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ABSTRACT

This thesis is composed of two parts.

Part one is on Appearance-Based Classification and Recognition Using Spectral His-

togram Representations. We present a unified method for appearance-based applications

including texture classification, 2D object recognition, and 3D object recognition using

spectral histogram representations. Based on a generative process, the representation is

derived by partitioning the frequency domain into small disjoint regions and assuming

independence among the regions. This gives rise to a set of filters and a representation

consisting of marginal distributions of those filter responses. We provide generic evidence

for its effectiveness in characterizing object appearance through statistical sampling and in

classification by visualizing images in the spectral histogram space. We use a multilayer

perceptron as the classifier and propose a filter selection algorithm by maximizing the

performance over training samples. A distinct advantage of the representation is that

it can be effectively used for different classification and recognition tasks. The claim is

supported by experiments and comparisons in texture classification, face recognition, and

appearance-based 3D object recognition. The marked improvement over existing methods

justifies the effectiveness of the generative process and the derived spectral histogram

representation.

Part two is on Hierarchical Learning for Optimal Component Analysis. Optimization

problems on manifolds such as Grassmann and Stiefel have been a subject of active research

recently. However the learning process can be slow when the dimension of data is large.

As a learning example on the Grassmann manifold, optimal component analysis (OCA)

provides a general subspace formulation and a stochastic optimization algorithm is used

to learn optimal bases. In this paper, we propose a technique called hierarchical learning

that can reduce the learning time of OCA dramatically. Hierarchical learning decomposes

the original optimization problem into several levels according to a specifically designed

hierarchical organization and the dimension of the data is reduced at each level using a

ix



shrinkage matrix. The learning process starts from the lowest level with an arbitrary initial

point. The following approach is then applied recursively: (i) optimize the recognition

performance in the reduced space using the expanded optimal basis learned from the next

lower level as an initial condition, and (ii) expand the optimal subspace to the bigger space

in a pre-specified way. By applying this decomposition procedure recursively, a hierarchy of

layers is formed. We show that the optimal performance obtained in the reduced space is

maintained after the expansion. Therefore, the learning process of each level starts with a

good initial point obtained from the next lower level. This speeds up the original algorithm

significantly since the learning is performed mainly in reduced spaces and the computational

complexity is reduced greatly at each iteration. The effectiveness of the hierarchical learning

is illustrated on two popular datasets, where the computation time is reduced by a factor of

about 30 compared to the original algorithm.
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CHAPTER 1

APPEARANCE-BASED CLASSIFICATION

AND RECOGNITION USING SPECTRAL

HISTOGRAM REPRESENTATIONS

1.1. Introduction

With the recent development of sophisticated learning algorithms, it has been realized

that the performance of a classification and recognition system critically depends on the

underlying representation [17, 7]. For example, Geman et al. [17] suggested that “the

fundamental challenges are about representation rather than learning” (p. 1); Bishop stated

in his book [7] that “in many practical applications the choice of pre-processing will be one

of the most significant factors in determining the performance of the final system” (p. 295).

The importance of representation was also greatly emphasized by Marr [39].

While the human visual system can recognize/classify different kinds of objects (such

textures and faces) based on images effortlessly, deriving a computational model that is

effective for variety of objects seems difficult. In the literature, this problem is largely

avoided by (artificially) dividing recognition/classification into different problems such

texture classification and object recognition and then developing separate models for each

problem. In this chapter, we attempt to develop a unified model for appearance-based

recognition/classification applications based on a generative process proposed by Grenander

and Srivastava [21]. The generative process relates the appearance of imaged objects to the

underlying object models. By seeking a compromise between computational complexity and

discriminability, we derive a spectral histogram representation, consisting of the marginals of

filter responses and also the filters by partitioning the frequency domain into small regions.

To demonstrate its generality and effectiveness for appearance-based applications, we show

1



that the representation can characterize the appearance of different kinds of objects including

textures and objects like faces.

