := dp[CTforMDi]Kca+;
M: macIM := MD(CertI_contents);
M: assert (macCAim == macIM);
M: RNb := dp[CTforRNb]Km-;
M: f1 := dp[CTforf1]Ki+;
M: f1' := MD(ep[RNb]Km+, chosen_SKCS, CHm, List_of_SKCSs);

--message#3'
M: sk := XOR(RNb,RNm);
M: f2 := MD(ep[RNm]Ki+, ep[RNb]Km+);
M: => I(<ep[RNm]Ki+, ep[f2]Km->);
I: <- (msg3);
I: (CTforRNm, CTforf2) := msg3;
I: RNm := dp[CTforRNm]Ki-;
I: f2 := dp[CTforf2]Km+;
I: f2' := MD(ep[RNm]Ki+, CTforRNb);

--message#3
I: => B(<ep[RNm]Ki+, CTforf2>);
B: <- (msg3);
B: (CTforRNm, CTforf2) := msg3;
B: f3 := dp[CTforf2]Km+;
B: f3' := MD(CTforRNm, ep[RNb]Km+);
B: assert (f3 == f3');
X: gassert (B.RNb == M.RNb);
B: sk := XOR(RNb, RNm);
X: gassert (M.sk == B.sk);

 114

APPENDIX F

CPAL-ES EVALUATION OF BOYD & MATHURIA ATTACK ON THE SECURE
PROTOCOL

1. X: assume(global.decrypt(B.Kca+,CA.Kca-));
2. X: assume(global.decrypt(M.Kca+,CA.Kca-));
3. X: assume(global.decrypt(I.Kca+,CA.Kca-));
4. X: assume((CA.Kica == I.Kica));
5. X: assume((CA.Kbca == B.Kbca));
6. X: assume((CA.Kmca == M.Kmca));
7. X: assume(global.decrypt(M.Km-,M.Km+));
8. X: assume(global.decrypt(B.Kb+,B.Kb-));
9. X: assume(global.decrypt(M.Km+,M.Km-));
10. X: assume(global.decrypt(I.Ki+,I.Ki-));
11. X: assume(global.decrypt(I.Ki-,I.Ki+));
12. I: => CA(e[<I.Ki+,I.Ki->]I.Kica);
13. CA: <-(CA.msgi);
14. CA: CA.Ki := d[CA.msgi]CA.Kica;
15. CA: (CA.Ki+,CA.Ki-) := CA.Ki;
16. CA: CA.CertI_contents := <CA.sn3,CA.vp3,CA.I,CA.Ki+,CA.CA>;
17. CA: CA.macCA := f.MD(CA.CertI_contents);
18. CA: CA.Cert_I := <CA.CertI_contents,ep[CA.macCA]CA.Kca->;
19. CA: => I(CA.Cert_I);
20. I: <-(I.Cert_I);
21. I: (I.CertI_contents,I.CTforMD) := I.Cert_I;
22. I: (I.sn3,I.vp3,I.I,I.Ki+,I.CA) := I.CertI_contents;
23. I: I.macCA := dp[I.CTforMD]I.Kca+;
24. I: I.macI := f.MD(I.CertI_contents);
25. I: assert((I.macI == I.macCA));
26. B: => CA(e[<B.Kb+,B.Kb->]B.Kbca);
27. CA: <-(CA.msgb);
28. CA: CA.Kb := d[CA.msgb]CA.Kbca;
29. CA: (CA.Kb+,CA.Kb-) := CA.Kb;
30. CA: CA.CertB_contents := <CA.sn1,CA.vp1,CA.B,CA.Kb+,CA.CA>;
31. CA: CA.macCA := f.MD(CA.CertB_contents);
32. CA: CA.Cert_B := <CA.CertB_contents,ep[CA.macCA]CA.Kca->;
33. CA: => B(CA.Cert_B);
34. B: <-(B.Cert_B);
35. B: (B.CertB_contents,B.CTforMD) := B.Cert_B;
36. B: (B.sn1,B.vp1,B.B,B.Kb+,B.CA) := B.CertB_contents;
37. B: B.macCA := dp[B.CTforMD]B.Kca+;
38. B: B.macB := f.MD(B.CertB_contents);
39. B: assert((B.macB == B.macCA));
40. M: => CA(e[<M.Km+,M.Km->]M.Kmca);
41. CA: <-(CA.msgm);
42. CA: CA.Km := d[CA.msgm]CA.Kmca;
43. CA: (CA.Km+,CA.Km-) := CA.Km;
44. CA: CA.CertM_contents := <CA.sn2,CA.vp2,CA.M,CA.Km+,CA.CA>;
45. CA: CA.macCAm := f.MD(CA.CertM_contents);
46. CA: CA.Cert_M := <CA.CertM_contents,ep[CA.macCAm]CA.Kca->;
47. CA: -> M(CA.Cert_M);

 115

48. I: <-(I.Cert_M);
49. I: => M(I.Cert_M);
50. M: <-(M.Cert_M);
51. M: (M.CertM_contents,M.CTforMDm) := M.Cert_M;
52. M: (M.sn2,M.vp2,M.M,M.Km+,M.CA) := M.CertM_contents;
53. M: M.macCAm := dp[M.CTforMDm]M.Kca+;
54. M: M.macM := f.MD(M.CertM_contents);
55. M: assert((M.macM == M.macCAm));
56. I: => B(<I.Cert_M,I.CHi,I.List_of_SKCSs>);
57. B: <-(B.msg1);
58. B: (B.Cert_M,B.CHi,B.List_of_SKCSs) := B.msg1;
59. B: (B.CertM_contents,B.CTforMDm) := B.Cert_M;
60. B: (B.sn2,B.vp2,B.M,B.Km+,B.CA) := B.CertM_contents;
61. B: B.macCAmb := dp[B.CTforMDm]B.Kca+;
62. B: B.macMB := f.MD(B.CertM_contents);
63. B: assert((B.macMB == B.macCAmb));
64. B: B.f1 := f.MD(ep[B.RNb]B.Km+,B.chosen_SKCS,B.CHi,B.List_of_SKCSs);
65. B: B.msg2 := <B.Cert_B,ep[B.RNb]B.Km+,B.chosen_SKCS,ep[B.f1]B.Kb->;
66. B: => I(B.msg2);
67. I: <-(I.msg2);
68. I: (I.Cert_B,I.CTforRNb,I.chosen_SKCS,I.CTforf1) := I.msg2;
69. I: (I.CertB_contents,I.CTforMDb) := I.Cert_B;
70. I: (I.sn1,I.vp1,I.B,I.Kb+,I.CA) := I.CertB_contents;
71. I: I.macCAbi := dp[I.CTforMDb]I.Kca+;
72. I: I.macBI := f.MD(I.CertB_contents);
73. I: assert((I.macBI == I.macCAbi));
74. I: I.f1 := dp[I.CTforf1]I.Kb+;
75. I: I.f1' := f.MD(I.CTforRNb,I.chosen_SKCS,I.CHi,I.List_of_SKCSs);
76. I: assert((I.f1' == I.f1));
77. M: => I(<M.Cert_M,M.CHm,M.List_of_SKCSs>);
78. I: <-(I.msg1);
79. I: (I.Cert_M,I.CHm,I.List_of_SKCSs) := I.msg1;
80. I: (I.CertM_contents,I.CTforMDm) := I.Cert_M;
81. I: (I.sn2,I.vp2,I.M,I.Km+,I.CA) := I.CertM_contents;
82. I: I.macCAmi := dp[I.CTforMDm]I.Kca+;
83. I: I.macMI := f.MD(I.CertM_contents);
84. I: assert((I.macMI == I.macCAmi));
85. I: I.f1 := f.MD(I.CTforRNb,I.chosen_SKCS,I.CHm,I.List_of_SKCSs);
86. I: I.msg2 := <I.Cert_I,I.CTforRNb,I.chosen_SKCS,ep[I.f1]I.Ki->;
87. I: => M(I.msg2);
88. M: <-(M.msg2);
89. M: (M.Cert_I,M.CTforRNb,M.chosen_SKCS,M.CTforf1) := M.msg2;
90. M: (M.CertI_contents,M.CTforMDi) := M.Cert_I;
91. M: (M.sn3,M.vp3,M.I,M.Ki+,M.CA) := M.CertI_contents;
92. M: M.macCAim := dp[M.CTforMDi]M.Kca+;
93. M: M.macIM := f.MD(M.CertI_contents);
94. M: assert((M.macIM == M.macCAim));
95. M: M.RNb := dp[M.CTforRNb]M.Km-;
96. M: M.f1 := dp[M.CTforf1]M.Ki+;
97. M: M.f1' := f.MD(ep[M.RNb]M.Km+,M.chosen_SKCS,M.CHm,M.List_of_SKCSs);
98. M: M.sk := f.XOR(M.RNb,M.RNm);
99. M: M.f2 := f.MD(ep[M.RNm]M.Ki+,ep[M.RNb]M.Km+);
100. M: => I(<ep[M.RNm]M.Ki+,ep[M.f2]M.Km->);
101. I: <-(I.msg3);
102. I: (I.CTforRNm,I.CTforf2) := I.msg3;
103. I: I.RNm := dp[I.CTforRNm]I.Ki-;
104. I: I.f2 := dp[I.CTforf2]I.Km+;
105. I: I.f2' := f.MD(ep[I.RNm]I.Ki+,I.CTforRNb);
106. I: => B(<ep[I.RNm]I.Ki+,I.CTforf2>);
107. B: <-(B.msg3);

 116

108. B: (B.CTforRNm,B.CTforf2) := B.msg3;
109. B: B.f3 := dp[B.CTforf2]B.Km+;
110. B: B.f3' := f.MD(B.CTforRNm,ep[B.RNb]B.Km+);
111. B: assert((B.f3' == B.f3));
112. X: gassert((M.RNb == B.RNb));
113. B: B.sk := f.XOR(B.RNb,B.RNm);
114. X: gassert((B.sk == M.sk));

 *** End of Protocol ***

TRUE

****** Simplified predicate follows.

TRUE

 117

APPENDIX G

CPAL-ES ENCODING OF SOLUTION TO BOYD & MATHURIA ATTACK ON THE
SECURE PROTOCOL

--Initial assumptions
X: assume (global.decrypt(B.Kca+, CA.Kca-));
X: assume (global.decrypt(M.Kca+, CA.Kca-));
X: assume (B.Kbca == CA.Kbca);
X: assume (M.Kmca == CA.Kmca);
X: assume (global.decrypt(B.Kb-, B.Kb+));
X: assume (global.decrypt(M.Km-, M.Km+));
X: assume (global.decrypt(B.Kb+, B.Kb-));
X: assume (global.decrypt(M.Km+, M.Km-));

--Message#0B: Base --> Certification Authority
B: => CA (e[<Kb+, Kb->]Kbca);
CA: <- (msgb);
CA: Kb := d[msgb]Kbca;
CA: (Kb+, Kb-) := Kb;

--CA generates the certificate for B
CA: CertB_contents := <sn1, vp1, B, Kb+, CA>;
CA: macCA := MD(CertB_contents);
CA: Cert_B := < CertB_contents, ep[macCA]Kca- >;

--***** Message#0CA1 *****: Certification Authority --> Base
CA: => B (Cert_B);
B: <- (Cert_B);
B: (CertB_contents, CTforMD) := Cert_B;
B: (sn1, vp1, B, Kb+, CA) := CertB_contents;
B: macCA := dp[CTforMD]Kca+;
B: macB := MD(CertB_contents);
B: assert (macCA == macB);

--Message#0M: Mobile --> Certification Authority
M: => CA (e[<Km+, Km->]Kmca);
CA:<- (msgm);
CA: Km := d[msgm]Kmca;
CA: (Km+, Km-) := Km;

--CA generates the certificate for M
CA: CertM_contents := <sn2, vp2, M, Km+, CA>;
CA: macCAm := MD(CertM_contents);
CA: Cert_M := < CertM_contents, ep[macCAm]Kca- >;

--Message#0CA2: Certification Authority --> Mobile
CA: => M (Cert_M);
M: <- (Cert_M) ;
M: (CertM_contents, CTforMDm) := Cert_M;

 118

M: (sn2, vp2, M, Km+, CA) := CertM_contents;
M: macCAm := dp[CTforMDm]Kca+;
M: macM := MD(CertM_contents);
M: assert (macCAm == macM);

--Solution to Boyd-Mathuria Attack
--message#1

M: => B (<Cert_M, CHm, List_of_SKCSs>);
B: <- (msg1);
B: (Cert_M, CHm, List_of_SKCSs) := msg1;
B: (CertM_contents, CTforMDm) := Cert_M;
B: (sn2, vp2, M, Km+, CA) := CertM_contents;

--message#2
B: f1 := MD(RNb, M, CHm, chosen_SKCS);
B: msg2 := <Cert_B, CHb, ep[RNb]Km+, chosen_SKCS, ep[f1]Kb- >;
B: => M (msg2);
M: <- (msg2);
M: (Cert_B, CHb, CTforRNb, chosen_SKCS, CTforf1) := msg2;
M: (CertB_contents, CTforMDb) := Cert_B;
M: (sn1, vp1, B, Kb+, CA) := CertB_contents;
M: RNb := dp[CTforRNb]Km-;
M: f1 := dp[CTforf1]Kb+;
M: f1' := MD(RNb, M, CHm, chosen_SKCS);
M: assert(f1 == f1');

--message#3
M: sk := XOR(RNb, RNm);
M: f2 := MD(RNm, B, CHb);
M: => B(<ep[RNm]Kb+, ep[f2]Km->);
B: <- (msg3);
B: (CTforRNm, CTforf2) := msg3;
B: RNm := dp[CTforRNm]Kb-;
B: f2 := dp[CTforf2]Km+;
B: f2' := MD(RNm, B, CHb);
B: assert(f2 == f2');
X: gassert (B.RNb == M.RNb);
X: gassert (B.RNm == M.RNm);
B: sk := XOR(RNb, RNm);
X: gassert (M.sk == B.sk);

 119

APPENDIX H

CPAL-ES EVALUATION OF SOLUTION TO BOYD & MATHURIA ATTACK ON THE
SECURE PROTOCOL

1. X: assume(global.decrypt(B.Kca+,CA.Kca-));
2. X: assume(global.decrypt(M.Kca+,CA.Kca-));
3. X: assume((CA.Kbca == B.Kbca));
4. X: assume((CA.Kmca == M.Kmca));
5. X: assume(global.decrypt(B.Kb-,B.Kb+));
6. X: assume(global.decrypt(M.Km-,M.Km+));
7. X: assume(global.decrypt(B.Kb+,B.Kb-));
8. X: assume(global.decrypt(M.Km+,M.Km-));
9. B: => CA(e[<B.Kb+,B.Kb->]B.Kbca);
10. CA: <-(CA.msgb);
11. CA: CA.Kb := d[CA.msgb]CA.Kbca;
12. CA: (CA.Kb+,CA.Kb-) := CA.Kb;
13. CA: CA.CertB_contents := <CA.sn1,CA.vp1,CA.B,CA.Kb+,CA.CA>;
14. CA: CA.macCA := f.MD(CA.CertB_contents);
15. CA: CA.Cert_B := <CA.CertB_contents,ep[CA.macCA]CA.Kca->;
16. CA: => B(CA.Cert_B);
17. B: <-(B.Cert_B);
18. B: (B.CertB_contents,B.CTforMD) := B.Cert_B;
19. B: (B.sn1,B.vp1,B.B,B.Kb+,B.CA) := B.CertB_contents;
20. B: B.macCA := dp[B.CTforMD]B.Kca+;
21. B: B.macB := f.MD(B.CertB_contents);
22. B: assert((B.macB == B.macCA));
23. M: => CA(e[<M.Km+,M.Km->]M.Kmca);
24. CA: <-(CA.msgm);
25. CA: CA.Km := d[CA.msgm]CA.Kmca;
26. CA: (CA.Km+,CA.Km-) := CA.Km;
27. CA: CA.CertM_contents := <CA.sn2,CA.vp2,CA.M,CA.Km+,CA.CA>;
28. CA: CA.macCAm := f.MD(CA.CertM_contents);
29. CA: CA.Cert_M := <CA.CertM_contents,ep[CA.macCAm]CA.Kca->;
30. CA: => M(CA.Cert_M);
31. M: <-(M.Cert_M);
32. M: (M.CertM_contents,M.CTforMDm) := M.Cert_M;
33. M: (M.sn2,M.vp2,M.M,M.Km+,M.CA) := M.CertM_contents;
34. M: M.macCAm := dp[M.CTforMDm]M.Kca+;
35. M: M.macM := f.MD(M.CertM_contents);
36. M: assert((M.macM == M.macCAm));
37. M: => B(<M.Cert_M,M.CHm,M.List_of_SKCSs>);
38. B: <-(B.msg1);
39. B: (B.Cert_M,B.CHm,B.List_of_SKCSs) := B.msg1;
40. B: (B.CertM_contents,B.CTforMDm) := B.Cert_M;
41. B: (B.sn2,B.vp2,B.M,B.Km+,B.CA) := B.CertM_contents;
42. B: B.f1 := f.MD(B.RNb,B.M,B.CHm,B.chosen_SKCS);
43. B: B.msg2 :=

<B.Cert_B,B.CHb,ep[B.RNb]B.Km+,B.chosen_SKCS,ep[B.f1]B.Kb->;
44. B: => M(B.msg2);
45. M: <-(M.msg2);
46. M: (M.Cert_B,M.CHb,M.CTforRNb,M.chosen_SKCS,M.CTforf1) := M.msg2;

 120

47. M: (M.CertB_contents,M.CTforMDb) := M.Cert_B;
48. M: (M.sn1,M.vp1,M.B,M.Kb+,M.CA) := M.CertB_contents;
49. M: M.RNb := dp[M.CTforRNb]M.Km-;
50. M: M.f1 := dp[M.CTforf1]M.Kb+;
51. M: M.f1' := f.MD(M.RNb,M.M,M.CHm,M.chosen_SKCS);
52. M: assert((M.f1' == M.f1));
53. M: M.sk := f.XOR(M.RNb,M.RNm);
54. M: M.f2 := f.MD(M.RNm,M.B,M.CHb);
55. M: => B(<ep[M.RNm]M.Kb+,ep[M.f2]M.Km->);
56. B: <-(B.msg3);
57. B: (B.CTforRNm,B.CTforf2) := B.msg3;
58. B: B.RNm := dp[B.CTforRNm]B.Kb-;
59. B: B.f2 := dp[B.CTforf2]B.Km+;
60. B: B.f2' := f.MD(B.RNm,B.B,B.CHb);
61. B: assert((B.f2' == B.f2));
62. X: gassert((M.RNb == B.RNb));
63. X: gassert((M.RNm == B.RNm));
64. B: B.sk := f.XOR(B.RNb,B.RNm);
65. X: gassert((B.sk == M.sk));

 *** End of Protocol ***

TRUE

****** Simplified predicate follows.

TRUE

 121

APPENDIX I

CPAL-ES ENCODING OF IEEE 802.1X PROTOCOL

-- Initial assumptions
X: assume(A.kas == S.kas);
X: assume(A.secret == R.secret);

-- password sharing
S: => A (e[passw]kas);
A: <- (msg);
A: passw := d[msg]kas;
X:gassert (S.passw == A.passw);

--MSG-1: Access Point requests from Supplicant
A: EAPreqID := <req_code, req_id, req_leng, req_type, req_type_data>;
A: => S(EAPreqID);
S: <- (EAPreqID);
S: (req_code, req_id, req_leng, req_type, req_type_data) := EAPreqID;
X: gassert(S.EAPreqID == A.EAPreqID);
X: gassert(S.req_code == A.req_code);
X: gassert(S.req_id == A.req_id);
X: gassert(S.req_leng == A.req_leng);
X: gassert(S.req_type == A.req_type);
X: gassert(S.req_type_data == A.req_type_data);

--MSG-2: Supplicant responds to Access Point
S: res_id := req_id;
S: res_type := req_type;
S: EAPrespID := <res_code, res_id, res_leng, res_type, res_type_data>;
S: => A(EAPrespID);
A: <- (EAPrespID);
A: (res_code, res_id, res_leng, res_type, res_type_data) := EAPrespID;
X: gassert(A.EAPrespID == S.EAPrespID);
X: gassert(A.res_code == S.res_code);
X: gassert(A.res_id == S.res_id);
X: gassert(A.res_leng == S.res_leng);
X: gassert(A.res_type == S.res_type);
X: gassert(A.res_type_data == S.res_type_data);
A: assert(req_id == res_id);
A: assert(req_type == res_type);

--MSG-3: Access Point requests from RADIUS
A: RADreq1_auth := MD5(RN1);
A: CT_temp := MD5(RADreq1_auth, secret);
A: u_passw1 := XOR(CT_temp, passw);
A: CT_EAPrespID := MD5(EAPrespID);
A: CT_u_passw := MD5(u_passw1);
A: RADreq1_attr := <u_name, CT_u_passw, client_id, port_id, EAPrespID,
CT_EAPrespID>;

 122

A: RADAccReq1 := <RADreq_code, RADreq1_id, RADreq1_leng, RADreq1_auth,
RADreq1_attr >;
A: => R (RADAccReq1);
R: <- (RADAccReq1);
R: (RADreq_code, RADreq1_id, RADreq1_leng, RADreq1_auth, RADreq1_attr) :=
RADAccReq1;
R: (u_name, CT_u_passw, client_id, port_id, EAPrespID, CT_EAPrespID) :=
RADreq1_attr;
R: CT_EAPrespID':= MD5(EAPrespID);
X: gassert(R.RADAccReq1 == A.RADAccReq1);
X: gassert(R.RADreq_code == A.RADreq_code);
X: gassert(R.RADreq1_id == A.RADreq1_id);
X: gassert(R.RADreq1_leng == A.RADreq1_leng);
X: gassert(R.RADreq1_auth == A.RADreq1_auth);
X: gassert(R.RADreq1_attr == A.RADreq1_attr);
X: gassert(R.u_name == A.u_name);
X: gassert(R.CT_u_passw == A.CT_u_passw);
X: gassert(R.client_id == A.client_id);
X: gassert(R.port_id == A.port_id);
X: gassert(R.EAPrespID == A.EAPrespID);
X: gassert(R.EAPrespID == S.EAPrespID);
X: gassert(R.CT_EAPrespID == A.CT_EAPrespID);
R: assert(CT_EAPrespID == CT_EAPrespID');

--MSG-4: RADIUS responds to Access Point
R: RADresp1_auth := MD5(RADAccReq1, secret);
R: EAPreq1 := <req_code, req1_id, req1_leng, req1_type, req1_type_data>;
R: CT_EAPreq1 := MD5(EAPreq1);
R: RADchal_attr := <u_name, CT_u_passw, client_id, port_id, EAPreq1,
CT_EAPreq1>;
R: RADchal_id := RADreq1_id;
R: RADAccChal := <RADchal_code, RADchal_id, RADchal_leng, RADresp1_auth,
RADchal_attr>;
R: => A (RADAccChal);
A: <- (RADAccChal);
A:(RADchal_code, RADchal_id, RADchal_leng, RADresp1_auth, RADchal_attr) :=
RADAccChal;
A: (u_name, CT_u_passw, client_id, port_id, EAPreq1, CT_EAPreq1) :=
RADchal_attr;
A: (req_code, req1_id, req1_leng, req1_type, req1_type_data) := EAPreq1;
A: RADresp1_auth':= MD5(RADAccReq1, secret);
A: CT_EAPreq1' := MD5(EAPreq1);
X: gassert(A.RADAccChal == R.RADAccChal);
X: gassert(A.RADchal_code == R.RADchal_code);
X: gassert(A.RADchal_id == R.RADchal_id);
X: gassert(A.RADchal_leng == R.RADchal_leng);
X: gassert(A.RADresp1_auth == R.RADresp1_auth);
X: gassert(A.RADchal_attr == R.RADchal_attr); --03.27.03
X: gassert(A.u_name == R.u_name); --06.06.03
X: gassert(A.CT_u_passw == R.CT_u_passw); --06.07.03
X: gassert(A.client_id == R.client_id); --06.07.03
X: gassert(A.port_id == R.port_id); --06.07.03
X: gassert(A.EAPreq1 == R.EAPreq1); --03.27.03
X: gassert(A.CT_EAPreq1 == R.CT_EAPreq1); --06.07.03
A: assert(RADchal_id == RADreq1_id);
A: assert(RADresp1_auth'== RADresp1_auth);
A: assert(CT_EAPreq1' == CT_EAPreq1);

--MSG-5: Access Point requests from Supplicant
A: => S(EAPreq1);

 123

S: <- (EAPreq1);
S: (req_code, req1_id, req1_leng, req1_type, req1_type_data) := EAPreq1;
X: gassert(S.EAPreq1 == A.EAPreq1);
X: gassert(S.req_code == A.req_code);
X: gassert(S.req1_id == A.req1_id);
X: gassert(S.req1_leng == A.req1_leng);
X: gassert(S.req1_type == A.req1_type);
X: gassert(S.req1_type_data == A.req1_type_data);