To demonstrate the performance of appearance-based applications, we use a multi-layer

perceptron (MLP) as the classifier to capture/model variations within each class. Because of

the desirable properties of the spectral histogram representation, we obtain good performance

on separate test sets for several problems. To be statistically significant, we repeat

experiments under one setting many trials, reporting the statistics. Given the marked

improvement over existing methods, we argue that the spectral histogram representation

may provide a unified representation for appearance-based applications.

The rest of the chapter is organized as follows. In Section 1.2 we derive the spectral

histogram representation based on a generative process and provide generic justification

through statistical sampling and visualization. Section 1.3 presents a filter selection algo-

rithm within the spectral histogram representation by maximizing the training performance

of MLP. In Section 1.4 we show substantial experimental results on three problems, namely,

3D object recognition, face recognition, texture classification, and then on a combined

dataset. Section 1.5 concludes the chapter with discussion on a number of issues related

to our approach.

1.2. Spectral Histogram Representation

1.2.1. Derivation

The starting point of deriving the spectral histogram representation is the following

scenario. Suppose that we have a large number of different objects which may appear on a

uniform background according to a Poisson process and the objects are not known explicitly

in any other way. We are interested in a translation invariant statistical feature that can be

used to characterize the appearance of images. In other words, the derived feature(s) should

be effective for classifying and recognizing the large number of objects based on the observed

images.

Before we proceed further, we want to point out that important problems in computer

vision such as texture modeling and face recognition can be approximated by this simple

model. More interestingly, some popular techniques such as eigen decompositions [54] do

not satisfy the requirements imposed here as they are not translation invariant.
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An obvious choice is the histogram of the given image, which is translation invariant.

However, for a large number of objects, their histograms can be very close or even identical,

making the histogram not sufficient for recognition and classification. If all the pixel

values are statistically identical and independent, then the histogram is the only choice.

In appearance-based applications, however, this assumption of independence is not valid as

the pixels belonging to one object are dependent.

Another obvious choice is to build one joint probability model of all the pixels for each

class. The joint probability model captures completely the statistical dependence among

pixels on objects. With these probability models, one can use Bayesian classifier for optimal

classification [11]. However, the dimension of the joint space makes the implementation

impossible. (For a 128 × 128 image space, its dimension is 16384 and it has approximately

1039,456 different realizations assuming 256 values for each pixel; see [33] for some further

arguments.)

Here we seek a compromise between the two extreme choices. Instead of assuming that

the pixels are independent, we assume that small disjoint regions in the frequency domain are

independent. In other words, we partition the frequency domain into small disjoint regions

and model the corresponding response of each region in the spatial domain by its histogram.

How shall we partition the frequency domain? One sensible way is to partition it into rings

with a small range of radial frequencies, as shown in Fig. 1.1 (a), which was proposed by

Coggins and Jain [10] to design filters for textures. Another way is to partition it into regions

with a small range of radial center frequencies and orientations, as shown in Fig. 1.1 (c),

suggested by Jain and Farrokhnia [28]. Yet another way is to partition it into regions with

a small range of orientations, which is not explored in this chapter.1

These small regions give rise to ideal band pass filters with infinite support in the spatial

domain. To make the corresponding spatial filters local and compact, and thus more efficient

to implement, we use a Gaussian window function. Under this setting, each ring in Fig. 1.1(a)

can be approximated by a difference of Gaussian filter, which can be implemented using a

Laplacian of Gaussian (LoG) filter [39], given by:

LoG(x, y|T ) = (x2 + y2 − T 2)e−
x2+y2

T2 , (1.1)

1We can also partition the frequency domain to get filters that are sensitive to orientation but not sensitive
to radial center frequency. This idea leads to partition the frequency domain into regions of wedge as in [10].
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where T =
√

2σ determines the spatial scale of the filter and σ is the variance of the Gaussian

window function. These filters are referred to as LoG(T ). As examples, Fig. 1.1(b) shows

four LoG filters with different scales in spatial domain (bottom row) and their frequency

response (top row). As shown in Fig. 1.1(b), LoG filters are band-pass filters, and are

sensitive to a given radial center frequency, but not sensitive to orientation. It can also be

shown that each small region in Fig. 1.1(c) leads to a Gabor filter [16]. Gabor filters with

both sine and cosine components are given by:

Gabor(x, y|T, θ) = e−
1

2T2 (4(x cos θ+y sin θ)2+(−x sin θ+y cos θ)2)e−i 2π
T

(x cos θ+y sin θ), (1.2)

where T is a parameter scale. The cosine and sine components of these filters are referred

to as Gcos(T, θ) and Gsin(T, θ) respectively. Figure 1.1(d) shows four Gabor filters with

different orientations and frequencies in spatial domain (bottom row) and their frequency

response (top row). Gabor filters are band-pass filters and are sensitive to both orientation

and radial center frequency as shown in Fig. 1.1(d).

While the constructed filters may not be entirely statistically independent, the in-

dependence is valid to a certain extent for natural images, as recent numerical studies

show that Gabor filters (e.g. [42, 25]) and edge detectors (e.g. [4])2 share similarities with

independent components of natural images. Assuming that their responses are statistically

independent, the Kullback-Leibler distance between two joint distributions is the sum of

their corresponding marginal distributions as shown by:

KL(p1(x1, · · · , xn), p2(x1, · · · , xn))

=
∫

x1
· · ·

∫

xn
p1(x1, · · · , xn) log p1(x1,··· ,xn)

p2(x1,··· ,xn)
dx1 · · · dxn

=
n

∑

i=1

∫

xi

p1(xi) log
p1(xi)

p2(xi)
dxi

=
n

∑

i=1

KL(p1(xi), p2(xi)),

(1.3)

where pi(x1, · · · , xn) is the joint distribution and pi(xj) the jth marginal distribution. This

gives rise to the following representation for appearance-based applications. We partition

the frequency domain into small regions and compute the corresponding spatial filters. For

a given image, we convolve it with every filter and compute the marginal distribution of

2LoG filters are well known edge detectors [39].
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Figure 1.1. Two ways of partitioning the frequency domain. (a) Ring structures. (b) Four
LoG filters of different center frequency in spatial domain (bottom row) and their frequency
response (top row). (c) Small regions. (d) Four Gabor filters with different orientations and
different frequencies in spatial domain (bottom row) and their frequency response (top row).

each response image. We then combine the marginal distributions together as the resulting

representation of the input image. The last step is justified by Eq. (1.3). Therefore, in our

approach, each image is represented by a vector consisting of the marginal distributions of

chosen filter responses. We shall call this representation spectral histogram representation3

of the image with respect to the chosen filters [36].

The generative process used here can be seen as a simplified version of the transported

generator model proposed by Grenander and Srivastava [21]. The derived representation

has also been suggested through psychophysical studies on texture modeling [6] and texture

3The naming is based on two considerations: 1) filters are chosen according to a particular spectral
representation (i.e., filters are derived by sampling the frequency domain in ways shown in Fig. 1.1,
and 2) we use the histogram as a feature to summarize filter responses. In the literature, spectral based
representations are also applied directly to texture modeling. For example, by assuming that a texture is
a homogeneous random field, it can be decomposed into different homogeneous components, each of which
can be characterized by a spectral representation with a unique pattern [15, 32].
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discrimination [36], and has been used in the texture modeling and synthesis [23, 58], and

texture classification [1, 37]. Both the histogram of input images [53] and joint histograms

of local fields [47] have been used for object recognition. Filter selection was studied for

modeling a single texture [58] and for texture classification [37].

While this representation can be used directly to characterize rigid objects, objects are

often subject to deformations. Here we adopt the learning from examples methodology and

use a standard multiple-layer perceptron [24] to learn a model for each class based on the

spectral histogram representation.

1.2.2. Generic Justifications

Before we present experimental results on appearance-based applications using real

datasets, here we give some generic justifications for the effectiveness of the spectral

histogram representation for appearance-based applications from two perspectives. We

analyze its intrinsic generalization [35] using statistical sampling and show its clustering

of perceptually similar images through visualization.