--MSG-6: Supplicant responds to Access Point
S: res1_id := req1_id;
S: res1_type := req1_type;
S: EAPresp1 := <res_code, res1_id, res1_leng, res1_type, res1_type_data>;
S: => A(EAPresp1);
A: <- (EAPresp1);
A: (res_code, res1_id, res1_leng, res1_type, res1_type_data) := EAPresp1;
X: gassert(A.EAPresp1 == S.EAPresp1);
X: gassert(A.res_code == S.res_code);
X: gassert(A.res1_id == S.res1_id);
X: gassert(A.res1_leng == S.res1_leng);
X: gassert(A.res1_type == S.res1_type);
X: gassert(A.res1_type_data == S.res1_type_data);
A: assert(req1_id == res1_id);
A: assert(req1_type == res1_type);

--MSG-7: Access Point requests from RADIUS
A: RADreq2_auth := MD5(RN2);
A: CT_temp2 := MD5(RADreq2_auth, secret);
A: u_passw2 := XOR(CT_temp2, passw);
A: CT_EAPresp1 := MD5(EAPresp1);
A: CT_u_passw2 := MD5(u_passw2);
A: RADreq2_attr := <u_name, CT_u_passw2, client_id, port_id, EAPresp1,
CT_EAPresp1>;
A: RADAccReq2 := <RADreq_code, RADreq2_id, RADreq2_leng, RADreq2_auth,
RADreq2_attr >;
A: => R (RADAccReq2);
R: <- (RADAccReq2);
R: (RADreq_code, RADreq2_id, RADreq2_leng, RADreq2_auth, RADreq2_attr) :=
RADAccReq2;
R: (u_name, CT_u_passw2, client_id, port_id, EAPresp1, CT_EAPresp1) :=
RADreq2_attr;
R: CT_EAPresp1':= MD5(EAPresp1);
X: gassert(R.RADAccReq2 == A.RADAccReq2);
X: gassert(R.RADreq_code == A.RADreq_code);
X: gassert(R.RADreq2_id == A.RADreq2_id);
X: gassert(R.RADreq2_leng == A.RADreq2_leng);
X: gassert(R.RADreq2_auth == A.RADreq2_auth);
X: gassert(R.RADreq2_attr == A.RADreq2_attr);
X: gassert(R.u_name == A.u_name);
X: gassert(R.CT_u_passw2 == A.CT_u_passw2);
X: gassert(R.client_id == A.client_id);
X: gassert(R.port_id == A.port_id);
X: gassert(R.EAPresp1 == A.EAPresp1);
X: gassert(R.EAPresp1 == S.EAPresp1);
X: gassert(R.CT_EAPresp1 == A.CT_EAPresp1);
R: assert(CT_EAPresp1 == CT_EAPresp1');

--MSG-8: RADIUS responds success to Access Point
R: RADsucc_auth := MD5(RADAccReq2, secret);
R: EAPsucc := <succ_code, succ_id, succ_leng>;

 124

R: CT_EAPsucc := MD5(EAPsucc);
R: RADsucc_attr := <u_name, CT_u_passw2, client_id, port_id, EAPsucc,
CT_EAPsucc>;
R: RADsucc_id := RADreq2_id;
R: RADaccept := <RADsucc_code, RADsucc_id, RADsucc_leng, RADsucc_auth,
RADsucc_attr>;
R: => A(RADaccept);
A: <- (RADaccept);
A: (RADsucc_code, RADsucc_id, RADsucc_leng, RADsucc_auth, RADsucc_attr) :=
RADaccept;
A: (u_name, CT_u_passw2, client_id, port_id, EAPsucc, CT_EAPsucc) :=
RADsucc_attr;
A: (succ_code, succ_id, succ_leng) := EAPsucc;
A: RADsucc_auth':= MD5(RADAccReq2, secret);
A: CT_EAPsucc' := MD5(EAPsucc);
X: gassert(A.RADaccept== R.RADaccept);
X: gassert(A.RADsucc_code == R.RADsucc_code);
X: gassert(A.RADsucc_id == R.RADsucc_id);
X: gassert(A.RADsucc_leng == R.RADsucc_leng);
X: gassert(A.RADsucc_auth == R.RADsucc_auth);
X: gassert(A.RADsucc_attr == R.RADsucc_attr);
X: gassert(A.u_name == R.u_name);
X: gassert(A.CT_u_passw2 == R.CT_u_passw2);
X: gassert(A.client_id == R.client_id);
X: gassert(A.port_id == R.port_id);
X: gassert(A.EAPsucc == R.EAPsucc);
X: gassert(A.CT_EAPsucc == R.CT_EAPsucc);
A: assert(RADsucc_id == RADreq2_id);
A: assert(RADsucc_auth'== RADsucc_auth);
A: assert(CT_EAPsucc' == CT_EAPsucc);

--MSG-9: Access Point sends success message to Supplicant
A: => S(EAPsucc);
S: <- (EAPsucc);
S: (succ_code, succ_id, succ_leng) := EAPsucc;
X: gassert(S.EAPsucc == A.EAPsucc);
X: gassert(S.EAPsucc == R.EAPsucc);
X: gassert(S.succ_code == A.succ_code);
X: gassert(S.succ_id == A.succ_id);
X: gassert(S.succ_leng == A.succ_leng);

 125

APPENDIX J

CPAL-ES EVALUATION OF IEEE 802.1X PROTOCOL

1. X: assume((S.kas == A.kas));
2. X: assume((R.secret == A.secret));
3. S: => A(e[S.passw]S.kas);
4. A: <-(A.msg);
5. A: A.passw := d[A.msg]A.kas;
6. X: gassert((A.passw == S.passw));
7. A: A.EAPreqID :=

<A.req_code,A.req_id,A.req_leng,A.req_type,A.req_type_data>;
8. A: => S(A.EAPreqID);
9. S: <-(S.EAPreqID);
10. S: (S.req_code,S.req_id,S.req_leng,S.req_type,S.req_type_data) :=

S.EAPreqID;
11. X: gassert((A.EAPreqID == S.EAPreqID));
12. X: gassert((A.req_code == S.req_code));
13. X: gassert((A.req_id == S.req_id));
14. X: gassert((A.req_leng == S.req_leng));
15. X: gassert((A.req_type == S.req_type));
16. X: gassert((A.req_type_data == S.req_type_data));
17. S: S.res_id := S.req_id;
18. S: S.res_type := S.req_type;
19. S: S.EAPrespID :=

<S.res_code,S.res_id,S.res_leng,S.res_type,S.res_type_data>;
20. S: => A(S.EAPrespID);
21. A: <-(A.EAPrespID);
22. A: (A.res_code,A.res_id,A.res_leng,A.res_type,A.res_type_data) :=

A.EAPrespID;
23. X: gassert((S.EAPrespID == A.EAPrespID));
24. X: gassert((S.res_code == A.res_code));
25. X: gassert((S.res_id == A.res_id));
26. X: gassert((S.res_leng == A.res_leng));
27. X: gassert((S.res_type == A.res_type));
28. X: gassert((S.res_type_data == A.res_type_data));
29. A: assert((A.res_id == A.req_id));
30. A: assert((A.res_type == A.req_type));
31. A: A.RADreq1_auth := f.MD5(A.RN1);
32. A: A.CT_temp := f.MD5(A.RADreq1_auth,A.secret);
33. A: A.u_passw1 := f.XOR(A.CT_temp,A.passw);
34. A: A.CT_EAPrespID := f.MD5(A.EAPrespID);
35. A: A.CT_u_passw := f.MD5(A.u_passw1);
36. A: A.RADreq1_attr :=

<A.u_name,A.CT_u_passw,A.client_id,A.port_id,A.EAPrespID,A.CT_EAPrespID>
;

37. A: A.RADAccReq1 :=
<A.RADreq_code,A.RADreq1_id,A.RADreq1_leng,A.RADreq1_auth,A.RADreq1_attr
>;

38. A: => R(A.RADAccReq1);
39. R: <-(R.RADAccReq1);

 126

40. R:
(R.RADreq_code,R.RADreq1_id,R.RADreq1_leng,R.RADreq1_auth,R.RADreq1_attr
) := R.RADAccReq1;

41. R:
(R.u_name,R.CT_u_passw,R.client_id,R.port_id,R.EAPrespID,R.CT_EAPrespID)
:= R.RADreq1_attr;

42. R: R.CT_EAPrespID' := f.MD5(R.EAPrespID);
43. X: gassert((A.RADAccReq1 == R.RADAccReq1));
44. X: gassert((A.RADreq_code == R.RADreq_code));
45. X: gassert((A.RADreq1_id == R.RADreq1_id));
46. X: gassert((A.RADreq1_leng == R.RADreq1_leng));
47. X: gassert((A.RADreq1_auth == R.RADreq1_auth));
48. X: gassert((A.RADreq1_attr == R.RADreq1_attr));
49. X: gassert((A.u_name == R.u_name));
50. X: gassert((A.CT_u_passw == R.CT_u_passw));
51. X: gassert((A.client_id == R.client_id));
52. X: gassert((A.port_id == R.port_id));
53. X: gassert((A.EAPrespID == R.EAPrespID));
54. X: gassert((S.EAPrespID == R.EAPrespID));
55. X: gassert((A.CT_EAPrespID == R.CT_EAPrespID));
56. R: assert((R.CT_EAPrespID' == R.CT_EAPrespID));
57. R: R.RADresp1_auth := f.MD5(R.RADAccReq1,R.secret);
58. R: R.EAPreq1 :=

<R.req_code,R.req1_id,R.req1_leng,R.req1_type,R.req1_type_data>;
59. R: R.CT_EAPreq1 := f.MD5(R.EAPreq1);
60. R: R.RADchal_attr :=

<R.u_name,R.CT_u_passw,R.client_id,R.port_id,R.EAPreq1,R.CT_EAPreq1>;
61. R: R.RADchal_id := R.RADreq1_id;
62. R: R.RADAccChal :=

<R.RADchal_code,R.RADchal_id,R.RADchal_leng,R.RADresp1_auth,R.RADchal_at
tr>;

63. R: => A(R.RADAccChal);
64. A: <-(A.RADAccChal);
65. A:

(A.RADchal_code,A.RADchal_id,A.RADchal_leng,A.RADresp1_auth,A.RADchal_at
tr) := A.RADAccChal;

66. A:
(A.u_name,A.CT_u_passw,A.client_id,A.port_id,A.EAPreq1,A.CT_EAPreq1) :=
A.RADchal_attr;

67. A: (A.req_code,A.req1_id,A.req1_leng,A.req1_type,A.req1_type_data) :=
A.EAPreq1;

68. A: A.RADresp1_auth' := f.MD5(A.RADAccReq1,A.secret);
69. A: A.CT_EAPreq1' := f.MD5(A.EAPreq1);
70. X: gassert((R.RADAccChal == A.RADAccChal));
71. X: gassert((R.RADchal_code == A.RADchal_code));
72. X: gassert((R.RADchal_id == A.RADchal_id));
73. X: gassert((R.RADchal_leng == A.RADchal_leng));
74. X: gassert((R.RADresp1_auth == A.RADresp1_auth));
75. X: gassert((R.RADchal_attr == A.RADchal_attr));
76. X: gassert((R.u_name == A.u_name));
77. X: gassert((R.CT_u_passw == A.CT_u_passw));
78. X: gassert((R.client_id == A.client_id));
79. X: gassert((R.port_id == A.port_id));
80. X: gassert((R.EAPreq1 == A.EAPreq1));
81. X: gassert((R.CT_EAPreq1 == A.CT_EAPreq1));
82. A: assert((A.RADreq1_id == A.RADchal_id));
83. A: assert((A.RADresp1_auth == A.RADresp1_auth'));
84. A: assert((A.CT_EAPreq1 == A.CT_EAPreq1'));
85. A: => S(A.EAPreq1);
86. S: <-(S.EAPreq1);

 127

87. S: (S.req_code,S.req1_id,S.req1_leng,S.req1_type,S.req1_type_data) :=
S.EAPreq1;

88. X: gassert((A.EAPreq1 == S.EAPreq1));
89. X: gassert((A.req_code == S.req_code));
90. X: gassert((A.req1_id == S.req1_id));
91. X: gassert((A.req1_leng == S.req1_leng));
92. X: gassert((A.req1_type == S.req1_type));
93. X: gassert((A.req1_type_data == S.req1_type_data));
94. S: S.res1_id := S.req1_id;
95. S: S.res1_type := S.req1_type;
96. S: S.EAPresp1 :=

<S.res_code,S.res1_id,S.res1_leng,S.res1_type,S.res1_type_data>;
97. S: => A(S.EAPresp1);
98. A: <-(A.EAPresp1);
99. A: (A.res_code,A.res1_id,A.res1_leng,A.res1_type,A.res1_type_data) :=

A.EAPresp1;
100. X: gassert((S.EAPresp1 == A.EAPresp1));
101. X: gassert((S.res_code == A.res_code));
102. X: gassert((S.res1_id == A.res1_id));
103. X: gassert((S.res1_leng == A.res1_leng));
104. X: gassert((S.res1_type == A.res1_type));

105. X: gassert((S.res1_type_data == A.res1_type_data));
106. A: assert((A.res1_id == A.req1_id));
107. A: assert((A.res1_type == A.req1_type));
108. A: A.RADreq2_auth := f.MD5(A.RN2);
109. A: A.CT_temp2 := f.MD5(A.RADreq2_auth,A.secret);
110. A: A.u_passw2 := f.XOR(A.CT_temp2,A.passw);
111. A: A.CT_EAPresp1 := f.MD5(A.EAPresp1);
112. A: A.CT_u_passw2 := f.MD5(A.u_passw2);
113. A: A.RADreq2_attr :=

<A.u_name,A.CT_u_passw2,A.client_id,A.port_id,A.EAPresp1,A.CT_EAPresp1>;
114. A: A.RADAccReq2 :=

<A.RADreq_code,A.RADreq2_id,A.RADreq2_leng,A.RADreq2_auth,A.RADreq2_attr
>;

115. A: => R(A.RADAccReq2);
116. R: <-(R.RADAccReq2);
117. R:

(R.RADreq_code,R.RADreq2_id,R.RADreq2_leng,R.RADreq2_auth,R.RADreq2_attr
) := R.RADAccReq2;

118. R:
(R.u_name,R.CT_u_passw2,R.client_id,R.port_id,R.EAPresp1,R.CT_EAPresp1)
:= R.RADreq2_attr;

119. R: R.CT_EAPresp1' := f.MD5(R.EAPresp1);
120. X: gassert((A.RADAccReq2 == R.RADAccReq2));
121. X: gassert((A.RADreq_code == R.RADreq_code));
122. X: gassert((A.RADreq2_id == R.RADreq2_id));
123. X: gassert((A.RADreq2_leng == R.RADreq2_leng));
124. X: gassert((A.RADreq2_auth == R.RADreq2_auth));
125. X: gassert((A.RADreq2_attr == R.RADreq2_attr));
126. X: gassert((A.u_name == R.u_name));
127. X: gassert((A.CT_u_passw2 == R.CT_u_passw2));
128. X: gassert((A.client_id == R.client_id));
129. X: gassert((A.port_id == R.port_id));
130. X: gassert((A.EAPresp1 == R.EAPresp1));
131. X: gassert((S.EAPresp1 == R.EAPresp1));
132. X: gassert((A.CT_EAPresp1 == R.CT_EAPresp1));
133. R: assert((R.CT_EAPresp1' == R.CT_EAPresp1));
134. R: R.RADsucc_auth := f.MD5(R.RADAccReq2,R.secret);
135. R: R.EAPsucc := <R.succ_code,R.succ_id,R.succ_leng>;

 128

136. R: R.CT_EAPsucc := f.MD5(R.EAPsucc);
137. R: R.RADsucc_attr :=

<R.u_name,R.CT_u_passw2,R.client_id,R.port_id,R.EAPsucc,R.CT_EAPsucc>;
138. R: R.RADsucc_id := R.RADreq2_id;
139. R: R.RADaccept :=

<R.RADsucc_code,R.RADsucc_id,R.RADsucc_leng,R.RADsucc_auth,R.RADsucc_att
r>;

140. R: => A(R.RADaccept);
141. A: <-(A.RADaccept);
142. A:

(A.RADsucc_code,A.RADsucc_id,A.RADsucc_leng,A.RADsucc_auth,A.RADsucc_att
r) := A.RADaccept;

143. A:
(A.u_name,A.CT_u_passw2,A.client_id,A.port_id,A.EAPsucc,A.CT_EAPsucc) :=
A.RADsucc_attr;

144. A: (A.succ_code,A.succ_id,A.succ_leng) := A.EAPsucc;
145. A: A.RADsucc_auth' := f.MD5(A.RADAccReq2,A.secret);
146. A: A.CT_EAPsucc' := f.MD5(A.EAPsucc);
147. X: gassert((R.RADaccept == A.RADaccept));
148. X: gassert((R.RADsucc_code == A.RADsucc_code));
149. X: gassert((R.RADsucc_id == A.RADsucc_id));
150. X: gassert((R.RADsucc_leng == A.RADsucc_leng));
151. X: gassert((R.RADsucc_auth == A.RADsucc_auth));
152. X: gassert((R.RADsucc_attr == A.RADsucc_attr));
153. X: gassert((R.u_name == A.u_name));
154. X: gassert((R.CT_u_passw2 == A.CT_u_passw2));
155. X: gassert((R.client_id == A.client_id));
156. X: gassert((R.port_id == A.port_id));
157. X: gassert((R.EAPsucc == A.EAPsucc));
158. X: gassert((R.CT_EAPsucc == A.CT_EAPsucc));
159. A: assert((A.RADreq2_id == A.RADsucc_id));
160. A: assert((A.RADsucc_auth == A.RADsucc_auth'));
161. A: assert((A.CT_EAPsucc == A.CT_EAPsucc'));
162. A: => S(A.EAPsucc);
163. S: <-(S.EAPsucc);
164. S: (S.succ_code,S.succ_id,S.succ_leng) := S.EAPsucc;
165. X: gassert((A.EAPsucc == S.EAPsucc));
166. X: gassert((R.EAPsucc == S.EAPsucc));
167. X: gassert((A.succ_code == S.succ_code));
168. X: gassert((A.succ_id == S.succ_id));
169. X: gassert((A.succ_leng == S.succ_leng));

 *** End of Protocol ***

TRUE

****** Simplified predicate follows.

TRUE

 129

APPENDIX K

CPAL-ES ENCODING OF MIM (MAN-IN-THE-MIDDLE ATTACK) ON IEEE 802.1X
PROTOCOL

-- Initial assumptions
X: assume(A.kas == S.kas);
X: assume(A.secret == R.secret);

--MSG-0:Supplicant sends it's password to Access Point
S: => A (e[passw]kas);
A: <- (msg);
A: passw := d[msg]kas;
X:gassert (S.passw == A.passw);

--MSG-1: Access Point requests from Supplicant
A: EAPreqID := <req_code, req_id, req_leng, req_type, req_type_data>;
A: => S(EAPreqID);
S: <- (EAPreqID);
S: (req_code, req_id, req_leng, req_type, req_type_data) := EAPreqID;
X: gassert(S.EAPreqID == A.EAPreqID);
X: gassert(S.req_code == A.req_code);
X: gassert(S.req_id == A.req_id);

--MSG-2: Supplicant responds to Access Point
S: res_id := req_id;
S: res_type := req_type;
S: EAPrespID := <res_code, res_id, res_leng, res_type, res_type_data>;
S: => A(EAPrespID);
A: <- (EAPrespID);
A: (res_code, res_id, res_leng, res_type, res_type_data) := EAPrespID;
X: gassert(A.EAPrespID == S.EAPrespID);
X: gassert(A.res_code == S.res_code);
X: gassert(A.res_id == S.res_id);
A: assert(req_id == res_id);
A: assert(req_type == res_type);

--MSG-3: Access Point requests from RADIUS
A: RADreq1_auth := MD5(RN1);
A: CT_temp := MD5(RADreq1_auth, secret);
A: u_passw1 := XOR(CT_temp, passw);
A: CT_EAPrespID := MD5(EAPrespID);
A: CT_u_passw := MD5(u_passw1);
A: RADreq1_attr := <u_name, CT_u_passw, client_id, port_id, EAPrespID,
CT_EAPrespID>;
A: RADAccReq1 := <RADreq_code, RADreq1_id, RADreq1_leng, RADreq1_auth,
RADreq1_attr >;
A: => R (RADAccReq1);
R: <- (RADAccReq1);
R: (RADreq_code, RADreq1_id, RADreq1_leng, RADreq1_auth, RADreq1_attr) :=
RADAccReq1;

 130

R: (u_name, CT_u_passw, client_id, port_id, EAPrespID, CT_EAPrespID) :=
RADreq1_attr;
R: CT_EAPrespID':=MD5(EAPrespID);
X: gassert(R.RADAccReq1 == A.RADAccReq1);
X: gassert(R.RADreq_code == A.RADreq_code);
X: gassert(R.RADreq1_id == A.RADreq1_id);
X: gassert(R.RADreq1_auth == A.RADreq1_auth);
X: gassert(R.RADreq1_attr == A.RADreq1_attr);
X: gassert(R.u_name == A.u_name);
X: gassert(R.CT_u_passw == A.CT_u_passw);
X: gassert(R.EAPrespID == A.EAPrespID);
X: gassert(R.EAPrespID == S.EAPrespID);
X: gassert(R.CT_EAPrespID == A.CT_EAPrespID);
R: assert(CT_EAPrespID == CT_EAPrespID');

--MSG-4: RADIUS responds to Access Point
R: RADresp1_auth := MD5(RADAccReq1, secret);
R: EAPreq1 := <req_code, req1_id, req1_leng, req1_type, req1_type_data>;
R: CT_EAPreq1 := MD5(EAPreq1);
R: RADchal_attr := <u_name, CT_u_passw, client_id, port_id, EAPreq1,
CT_EAPreq1>;
R: RADchal_id := RADreq1_id;
R: RADAccChal := <RADchal_code, RADchal_id, RADchal_leng, RADresp1_auth,
RADchal_attr>;
R: => A (RADAccChal);
A: <- (RADAccChal);
A:(RADchal_code, RADchal_id, RADchal_leng, RADresp1_auth, RADchal_attr) :=
RADAccChal;
A: (u_name, CT_u_passw, client_id, port_id, EAPreq1, CT_EAPreq1) :=
RADchal_attr;
A: (req_code, req1_id, req1_leng, req1_type, req1_type_data) := EAPreq1;
A: RADresp1_auth':= MD5(RADAccReq1, secret);
A: CT_EAPreq1' := MD5(EAPreq1);
X: gassert(A.RADAccChal == R.RADAccChal);
X: gassert(A.RADchal_code == R.RADchal_code);
X: gassert(A.RADchal_id == R.RADchal_id);
X: gassert(A.RADresp1_auth == R.RADresp1_auth);
X: gassert(A.RADchal_attr == R.RADchal_attr);
X: gassert(A.CT_u_passw == R.CT_u_passw);
X: gassert(A.EAPreq1 == R.EAPreq1);
X: gassert(A.CT_EAPreq1 == R.CT_EAPreq1);
A: assert(RADchal_id == RADreq1_id);
A: assert(RADresp1_auth'== RADresp1_auth);
A: assert(CT_EAPreq1' == CT_EAPreq1);

--MSG-5: Access Point requests from Supplicant
A: => S(EAPreq1);
S: <- (EAPreq1);
S: (req_code, req1_id, req1_leng, req1_type, req1_type_data) := EAPreq1;
X: gassert(S.EAPreq1 == A.EAPreq1);
X: gassert(S.req_code == A.req_code);
X: gassert(S.req1_id == A.req1_id);

--MSG-6: Supplicant responds to Access Point
S: res1_id := req1_id;
S: res1_type:= req1_type;
S: EAPresp1 := <res_code, res1_id, res1_leng, res1_type, res1_type_data>;
S: => A(EAPresp1);
A: <- (EAPresp1);
A: (res_code, res1_id, res1_leng, res1_type, res1_type_data) := EAPresp1;

 131

X: gassert(A.EAPresp1 == S.EAPresp1);
X: gassert(A.res_code == S.res_code);
X: gassert(A.res1_id == S.res1_id);
A: assert(req1_id == res1_id);
A: assert(req1_type == res1_type);