From the discussion so far, a spectral histogram representation can be seen as a feature

vector. If filters are chosen properly, it can be a low dimensional representation of the

input image. For a representation to be effective for different kinds of appearance-based

applications, it should only group images with similar underlying models together; otherwise,

its performance is intrinsically limited. In [35], Liu et al. proposed a way to analyze

this by studying a representation’s intrinsic generalization. An intrinsic generalization of

a representation function for an input image is the set of all the images that share the same

representation and it can be studied through statistical sampling, where Gibbs sampler [18]

is commonly used.

We apply this technique to analyzing a spectral histogram representation’s intrinsic

generalization as follows. Given a set of filters {F (α)|α = 1, ..., K} and an image Iobs, we

first compute its spectral histogram, given by {H (α)
Iobs

|α = 1, ..., K}. Then for any image I,

we define an energy function as

E(I) =
K

∑

α=1

D(H
(α)
I , H

(α)
Iobs

),

and the corresponding Gibbs distribution as
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q(I) =
1

ZΘ

exp(−E(I)

Θ
).

where D is a distance measure between spectral histograms and Θ is a parameter, often called

temperature. When Θ → 0, only images whose spectral histogram is sufficiently similar to

{H(α)
Iobs

|α = 1, ..., K} will have significant non-zero probability. This allows us to generate

samples (which are images in this case) with similar spectral histograms statistically using

sampling techniques. Here we use a Gibbs sampler with annealing [18]. The basic idea is to

update pixels one by one based on their conditional probability so that the resulting image’s

probability will improve statistically. For a Gibbs sampler algorithm, see [57]. From the

definition of the spectral histogram, it is translational invariant. While this is desirable for

recognition, this makes it not possible to align the given image with generated samples. This

problem is avoided by using different images as boundary conditions as used in [33].

Figure 1.2 shows an example of a face, shown in Fig. 1.2(a). Here as in other examples,

forty filters4 including LoG and Gabors are used. The Gibbs sampler starts from any image

as the initial condition, here a white noise image is used, which is shown in Fig. 1.2(b)

with boundary conditions. Figure 1.2(c)-(e) show three realizations by running the Gibbs

sampler three times. Note that the essential perceptual characteristics of the input image are

captured even though details are missing. As argued in [35], this helps reduce the necessary

training samples and improve the generalization performance as its intrinsic generalization

has larger cardinality. This point is also emphasized by Vapnik [55].

Figure 1.3 shows four more synthesis examples. In each case, the left shows the given

image and the rest are examples from the Gibbs sampler. In all these examples, the

local features as well as the global configuration are captured by the spectral histogram.

As the spectral histogram only groups perceptually similar images in an image’s intrinsic

generalization, it should be effective for appearance-based applications, which is consistent

with the empirical evidence shown in Section 1.4.

Another important aspect for appearance-based applications is that the distance between

images from the same class should be smaller than that between images from different classes.

For a particular application, this depends on the choice of training and test sets. Here we

use an example to show why it is more effective to do classification/recognition in a spectral

4For synthesis, the intensity filter is also included, whose corresponding component in the representation
is the histogram of the given image.
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(a) (b) (c)

(d) (e)

Figure 1.2. An object synthesis example. (a) The given image. (b) The initial image
(a white noise one) with boundary conditions used for synthesis. (c)-(e) Three samples by
running the Gibbs’s sampler three times. Note that the perceptual characteristics of the
input are captured even though details are missing.

histogram representation space than in the original image space. In this example, we have

500 images from five classes, with 100 in each class, some from which are shown in Fig. 1.4.