--MSG-7: Access Point requests from RADIUS
A: RADreq2_auth := MD5(RN2);
A: CT_temp2 := MD5(RADreq2_auth, secret);
A: u_passw2 := XOR(CT_temp2, passw);
A: CT_EAPresp1 := MD5(EAPresp1); --06.07.03
A: CT_u_passw2 := MD5(u_passw2); --06.07.03
A: RADreq2_attr := <u_name, CT_u_passw2, client_id, port_id, EAPresp1,
CT_EAPresp1>;
A: RADAccReq2 := <RADreq_code, RADreq2_id, RADreq2_leng, RADreq2_auth,
RADreq2_attr >;
A: => R (RADAccReq2);
R: <- (RADAccReq2);
R: (RADreq_code, RADreq2_id, RADreq2_leng, RADreq2_auth, RADreq2_attr) :=
RADAccReq2;
R: (u_name, CT_u_passw2, client_id, port_id, EAPresp1, CT_EAPresp1) :=
RADreq2_attr;
R: CT_EAPresp1':= MD5(EAPresp1);
X: gassert(R.RADAccReq2 == A.RADAccReq2);
X: gassert(R.RADreq_code == A.RADreq_code);
X: gassert(R.RADreq2_id == A.RADreq2_id);
X: gassert(R.RADreq2_auth == A.RADreq2_auth);
X: gassert(R.RADreq2_attr == A.RADreq2_attr);
X: gassert(R.u_name == A.u_name); --06.07.03
X: gassert(R.CT_u_passw2 == A.CT_u_passw2);
X: gassert(R.EAPresp1 == A.EAPresp1);
X: gassert(R.EAPresp1 == S.EAPresp1);
X: gassert(R.CT_EAPresp1 == A.CT_EAPresp1);
R: assert(CT_EAPresp1 == CT_EAPresp1');

--MSG-8: RADIUS responds success to Access Point
R: RADsucc_auth := MD5(RADAccReq2, secret);
R: EAPsucc := <succ_code, succ_id, succ_leng>;
R: CT_EAPsucc := MD5(EAPsucc);
R: RADsucc_attr := <u_name, CT_u_passw2, client_id, port_id, EAPsucc,
CT_EAPsucc>;
R: RADsucc_id := RADreq2_id;
R: RADaccept := <RADsucc_code, RADsucc_id, RADsucc_leng, RADsucc_auth,
RADsucc_attr>;
R: => A(RADaccept);
A: <- (RADaccept);
A: (RADsucc_code, RADsucc_id, RADsucc_leng, RADsucc_auth, RADsucc_attr) :=
RADaccept;
A: (u_name, CT_u_passw2, client_id, port_id, EAPsucc, CT_EAPsucc) :=
RADsucc_attr;
A: (succ_code, succ_id, succ_leng) := EAPsucc;
A: RADsucc_auth':= MD5(RADAccReq2, secret);
A: CT_EAPsucc' := MD5(EAPsucc);
X: gassert(A.RADaccept== R.RADaccept);
X: gassert(A.RADsucc_code == R.RADsucc_code);
X: gassert(A.RADsucc_id == R.RADsucc_id);
X: gassert(A.RADsucc_auth == R.RADsucc_auth);
X: gassert(A.RADsucc_attr == R.RADsucc_attr);
X: gassert(A.u_name == R.u_name);
X: gassert(A.CT_u_passw2 == R.CT_u_passw2);

 132

X: gassert(A.EAPsucc == R.EAPsucc);
X: gassert(A.CT_EAPsucc == R.CT_EAPsucc);
A: assert(RADsucc_id == RADreq2_id);
A: assert(RADsucc_auth'== RADsucc_auth);
A: assert(CT_EAPsucc' == CT_EAPsucc);

--MSG-9: Access Point sends success message to Supplicant, intruder I
intercepts the message
A: -> S(EAPsucc);
I: <- (EAPsucc);
I: (succ_code, succ_id, succ_leng) := EAPsucc;
X: gassert(I.EAPsucc == A.EAPsucc);
X: gassert(I.EAPsucc == R.EAPsucc);
X: gassert(I.succ_code == A.succ_code);
X: gassert(I.succ_id == A.succ_id);
X: gassert(I.succ_leng == A.succ_leng);

--MSG-10: Intruder sends success message to Supplicant
I: => S(EAPsucc);
S: <- (EAPsucc);
S: (succ_code, succ_id, succ_leng) := EAPsucc;
X: gassert(S.EAPsucc == I.EAPsucc);
X: gassert(S.EAPsucc == R.EAPsucc);
X: gassert(S.succ_code == I.succ_code);
X: gassert(S.succ_id == I.succ_id);
X: gassert(S.succ_leng == I.succ_leng);

 133

APPENDIX L

CPAL-ES EVALUATION OF MIM (MAN-IN-THE-MIDDLE ATTACK) ON IEEE 802.1X
PROTOCOL

1. X: assume((S.kas == A.kas));
2. X: assume((R.secret == A.secret));
3. S: => A(e[S.passw]S.kas);
4. A: <-(A.msg);
5. A: A.passw := d[A.msg]A.kas;
6. X: gassert((A.passw == S.passw));
7. A: A.EAPreqID :=

<A.req_code,A.req_id,A.req_leng,A.req_type,A.req_type_data>;
8. A: => S(A.EAPreqID);
9. S: <-(S.EAPreqID);
10. S: (S.req_code,S.req_id,S.req_leng,S.req_type,S.req_type_data) :=

S.EAPreqID;
11. X: gassert((A.EAPreqID == S.EAPreqID));
12. X: gassert((A.req_code == S.req_code));
13. X: gassert((A.req_id == S.req_id));
14. S: S.res_id := S.req_id;
15. S: S.res_type := S.req_type;
16. S: S.EAPrespID :=

<S.res_code,S.res_id,S.res_leng,S.res_type,S.res_type_data>;
17. S: => A(S.EAPrespID);
18. A: <-(A.EAPrespID);
19. A: (A.res_code,A.res_id,A.res_leng,A.res_type,A.res_type_data) :=

A.EAPrespID;
20. X: gassert((S.EAPrespID == A.EAPrespID));
21. X: gassert((S.res_code == A.res_code));
22. X: gassert((S.res_id == A.res_id));
23. A: assert((A.res_id == A.req_id));
24. A: assert((A.res_type == A.req_type));
25. A: A.RADreq1_auth := f.MD5(A.RN1);
26. A: A.CT_temp := f.MD5(A.RADreq1_auth,A.secret);
27. A: A.u_passw1 := f.XOR(A.CT_temp,A.passw);
28. A: A.CT_EAPrespID := f.MD5(A.EAPrespID);
29. A: A.CT_u_passw := f.MD5(A.u_passw1);
30. A: A.RADreq1_attr :=

<A.u_name,A.CT_u_passw,A.client_id,A.port_id,A.EAPrespID,A.CT_EAPrespID>
;

31. A: A.RADAccReq1 :=
<A.RADreq_code,A.RADreq1_id,A.RADreq1_leng,A.RADreq1_auth,A.RADreq1_attr
>;

32. A: => R(A.RADAccReq1);
33. R: <-(R.RADAccReq1);
34. R:

(R.RADreq_code,R.RADreq1_id,R.RADreq1_leng,R.RADreq1_auth,R.RADreq1_attr
) := R.RADAccReq1;

35. R:
(R.u_name,R.CT_u_passw,R.client_id,R.port_id,R.EAPrespID,R.CT_EAPrespID)
:= R.RADreq1_attr;

 134

36. R: R.CT_EAPrespID' := f.MD5(R.EAPrespID);
37. X: gassert((A.RADAccReq1 == R.RADAccReq1));
38. X: gassert((A.RADreq_code == R.RADreq_code));
39. X: gassert((A.RADreq1_id == R.RADreq1_id));
40. X: gassert((A.RADreq1_auth == R.RADreq1_auth));
41. X: gassert((A.RADreq1_attr == R.RADreq1_attr));
42. X: gassert((A.u_name == R.u_name));
43. X: gassert((A.CT_u_passw == R.CT_u_passw));
44. X: gassert((A.EAPrespID == R.EAPrespID));
45. X: gassert((S.EAPrespID == R.EAPrespID));
46. X: gassert((A.CT_EAPrespID == R.CT_EAPrespID));
47. R: assert((R.CT_EAPrespID' == R.CT_EAPrespID));
48. R: R.RADresp1_auth := f.MD5(R.RADAccReq1,R.secret);
49. R: R.EAPreq1 :=

<R.req_code,R.req1_id,R.req1_leng,R.req1_type,R.req1_type_data>;
50. R: R.CT_EAPreq1 := f.MD5(R.EAPreq1);
51. R: R.RADchal_attr :=

<R.u_name,R.CT_u_passw,R.client_id,R.port_id,R.EAPreq1,R.CT_EAPreq1>;
52. R: R.RADchal_id := R.RADreq1_id;
53. R: R.RADAccChal :=

<R.RADchal_code,R.RADchal_id,R.RADchal_leng,R.RADresp1_auth,R.RADchal_at
tr>;

54. R: => A(R.RADAccChal);
55. A: <-(A.RADAccChal);
56. A:

(A.RADchal_code,A.RADchal_id,A.RADchal_leng,A.RADresp1_auth,A.RADchal_at
tr) := A.RADAccChal;

57. A:
(A.u_name,A.CT_u_passw,A.client_id,A.port_id,A.EAPreq1,A.CT_EAPreq1) :=
A.RADchal_attr;

58. A: (A.req_code,A.req1_id,A.req1_leng,A.req1_type,A.req1_type_data) :=
A.EAPreq1;

59. A: A.RADresp1_auth' := f.MD5(A.RADAccReq1,A.secret);
60. A: A.CT_EAPreq1' := f.MD5(A.EAPreq1);
61. X: gassert((R.RADAccChal == A.RADAccChal));
62. X: gassert((R.RADchal_code == A.RADchal_code));
63. X: gassert((R.RADchal_id == A.RADchal_id));
64. X: gassert((R.RADresp1_auth == A.RADresp1_auth));
65. X: gassert((R.RADchal_attr == A.RADchal_attr));
66. X: gassert((R.CT_u_passw == A.CT_u_passw));
67. X: gassert((R.EAPreq1 == A.EAPreq1));
68. X: gassert((R.CT_EAPreq1 == A.CT_EAPreq1));
69. A: assert((A.RADreq1_id == A.RADchal_id));
70. A: assert((A.RADresp1_auth == A.RADresp1_auth'));
71. A: assert((A.CT_EAPreq1 == A.CT_EAPreq1'));
72. A: => S(A.EAPreq1);
73. S: <-(S.EAPreq1);
74. S: (S.req_code,S.req1_id,S.req1_leng,S.req1_type,S.req1_type_data) :=

S.EAPreq1;
75. X: gassert((A.EAPreq1 == S.EAPreq1));
76. X: gassert((A.req_code == S.req_code));
77. X: gassert((A.req1_id == S.req1_id));
78. S: S.res1_id := S.req1_id;
79. S: S.res1_type := S.req1_type;
80. S: S.EAPresp1 :=

<S.res_code,S.res1_id,S.res1_leng,S.res1_type,S.res1_type_data>;
81. S: => A(S.EAPresp1);
82. A: <-(A.EAPresp1);
83. A: (A.res_code,A.res1_id,A.res1_leng,A.res1_type,A.res1_type_data) :=

A.EAPresp1;

 135

84. X: gassert((S.EAPresp1 == A.EAPresp1));
85. X: gassert((S.res_code == A.res_code));
86. X: gassert((S.res1_id == A.res1_id));
87. A: assert((A.res1_id == A.req1_id));
88. A: assert((A.res1_type == A.req1_type));
89. A: A.RADreq2_auth := f.MD5(A.RN2);
90. A: A.CT_temp2 := f.MD5(A.RADreq2_auth,A.secret);
91. A: A.u_passw2 := f.XOR(A.CT_temp2,A.passw);
92. A: A.CT_EAPresp1 := f.MD5(A.EAPresp1);
93. A: A.CT_u_passw2 := f.MD5(A.u_passw2);
94. A: A.RADreq2_attr :=

<A.u_name,A.CT_u_passw2,A.client_id,A.port_id,A.EAPresp1,A.CT_EAPresp1>;
95. A: A.RADAccReq2 :=

<A.RADreq_code,A.RADreq2_id,A.RADreq2_leng,A.RADreq2_auth,A.RADreq2_attr
>;

96. A: => R(A.RADAccReq2);
97. R: <-(R.RADAccReq2);
98. R:

(R.RADreq_code,R.RADreq2_id,R.RADreq2_leng,R.RADreq2_auth,R.RADreq2_attr
) := R.RADAccReq2;

99. R:
(R.u_name,R.CT_u_passw2,R.client_id,R.port_id,R.EAPresp1,R.CT_EAPresp1)
:= R.RADreq2_attr;

100. R: R.CT_EAPresp1' := f.MD5(R.EAPresp1);
101. X: gassert((A.RADAccReq2 == R.RADAccReq2));
102. X: gassert((A.RADreq_code == R.RADreq_code));
103. X: gassert((A.RADreq2_id == R.RADreq2_id));
104. X: gassert((A.RADreq2_auth == R.RADreq2_auth));
105. X: gassert((A.RADreq2_attr == R.RADreq2_attr));
106. X: gassert((A.u_name == R.u_name));
107. X: gassert((A.CT_u_passw2 == R.CT_u_passw2));
108. X: gassert((A.EAPresp1 == R.EAPresp1));
109. X: gassert((S.EAPresp1 == R.EAPresp1));
110. X: gassert((A.CT_EAPresp1 == R.CT_EAPresp1));
111. R: assert((R.CT_EAPresp1' == R.CT_EAPresp1));
112. R: R.RADsucc_auth := f.MD5(R.RADAccReq2,R.secret);
113. R: R.EAPsucc := <R.succ_code,R.succ_id,R.succ_leng>;
114. R: R.CT_EAPsucc := f.MD5(R.EAPsucc);
115. R: R.RADsucc_attr :=

<R.u_name,R.CT_u_passw2,R.client_id,R.port_id,R.EAPsucc,R.CT_EAPsucc>;
116. R: R.RADsucc_id := R.RADreq2_id;
117. R: R.RADaccept :=

<R.RADsucc_code,R.RADsucc_id,R.RADsucc_leng,R.RADsucc_auth,R.RADsucc_att
r>;

118. R: => A(R.RADaccept);
119. A: <-(A.RADaccept);
120. A:

(A.RADsucc_code,A.RADsucc_id,A.RADsucc_leng,A.RADsucc_auth,A.RADsucc_att
r) := A.RADaccept;

121. A:
(A.u_name,A.CT_u_passw2,A.client_id,A.port_id,A.EAPsucc,A.CT_EAPsucc) :=
A.RADsucc_attr;

122. A: (A.succ_code,A.succ_id,A.succ_leng) := A.EAPsucc;
123. A: A.RADsucc_auth' := f.MD5(A.RADAccReq2,A.secret);
124. A: A.CT_EAPsucc' := f.MD5(A.EAPsucc);
125. X: gassert((R.RADaccept == A.RADaccept));
126. X: gassert((R.RADsucc_code == A.RADsucc_code));
127. X: gassert((R.RADsucc_id == A.RADsucc_id));
128. X: gassert((R.RADsucc_auth == A.RADsucc_auth));
129. X: gassert((R.RADsucc_attr == A.RADsucc_attr));

 136

130. X: gassert((R.u_name == A.u_name));
131. X: gassert((R.CT_u_passw2 == A.CT_u_passw2));
132. X: gassert((R.EAPsucc == A.EAPsucc));
133. X: gassert((R.CT_EAPsucc == A.CT_EAPsucc));
134. A: assert((A.RADreq2_id == A.RADsucc_id));
135. A: assert((A.RADsucc_auth == A.RADsucc_auth'));
136. A: assert((A.CT_EAPsucc == A.CT_EAPsucc'));
137. A: -> S(A.EAPsucc);
138. I: <-(I.EAPsucc);
139. I: (I.succ_code,I.succ_id,I.succ_leng) := I.EAPsucc;
140. X: gassert((A.EAPsucc == I.EAPsucc));
141. X: gassert((R.EAPsucc == I.EAPsucc));
142. X: gassert((A.succ_code == I.succ_code));
143. X: gassert((A.succ_id == I.succ_id));
144. X: gassert((A.succ_leng == I.succ_leng));
145. I: => S(I.EAPsucc);
146. S: <-(S.EAPsucc);
147. S: (S.succ_code,S.succ_id,S.succ_leng) := S.EAPsucc;
148. X: gassert((I.EAPsucc == S.EAPsucc));
149. X: gassert((R.EAPsucc == S.EAPsucc));
150. X: gassert((I.succ_code == S.succ_code));
151. X: gassert((I.succ_id == S.succ_id));
152. X: gassert((I.succ_leng == S.succ_leng));

 *** End of Protocol ***

TRUE

****** Simplified predicate follows.

TRUE

 137

APPENDIX M

CPAL-ES ENCODING OF SOLUTION TO MIM (MAN-IN-THE-MIDDLE ATTACK) ON
IEEE 802.1X PROTOCOL

--Initial assumptions
X: assume(A.kas==S.kas);
X: assume(A.secret==R.secret);

--MSG-0:Supplicant sends it's password to Access Point
S: => A (e[passw]kas);
A: <- (msg);
A: passw := d[msg]kas;
X:gassert (S.passw == A.passw);

--MSG-1: Access Point requests from Supplicant
A: EAPreqID := <req_code, req_id, req_leng, req_type, req_type_data>;
A: => S(EAPreqID);
S: <- (EAPreqID);
S: (req_code, req_id, req_leng, req_type, req_type_data) := EAPreqID;
X: gassert(S.EAPreqID == A.EAPreqID);
X: gassert(S.req_code == A.req_code);
X: gassert(S.req_id == A.req_id);

--MSG-2: Supplicant responds to Access Point
S: res_id := req_id;
S: res_type := req_type;
S: EAPrespID := <res_code, res_id, res_leng, res_type, res_type_data>;
S: => A(EAPrespID);
A: <- (EAPrespID);
A: (res_code, res_id, res_leng, res_type, res_type_data) := EAPrespID;
X: gassert(A.EAPrespID == S.EAPrespID);
X: gassert(A.res_code == S.res_code);
X: gassert(A.res_id == S.res_id);
A: assert(req_id == res_id);
A: assert(req_type == res_type);

--MSG-3: Access Point requests from RADIUS
A: RADreq1_auth := MD5(RN1);
A: CT_temp := MD5(RADreq1_auth, secret);
A: u_passw1 := XOR(CT_temp, passw);
A: CT_EAPrespID := MD5(EAPrespID);
A: CT_u_passw := MD5(u_passw1);
A: RADreq1_attr := <u_name, CT_u_passw, client_id, port_id, EAPrespID,
CT_EAPrespID>;
A: RADAccReq1 := <RADreq_code, RADreq1_id, RADreq1_leng, RADreq1_auth,
RADreq1_attr >;
A: => R (RADAccReq1);
R: <- (RADAccReq1);
R: (RADreq_code, RADreq1_id, RADreq1_leng, RADreq1_auth, RADreq1_attr) :=
RADAccReq1;

 138

R: (u_name, CT_u_passw, client_id, port_id, EAPrespID, CT_EAPrespID) :=
RADreq1_attr;
R: CT_EAPrespID' := MD5(EAPrespID);
X: gassert(R.RADAccReq1 == A.RADAccReq1);
X: gassert(R.RADreq_code == A.RADreq_code);
X: gassert(R.RADreq1_id == A.RADreq1_id);
X: gassert(R.RADreq1_auth == A.RADreq1_auth);
X: gassert(R.RADreq1_attr == A.RADreq1_attr);
X: gassert(R.u_name == A.u_name);
X: gassert(R.CT_u_passw == A.CT_u_passw);
X: gassert(R.EAPrespID == A.EAPrespID);
X: gassert(R.EAPrespID == S.EAPrespID);
X: gassert(R.CT_EAPrespID == A.CT_EAPrespID);
R: assert(CT_EAPrespID == CT_EAPrespID');

--MSG-4: RADIUS responds to Access Point
R: RADresp1_auth := MD5(RADAccReq1, secret);
R: EAPreq1 := <req_code, req1_id, req1_leng, req1_type, req1_type_data>;
R: CT_EAPreq1 := MD5(EAPreq1);
R: RADchal_attr := <u_name, CT_u_passw, client_id, port_id, EAPreq1,
CT_EAPreq1>;
R: RADchal_id := RADreq1_id;
R: RADAccChal := <RADchal_code, RADchal_id, RADchal_leng, RADresp1_auth,
RADchal_attr>;
R: => A (RADAccChal);
A: <- (RADAccChal);
A:(RADchal_code, RADchal_id, RADchal_leng, RADresp1_auth, RADchal_attr) :=
RADAccChal;
A: (u_name, CT_u_passw, client_id, port_id, EAPreq1, CT_EAPreq1) :=
RADchal_attr;
A: (req_code, req1_id, req1_leng, req1_type, req1_type_data) := EAPreq1;
A: RADresp1_auth':= MD5(RADAccReq1, secret);
A: CT_EAPreq1' := MD5(EAPreq1);
X: gassert(A.RADAccChal == R.RADAccChal);
X: gassert(A.RADchal_code == R.RADchal_code);
X: gassert(A.RADchal_id == R.RADchal_id);
X: gassert(A.RADresp1_auth == R.RADresp1_auth);
X: gassert(A.RADchal_attr == R.RADchal_attr);
X: gassert(A.CT_u_passw == R.CT_u_passw);
X: gassert(A.EAPreq1 == R.EAPreq1);
X: gassert(A.CT_EAPreq1 == R.CT_EAPreq1);
A: assert(RADchal_id == RADreq1_id);
A: assert(RADresp1_auth'== RADresp1_auth);
A: assert(CT_EAPreq1' == CT_EAPreq1);

--MSG-5: Access Point requests from Supplicant
A: => S(EAPreq1);
S: <- (EAPreq1);
S: (req_code, req1_id, req1_leng, req1_type, req1_type_data) := EAPreq1;
X: gassert(S.EAPreq1 == A.EAPreq1);
X: gassert(S.req_code == A.req_code);
X: gassert(S.req1_id == A.req1_id);

--MSG-6: Supplicant responds to Access Point
S: res1_id := req1_id;
S: res1_type := req1_type;
S: EAPresp1 := <res_code, res1_id, res1_leng, res1_type, res1_type_data>;
S: => A(EAPresp1);
A: <- (EAPresp1);
A: (res_code, res1_id, res1_leng, res1_type, res1_type_data) := EAPresp1;

 139

X: gassert(A.EAPresp1 == S.EAPresp1);
X: gassert(A.res_code == S.res_code);
X: gassert(A.res1_id == S.res1_id);
A: assert(req1_id == res1_id);
A: assert(req1_type == res1_type);

--MSG-7: Access Point requests from RADIUS
A: RADreq2_auth := MD5(RN2);
A: CT_temp2 := MD5(RADreq2_auth, secret);
A: u_passw2 := XOR(CT_temp2, passw);
A: CT_EAPresp1 := MD5(EAPresp1);
A: CT_u_passw2 := MD5(u_passw2);
A: RADreq2_attr := <u_name, CT_u_passw2, client_id, port_id, EAPresp1,
CT_EAPresp1>;
A: RADAccReq2 := <RADreq_code, RADreq2_id, RADreq2_leng, RADreq2_auth,
RADreq2_attr >;
A: => R (RADAccReq2);
R: <- (RADAccReq2);
R: (RADreq_code, RADreq2_id, RADreq2_leng, RADreq2_auth, RADreq2_attr) :=
RADAccReq2;
R: (u_name, CT_u_passw2, client_id, port_id, EAPresp1, CT_EAPresp1) :=
RADreq2_attr;
R: CT_EAPresp1' := MD5(EAPresp1);
X: gassert(R.RADAccReq2 == A.RADAccReq2);
X: gassert(R.RADreq_code == A.RADreq_code);
X: gassert(R.RADreq2_id == A.RADreq2_id);
X: gassert(R.RADreq2_auth == A.RADreq2_auth);
X: gassert(R.RADreq2_attr == A.RADreq2_attr);
X: gassert(R.u_name == A.u_name);
X: gassert(R.CT_u_passw2 == A.CT_u_passw2);
X: gassert(R.EAPresp1 == A.EAPresp1);
X: gassert(R.EAPresp1 == S.EAPresp1);
X: gassert(R.CT_EAPresp1 == A.CT_EAPresp1);
R: assert(CT_EAPresp1 == CT_EAPresp1');

--MSG-8: RADIUS responds success to Access Point
R: RADsucc_auth := MD5(RADAccReq2, secret);
R: EAPsucc := <succ_code, succ_id, succ_leng>;
R: CT_EAPsucc := MD5(EAPsucc);
R: RADsucc_attr := <u_name, CT_u_passw2, client_id, port_id, EAPsucc,
CT_EAPsucc>;
R: RADsucc_id := RADreq2_id;
R: RADaccept := <RADsucc_code, RADsucc_id, RADsucc_leng, RADsucc_auth,
RADsucc_attr>;
R: => A(RADaccept);
A: <- (RADaccept);
A: (RADsucc_code, RADsucc_id, RADsucc_leng, RADsucc_auth, RADsucc_attr) :=
RADaccept;
A: (u_name, CT_u_passw2, client_id, port_id, EAPsucc, CT_EAPsucc) :=
RADsucc_attr;
A: (succ_code, succ_id, succ_leng) := EAPsucc;
A: RADsucc_auth' := MD5(RADAccReq2, secret);
A: CT_EAPsucc' := MD5(EAPsucc);
X: gassert(A.RADaccept == R.RADaccept);
X: gassert(A.RADsucc_code == R.RADsucc_code);
X: gassert(A.RADsucc_id == R.RADsucc_id);
X: gassert(A.RADsucc_auth == R.RADsucc_auth);
X: gassert(A.RADsucc_attr == R.RADsucc_attr);
X: gassert(A.u_name == R.u_name);
X: gassert(A.CT_u_passw2 == R.CT_u_passw2);