Note that each class corresponds a perceptually meaningful texture class. To visualize the

five images in the original image space as well as the spectral histogram space, we first apply

principal component analysis technique to reduce the dimension to two. Then we project

each image into the respective low dimensional space. Figure 1.5(a) shows the 500 images

in the principal space of the original image space and Fig. 1.5(b) shows that of the spectral

histogram space. As the images from the same class do not form meaningful clusters in

the original image space, it is difficult to achieve good generalization performance regardless

8



(a) (b)

Figure 1.3. More object synthesis examples. Here different objects are used as boundary
conditions as in Fig. 1.2. Each row corresponds one object. (a) The given images. (b) In
each row, five realizations of the corresponding image by running the Gibbs sampler five
times.

of the choice of the classifier. On the other hand, as each class forms a tight cluster in

the spectral histogram space, any reasonable classifier would achieve good generalization

performance as the good performance on the training would imply good performance on

the test. This shows one distinctive advantage of the spectral histogram representation.

Of course, its effectiveness for appearance-based applications needs to be demonstrated as

datasets typically consist images with significant variations and empirical evidence is shown

in Section 1.4.

1.3. Filter Selection

Given a large number of filters, it has been shown that the marginal distributions are

sufficient to represent an arbitrary image up to a translation [58, 37]. Intuitively each filter

imposes some constraints on all the images that have the same marginal distributions, and

with sufficiently many filters, all the images with the same marginal distributions will be

identical up to a translation. This can also be seen from the corresponding frequency domain

representation. With more and more filters, the frequency response can be reconstructed and

thus the original image (through an inverse Fourier transform). Therefore, under the spectral
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Class 1 Class 2 Class 3 Class 2 Class 5

Figure 1.4. Three examples from each of the five classes.

class 1: *
class 2: o
class 3: .
class 4: +
class 5: v

class1: *
class2: o
class3: .
class4: +
class5: v

(a) (b)

Figure 1.5. The 500 images in the image space (a) and in the spectral histogram space (b).
Here only the two most prominent dimensions are displayed. Note that many points in (b)
are overlapped.
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histogram representation, a critical question for image classification and recognition is how

to select filters such that the performance is optimized and the computational complexity is

minimized. The basic idea here is simple, similar to that in [37]. We optimize the performance

and complexity on the given training data, formally known as empirical risk minimization [55]

by selecting most effective filters. As histogram operations are nonlinear [37], this makes

an analytical solution for filter selection difficult. Instead, we seek a numerical procedure to

select filters for MLPs.

Initially, we train one MLP using back propagation for each filter and we choose

the first filter to be the one that gives the minimum training error. Here, the training

samples are represented by their spectral representation of the corresponding filter. We

then iteratively choose filters one by one: for every unselected filter, we train one MLP and

choose the one that mostly improves the performance. Here the training data are the spectral

representations of the training images of the already selected filters and the corresponding

filter. The filter selection stops when the error is less than some predefined threshold. The

algorithm is summarized in Fig. 1.6. In Fig. 1.6, W are weights of filters that are used to

incorporate prior knowledge of filter preference. For example, small filters might be preferred

over large filters for computational reasons and rotation invariant filters may be preferred for

a rotational invariant representation. This can be achieved by weighting the training error

with the prior information as shown in Fig. 1.6.

This greedy algorithm is computationally efficient but may not guarantee an optimal

solution. Because the spectral histogram representation is robust, this procedure works well

on all the datasets we have used. As demonstrated in Section 1.4, the filters selected by our

algorithm for each dataset seem effective to capture discriminative features of datasets.

1.4. Results and Comparison

In this section, we demonstrate the effectiveness of our proposed method on three different

problems. For all the datasets used here, we start with 39 filters including: 1) 9 Laplacian

of Gaussian filters of different scales, and 2) 30 Gabor filters of five different scales with six

orientations at each scale. We exclude the intensity filter, corresponding to the histogram

of the input image, to make our representation more illumination invariant. The neural

network used here is a standard three-layer perceptron trained using the back-propagation
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Filter Selection Algorithm

S = φ
B = {F (1), · · · , F (K)}
W = {W F (1)

, · · · ,W F (K)}
repeat

for each filter F ∈ B
Train a MLP with filters S ∪ {F}
Compute the training error eF

end
F ∗ = minF∈B{eF · W F} e∗ = eF ∗

S = S ∪ {F ∗} B = B \ {F ∗}
until e∗ < ε

Figure 1.6. Filter selection algorithm. Here B is the set of all the candidate filters, S is
the set being chosen, W is the set of prior weights for filters, and ε is a threshold.

algorithm [24]. While the number of input units is determined by the filters chosen by the

selection algorithm, the hidden units are fixed to be 40.