 140

X: gassert(A.EAPsucc == R.EAPsucc);
X: gassert(A.CT_EAPsucc == R.CT_EAPsucc);
A: assert(RADsucc_id == RADreq2_id);
A: assert(RADsucc_auth'== RADsucc_auth);
A: assert(CT_EAPsucc' == CT_EAPsucc);

--MSG-9: Access Point sends success message to Supplicant.
A: succmsg := <EAPsucc, MD5(EAPsucc)>;
A: => S(succmsg);
S: <- (succmsg);
S: (EAPsucc, CT_forsucc) := succmsg;
S: (succ_code, succ_id, succ_leng) := EAPsucc;
S: succmsg' := <EAPsucc, MD5(EAPsucc)>;
X: gassert(S.EAPsucc == A.EAPsucc);
X: gassert(S.EAPsucc == R.EAPsucc);
X: gassert(S.succ_code == A.succ_code);
X: gassert(S.succ_id == A.succ_id);
X: gassert(S.succ_leng == A.succ_leng);
S: assert(succmsg == succmsg');

 141

APPENDIX N

CPAL-ES EVALUATION OF SOLUTION TO MIM (MAN-IN-THE-MIDDLE ATTACK)
ON IEEE 802.1X PROTOCOL

1. X: assume((S.kas == A.kas));
2. X: assume((R.secret == A.secret));
3. S: => A(e[S.passw]S.kas);
4. A: <-(A.msg);
5. A: A.passw := d[A.msg]A.kas;
6. X: gassert((A.passw == S.passw));
7. A: A.EAPreqID :=

<A.req_code,A.req_id,A.req_leng,A.req_type,A.req_type_data>;
8. A: => S(A.EAPreqID);
9. S: <-(S.EAPreqID);
10.S: (S.req_code,S.req_id,S.req_leng,S.req_type,S.req_type_data) :=

S.EAPreqID;
11.X: gassert((A.EAPreqID == S.EAPreqID));
12.X: gassert((A.req_code == S.req_code));
13.X: gassert((A.req_id == S.req_id));
14.S: S.res_id := S.req_id;
15.S: S.res_type := S.req_type;
16.S: S.EAPrespID :=

<S.res_code,S.res_id,S.res_leng,S.res_type,S.res_type_data>;
17.S: => A(S.EAPrespID);
18.A: <-(A.EAPrespID);
19.A: (A.res_code,A.res_id,A.res_leng,A.res_type,A.res_type_data) :=

A.EAPrespID;
20.X: gassert((S.EAPrespID == A.EAPrespID));
21.X: gassert((S.res_code == A.res_code));
22.X: gassert((S.res_id == A.res_id));
23.A: assert((A.res_id == A.req_id));
24.A: assert((A.res_type == A.req_type));
25.A: A.RADreq1_auth := f.MD5(A.RN1);
26.A: A.CT_temp := f.MD5(A.RADreq1_auth,A.secret);
27.A: A.u_passw1 := f.XOR(A.CT_temp,A.passw);
28.A: A.CT_EAPrespID := f.MD5(A.EAPrespID);
29.A: A.CT_u_passw := f.MD5(A.u_passw1);
30.A: A.RADreq1_attr :=

<A.u_name,A.CT_u_passw,A.client_id,A.port_id,A.EAPrespID,A.CT_EAPrespID>
;

31.A: A.RADAccReq1 :=
<A.RADreq_code,A.RADreq1_id,A.RADreq1_leng,A.RADreq1_auth,A.RADreq1_attr
>;

32.A: => R(A.RADAccReq1);
33.R: <-(R.RADAccReq1);
34.R:

(R.RADreq_code,R.RADreq1_id,R.RADreq1_leng,R.RADreq1_auth,R.RADreq1_attr
) := R.RADAccReq1;

 142

35.R:
(R.u_name,R.CT_u_passw,R.client_id,R.port_id,R.EAPrespID,R.CT_EAPrespID)
:= R.RADreq1_attr;

36.R: R.CT_EAPrespID' := f.MD5(R.EAPrespID);
37.X: gassert((A.RADAccReq1 == R.RADAccReq1));
38.X: gassert((A.RADreq_code == R.RADreq_code));
39.X: gassert((A.RADreq1_id == R.RADreq1_id));
40.X: gassert((A.RADreq1_auth == R.RADreq1_auth));
41.X: gassert((A.RADreq1_attr == R.RADreq1_attr));
42.X: gassert((A.u_name == R.u_name));
43.X: gassert((A.CT_u_passw == R.CT_u_passw));
44.X: gassert((A.EAPrespID == R.EAPrespID));
45.X: gassert((S.EAPrespID == R.EAPrespID));
46.X: gassert((A.CT_EAPrespID == R.CT_EAPrespID));
47.R: assert((R.CT_EAPrespID' == R.CT_EAPrespID));
48.R: R.RADresp1_auth := f.MD5(R.RADAccReq1,R.secret);
49.R: R.EAPreq1 :=

<R.req_code,R.req1_id,R.req1_leng,R.req1_type,R.req1_type_data>;
50.R: R.CT_EAPreq1 := f.MD5(R.EAPreq1);
51.R: R.RADchal_attr :=

<R.u_name,R.CT_u_passw,R.client_id,R.port_id,R.EAPreq1,R.CT_EAPreq1>;
52.R: R.RADchal_id := R.RADreq1_id;
53.R: R.RADAccChal :=

<R.RADchal_code,R.RADchal_id,R.RADchal_leng,R.RADresp1_auth,R.RADchal_at
tr>;

54.R: => A(R.RADAccChal);
55.A: <-(A.RADAccChal);
56.A:

(A.RADchal_code,A.RADchal_id,A.RADchal_leng,A.RADresp1_auth,A.RADchal_at
tr) := A.RADAccChal;

57.A: (A.u_name,A.CT_u_passw,A.client_id,A.port_id,A.EAPreq1,A.CT_EAPreq1)
:= A.RADchal_attr;

58.A: (A.req_code,A.req1_id,A.req1_leng,A.req1_type,A.req1_type_data) :=
A.EAPreq1;

59.A: A.RADresp1_auth' := f.MD5(A.RADAccReq1,A.secret);
60.A: A.CT_EAPreq1' := f.MD5(A.EAPreq1);
61.X: gassert((R.RADAccChal == A.RADAccChal));
62.X: gassert((R.RADchal_code == A.RADchal_code));
63.X: gassert((R.RADchal_id == A.RADchal_id));
64.X: gassert((R.RADresp1_auth == A.RADresp1_auth));
65.X: gassert((R.RADchal_attr == A.RADchal_attr));
66.X: gassert((R.CT_u_passw == A.CT_u_passw));
67.X: gassert((R.EAPreq1 == A.EAPreq1));
68.X: gassert((R.CT_EAPreq1 == A.CT_EAPreq1));
69.A: assert((A.RADreq1_id == A.RADchal_id));
70.A: assert((A.RADresp1_auth == A.RADresp1_auth'));
71.A: assert((A.CT_EAPreq1 == A.CT_EAPreq1'));
72.A: => S(A.EAPreq1);
73.S: <-(S.EAPreq1);
74.S: (S.req_code,S.req1_id,S.req1_leng,S.req1_type,S.req1_type_data) :=

S.EAPreq1;
75.X: gassert((A.EAPreq1 == S.EAPreq1));
76.X: gassert((A.req_code == S.req_code));
77.X: gassert((A.req1_id == S.req1_id));
78.S: S.res1_id := S.req1_id;
79.S: S.res1_type := S.req1_type;
80.S: S.EAPresp1 :=

<S.res_code,S.res1_id,S.res1_leng,S.res1_type,S.res1_type_data>;
81.S: => A(S.EAPresp1);
82.A: <-(A.EAPresp1);

 143

83.A: (A.res_code,A.res1_id,A.res1_leng,A.res1_type,A.res1_type_data) :=
A.EAPresp1;

84.X: gassert((S.EAPresp1 == A.EAPresp1));
85.X: gassert((S.res_code == A.res_code));
86.X: gassert((S.res1_id == A.res1_id));
87.A: assert((A.res1_id == A.req1_id));
88.A: assert((A.res1_type == A.req1_type));
89.A: A.RADreq2_auth := f.MD5(A.RN2);
90.A: A.CT_temp2 := f.MD5(A.RADreq2_auth,A.secret);
91.A: A.u_passw2 := f.XOR(A.CT_temp2,A.passw);
92.A: A.CT_EAPresp1 := f.MD5(A.EAPresp1);
93.A: A.CT_u_passw2 := f.MD5(A.u_passw2);
94.A: A.RADreq2_attr :=

<A.u_name,A.CT_u_passw2,A.client_id,A.port_id,A.EAPresp1,A.CT_EAPresp1>;
95.A: A.RADAccReq2 :=

<A.RADreq_code,A.RADreq2_id,A.RADreq2_leng,A.RADreq2_auth,A.RADreq2_attr
>;

96.A: => R(A.RADAccReq2);
97.R: <-(R.RADAccReq2);
98.R:

(R.RADreq_code,R.RADreq2_id,R.RADreq2_leng,R.RADreq2_auth,R.RADreq2_attr
) := R.RADAccReq2;

99.R:
(R.u_name,R.CT_u_passw2,R.client_id,R.port_id,R.EAPresp1,R.CT_EAPresp1)
:= R.RADreq2_attr;

100. R: R.CT_EAPresp1' := f.MD5(R.EAPresp1);
101. X: gassert((A.RADAccReq2 == R.RADAccReq2));
102. X: gassert((A.RADreq_code == R.RADreq_code));
103. X: gassert((A.RADreq2_id == R.RADreq2_id));
104. X: gassert((A.RADreq2_auth == R.RADreq2_auth));
105. X: gassert((A.RADreq2_attr == R.RADreq2_attr));
106. X: gassert((A.u_name == R.u_name));
107. X: gassert((A.CT_u_passw2 == R.CT_u_passw2));
108. X: gassert((A.EAPresp1 == R.EAPresp1));
109. X: gassert((S.EAPresp1 == R.EAPresp1));
110. X: gassert((A.CT_EAPresp1 == R.CT_EAPresp1));
111. R: assert((R.CT_EAPresp1' == R.CT_EAPresp1));
112. R: R.RADsucc_auth := f.MD5(R.RADAccReq2,R.secret);
113. R: R.EAPsucc := <R.succ_code,R.succ_id,R.succ_leng>;
114. R: R.CT_EAPsucc := f.MD5(R.EAPsucc);
115. R: R.RADsucc_attr :=

<R.u_name,R.CT_u_passw2,R.client_id,R.port_id,R.EAPsucc,R.CT_EAPsucc>;
116. R: R.RADsucc_id := R.RADreq2_id;
117. R: R.RADaccept :=

<R.RADsucc_code,R.RADsucc_id,R.RADsucc_leng,R.RADsucc_auth,R.RADsucc_att
r>;

118. R: => A(R.RADaccept);
119. A: <-(A.RADaccept);
120. A:

(A.RADsucc_code,A.RADsucc_id,A.RADsucc_leng,A.RADsucc_auth,A.RADsucc_att
r) := A.RADaccept;

121. A:
(A.u_name,A.CT_u_passw2,A.client_id,A.port_id,A.EAPsucc,A.CT_EAPsucc) :=
A.RADsucc_attr;

122. A: (A.succ_code,A.succ_id,A.succ_leng) := A.EAPsucc;
123. A: A.RADsucc_auth' := f.MD5(A.RADAccReq2,A.secret);
124. A: A.CT_EAPsucc' := f.MD5(A.EAPsucc);
125. X: gassert((R.RADaccept == A.RADaccept));
126. X: gassert((R.RADsucc_code == A.RADsucc_code));
127. X: gassert((R.RADsucc_id == A.RADsucc_id));

 144

128. X: gassert((R.RADsucc_auth == A.RADsucc_auth));
129. X: gassert((R.RADsucc_attr == A.RADsucc_attr));
130. X: gassert((R.u_name == A.u_name));
131. X: gassert((R.CT_u_passw2 == A.CT_u_passw2));
132. X: gassert((R.EAPsucc == A.EAPsucc));
133. X: gassert((R.CT_EAPsucc == A.CT_EAPsucc));
134. A: assert((A.RADreq2_id == A.RADsucc_id));
135. A: assert((A.RADsucc_auth == A.RADsucc_auth'));
136. A: assert((A.CT_EAPsucc == A.CT_EAPsucc'));
137. A: A.succmsg := <A.EAPsucc,f.MD5(A.EAPsucc)>;
138. A: => S(A.succmsg);
139. S: <-(S.succmsg);
140. S: (S.EAPsucc,S.CT_forsucc) := S.succmsg;
141. S: (S.succ_code,S.succ_id,S.succ_leng) := S.EAPsucc;
142. S: S.succmsg' := <S.EAPsucc,f.MD5(S.EAPsucc)>;
143. X: gassert((A.EAPsucc == S.EAPsucc));
144. X: gassert((R.EAPsucc == S.EAPsucc));
145. X: gassert((A.succ_code == S.succ_code));
146. X: gassert((A.succ_id == S.succ_id));
147. X: gassert((A.succ_leng == S.succ_leng));
148. S: assert((S.succmsg' == S.succmsg));

 *** End of Protocol ***

TRUE

****** Simplified predicate follows.

TRUE

 145

REFERENCES

[ARB01] W. A. Arbaugh, N. Shankar, and J. Wang. Your 802.11 Network has no Clothes. In Proceeding

of the First IEEE International Conference on Wireless LANs and Home Networks, December
2001.

[ABA99] M. Abadi. Your Security Protocols and Specifications. In Foundations of Software Science and

Computation Structures: Second International Conference, FOSSACS’99, pp.1-13, 1999.

[ARB01] W. A. Arbaugh, N. Shankar, and J. Wang. Your 802.11 Network has no Clothes. In Proceeding

of the First IEEE International Conference on Wireless LANs and Home Networks, December
2001.

[AZI94] A. Aziz, and W. Diffie. Privacy and Authentication for Wireless Local Area Networks. In IEEE

Personal Communications, First Quarter, pp. 25-31, 1994.

[BIE90] P. Bieber. A Logic of Communication in a Hostile Environment. In Proceeding of the Computer

Security Foundations Workshop III, pp. 14-22, IEEE Computer Society Press, June 1990.

[BOR01] N. Borisov, I. Goldberg, and W. Wagner. Intercepting Mobile Communications: The insecurity of

802.11. In Proceeding of the Seventh Annual International Conference on Mobile Computing and
Networking, pp.180-188, 2001.

[BOY93] C. Boyd, and W.Mao. On a Limitation of Ban Logic. Advances in Cryptology-EYROCRYPT ‘93,

pp. 240-247, 1993.

[BOY98] C. Boyd, and A.Mathuria. Key Establishment Protocols for Secure Mobile Communications. A

selective survey in: Australasian Conference on Information Security and Privacy, pp.344-355,
1998.

[BIRD92] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kuteen, R. Molva, and M. Yung. Systematic

Design of a Family of Attack-Resistant Authentication Protocols, IBM Raleigh, Watson & Zürich
Laboratories, 1992.

[BLU98] L. Blunk, and J. Vollbrecht. PPP Extensible Authentication Protocol (EAP), RFC 2284, March

1998.

[BUR90] M. Burrows, M. Abadi, and R. M. Needham. A Logic of Authentication. ACM Transactions on

Computer Systems, vol.8, no.1, pp.18-36, Feb 1990.

[BUT99] L. Buttyán. Formal Methods in the design of cryptographic protocols. Technical Report, no.

SSC/1999/38 Feb 1990, Swiss Federal Institute of Technology (EPFL). Lausanne, November
1999.

[BZM01] Q. Bi, G. I. Zysman, and H. Menkes. Wireless Mobile Communications at the Start of the 21st

Century. IEEE Communications Magazine, no. 1, pp. 110-116, January 2001.

[CHI01] J. Childs. Evaluating the TLS Family of Protocols with Weakest Precondition Reasoning.

Technical report TR-000703, Florida State University, July 2001.

 146

[CCI88] CCITT Recommendation X.509. The Directory-Authentication Framework. 1998.

[COR02] R. Corin, and S. Etalle. An Improved Constraint-Based System for the Verification of Security

Protocols. In M. Hermenegildo and G. Puebla, editors, 9th International Static Analysis
Symposium (SAS), vol. 2477, pp. 326-342, Madrid, Spain, September 2002.

[DIF92] W. Diffie, P. C. V. Oorschot, and M. J. Wiener. Authentication and Authenticated Key Exchanges.

Designs, Codes and Cryptography, Kluwer Academic Publishers, pp. 107-125, 1992.

[DIJ76] E. W. Dijkstra. A Discipline of Programming. Prentice Hall Series in Automatic Computation,

Prentice Hall Inc. Englewood Cliffs, NJ, 1976.

[DON98] B. Donovan, P. Norris, and G. Lowe. Analyzing a Library of Security Protocols using Casper and

FDR. In Proceedings of 1999 Workshop on Formal Methods and Security Protocols, July 1999.

[FAB98] F. J. T. Fabrega, J.C. Herzog, and J. D. Guttman. Strand Spaces: Why is a Security Protocol

Correct?. Proceedings 1998 IEEE Symposium on Security and Privacy, May 1998.

[GAA90] K. Gaarder, and E.Snekkenes. On the Formal Analysis of PKCS Authentication Protocols.

Advances in Cryptology-AUSCRYPT'90, Springer-Verlag, 1990.

[GON90] L. Gong, R. Needham, and R. Yahalom. Reasoning about Belief in Cryptographic Protocols.

Proceedings of the 1990 IEEE Computer Society Symposium on Research in Security and
Privacy, 1990.

[IEE01] IEEE. Standards for Local and Metropolitan Area Networks: Standard for Port Based Network

Access Control. IEEE Draft P802.1X/D11, March 2001.

[KAL93] B. Kaliski. Privacy Enhancement for Internet Electronic Mail: Part-IV: Key Certification and

Related Services. RFC 1424, RSA Labs., February 1993.

[KEM89] R. A. Kemmerer. Analyzing Encryption Protocols Using Formal Verification Techniques. IEEE

Journal on Selected Areas in Communications, vol. 7, no. 4, pp. 448-457, May 1989.

[KEL98] J. Kelsey, B. Schneier, and D. Wagner. Protocol Interactions and the Chosen Protocol Attack.

Security Protocols, 5th, International Workshop April 1997, Proceedings, pp. 91-104, Springer-
Verlag, 1998.

[KEN93] S. Kent. Privacy Enhancement for Internet Electronic Mail: Part-II: Certificate-Based Key

Management. RFC 1422, BBN Communications, February 1993.

[LOW96] G. Lowe. Breaking and Fixing the Needham-Schroeder Public Key Protocol Using FDR. In

Proceedings of TACAS, vol.1055 of LNCS, pp. 147-166, Springer-Verlag, 1996.

[LOW98] G. Lowe. Casper: A Compiler for the Analysis of the Security Protocols. Journal of Computer

Security, vol.6, pp. 53-84, 1998.

[MAR03] J. D. Marshall. An Analysis of the Secure Routing Protocol for Mobile Ad-Hoc Network Route

Discovery: Using intuitive Reasoning and Formal Verification to Identify Flaws. Technical Report
TR-030502, Florida State University, 2003.

[MEA95] C. Meadows. Formal Verification of Cryptographic Protocols. A survey in: Proceedings of

Advances in Cryptology-Asiacrypto'94. Lecture Notes in Computer Science, Springer-Verlag, vol.
917, pp.133-150, 1995.

[MEA96] C. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic Programming, vol.26,

no.2, February 1996.

 147

[MEA99] C. Meadows. Analysis of Internet Key Exchange Protocol Using the NRL Protocol Analyzer.

Proceedings of the 1999 Symposium on Security and Privacy. IEEE Society Press, May 1999.

[MEA00] C. Meadows. Open Issues in Formal Methods for Cryptographic Protocol Analysis. Proceedings

of DISCEX 2000, pp.237-250, IEEE Computer Society Press, 2000.

[MEA03] C. Meadows. Formal Methods for Cryptographic Protocol Analysis: Emerging Issues and

Trends. IEEE Journal on Selected Areas in Communication, vol. 21, no.1, pp.44-54, January
2003.

[MIS02]A. Mishra, and W. A. Arbaugh. An Initial Security Analysis of the IEEE 802.1X Standard.

Technical Report CS-TR-4328, University of Maryland, February 2002.

[MOS89] L. Moser. A Logic of Knowledge and Belief for Reasoning About Computer Security. In

Proceeding of the Computer Security Foundations Workshop II, pp. 57-63, IEEE Computer
Society Press, June 1989.

[MOV96] A. J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography.

CRC Press, 1996

[PAU97] L. C. Paulson. Mechanized Proofs of Security Protocols: Needham-Schroeder with Public Keys.

Technical Report 413, University of Cambridge, Computer Laboratory, January 1997.

[RAN88] P. V. Rangan. An Axiomatic Basis of Trust In Distributed Systems. In Proceeding of the 1988

Symposium on Security and Privacy, pp. 204-211, IEEE Computer Society Press, April 1988.

[RIG02] C. Rigney’s, S.Willens, A. Rubens, and W.Sipmson. Remote Authentication Dial In User Service

(RADIUS). RFC 2865, June 2000.

[RUB93] A. Rubin, and P. Honeyman. Formal Methods for the Analysis of Authentication Protocols.

Technical Report, CITI TR 93-7, October 1993.

[SCH96a] M. S. Schneider. Security Properties and CSP. In IEEE Computer Security Symposium on

Security and Privacy, IEEE Computer Society Press, 1996.

[SCH96b] M. S. Schneider. Using CSP for Protocol Analysis: The Needham-Schroeder Public key

Protocol. CSD-TR-96-14, Royal Holloway, University of London, 1996.

[SON01] D. Song, S. Brezin, and A. Perrig. Key Athena: A Novel Approach to Efficient Authomatic

Security Protocol Analysis. Special issue of Journal of Computer Security, vol.9, no.1, 2 pp.47-
74, 2001.

[STU01] A. Stubblefield, J. Ioannidis, and A. D. Rubin. Using The Fluhrer, Mantin, and Shamir Attack to

Break WEP. ATT Labs Technical Report, TD4ZCPZZ, Revision 2, August 21, 2001.

[SYV90] P. Syverson. Formal Symantics for Logics of Cryptographic Protocols. In Proceeding of the

Computer Security Foundations Workshop III, pp. 32-41, IEEE Computer Society Press, June
1990.

[WIN98] J. M. Wing. A Symbolic Relationship Between Formal Methods and Security. Technical Report,

CMU-CS-98-188, 1998.

[WOO93] T. Y. C. Woo, and S. S. Lam. A Semantic Model for Authentication Protocols. In Proceedings

of the 1993 IEEE Symposium on Research in Security and Privacy, pp. 178-194, IEEE Computer
Society Press, May 1993.

 148

[YAH93] R. Yahalom, B. Klein, and T. Beth. Trust Relationship in Secure Systems: A Distributed
Authentication Perspective. In Proceeding of the 1993 IEEE Syposium on Security and Privacy,
pp. 150-164, IEEE Computer Society Press, May 1993.

[YAS96] A. Yasinsac. Evaluating Cryptographic Protocols. PhD Thesis, University of Virginia, 1996.

[YAS99] A. Yasinsac, and W. A. Wulf. A Framework for a Cryptographic Protocol Evaluation Workbench.

Proceedings of the Fourth IEEE International High Assurance Systems Engineering Symposium
(HASE99), Washington D.C., Nov 1999.

[YAS00a] A. Yasinsac. Active Protection of Trusted Security Services. Florida State University, Computer

Science Technical Report TR 000101, Jan 2000.

[YAS00b] A. Yasinsac. Detecting Intrusions in Security Protocols. 1st ACM Conference on Computer and

Communications Security Workshop on Intrusion Detection, November 1-4, 2000.

 149

BIOGRAPHICAL SCETCH

ILKAY CUBUKCU

Ilkay Cubukcu was born on November 3, 1971 in Afyon, Turkey. She graduated

from Cay High School, Afyon, Turkey in June 1988. In June 1993, she earned a BS

degree from the Technical University of Istanbul in Istanbul, Turkey in Meteorological

Engineering. From September 1994 to June 1996, she thought in various schools in

Turkey while she was working on her teaching degree from Yildiz Technical University

in Istanbul. From February 1997 to August 2000, she worked as a research assistant at

NHMFL (National High Magnetic Field Laboratory) in Tallahassee, FL. She started

Computer Science master’s program at Florida State University and worked as a

teaching assistant with a full scholarship from August 2000 to August 2002. In May

2001, she joined security group of CS Department at FSU. From August 2002 to July

2003, she worked as research assistant at COAPS (Center for Ocean-Atmospheric

Prediction Studies) at FSU.

Her research interest is on wireless network security. Ilkay co-authored the paper

titled “A Family of Protocols for Group Key Generation in Ad Hoc Networks" presented

at Proceedings of the IASTED International Conference on Communications and

Computer Networks (CCN02) in 2002.