1.4.1. 3D Object Recognition

We have applied our method to appearance-based 3D object recognition. For evaluation

of our method and comparison with existing methods, we use the Columbia Object Image

Library (COIL-100)5 dataset, which consists of the color images of 100 3-D objects with

varying pose, texture, shape and size. For each object there are 72 images taken at different

view angles with 5◦ apart. Therefore there are 7,200 color images in the entire dataset.

Figure 1.7 shows the 100 objects from the database from one fixed view angle.

A number of appearance-based schemes have been proposed to recognize 3D objects and

applied to the COIL dataset. Murase and Nayar [41] proposed a parametric method to

recognize 3D objects and estimate the pose of the object at the same time. Pontil and Verri

[44] applied Support Vector Machines (SVMs) [55] to appearance-based object recognition

and their method was tested using a subset of the COIL-100 dataset with half for training

and the other half for testing. As pointed out by Yang et al. [56], this dense sampling of

training views made the recognition less challenging. Yang et al. [56] applied Sparse Network

5Available at http://www.cs.columbia.edu/CAVE.
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Figure 1.7. The 100 3-D objects in the COIL database. Each image is a color image of
128 × 128.

of Winnows (SNoW) to recognition of 3D objects and they used the full set of COIL-100

dataset and compared their method with SVM.

As in [56], we vary the number of training views per object to make the 3D recognition

more challenging. Given the images in the training set, we apply our filter selection algorithm

starting with 39 filters. It is interesting to note the filters selected by our algorithm. It first

chose a LoG filter at the largest scale, then chose four Gabor filters at the largest scale with

different orientations, and then another LoG filter and a Gabor filter at a smaller scale. This

seems consistent with our intuition. Those objects do not prefer a particular orientation
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Table 1.1. Recognition results of different methods using the 100 objects in the COIL-100
dataset

# of training views per object
Methods 36 18 8 4

3600 tests 5400 tests 6400 tests 6800 tests

Our Method 100.00% 99.50% 96.33% 84.76%

SNoW[56] 95.81% 92.32% 85.13% 81.46%

Linear SVM[56] 96.03% 91.30% 84.80% 78.50%

Nearest Neighbor[56] 98.50% 87.54% 79.52% 74.63%

and the global patterns and shapes are the most effective for recognition as most of the

objects contain uniform surfaces, making the local patterns ineffective for discrimination

among different objects.

With the chosen filters, an MLP is trained and the learned network is then used to

recognize the testing images at novel views. The unit with the highest output is taken as

the result from the system. Table 1.1 shows our recognition results using different number

of training views along with the results reported in [56]. With eight views for training, our

system gives a correct recognition rate of 96.3%. If we allow the correct to be within the

closest five, the correct recognition rate is 99.0%.

We have also compared our recognition results with other methods in [56]. As shown

in Tab. 1.1, our method gives the best result under all the test conditions and improves

significantly when fewer training views are used. This improvement is essentially because

our representation is more meaningful than pixel- and edge-based representations used in [56].

Note that the nearest neighbor result is based on the pixel-wise distance between images.

Its performance confirms the images from the same class do not form clusters in the original

image space, consistent with Fig. 1.5.

One of the distinct advantages of the spectral histogram representation is its invariance

to a number of changes. As is easy to see from its definition, it does not depend on the

positions of the target object. In other words, the representation is translation invariant.

On the other hand, Pontil and Verri[44] stated that their method can only tolerate a small

amount of positional shifts. The intensity filter is excluded from all our experiments here

and this makes our representation more illumination invariant because all the filters we use

are derivative filters and their responses do not depend on the absolute pixel values. By
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preferring filters that are rotation and scale invariant, we can also make our representation

rotation and scale invariant. Scale invariance, however, is problematic for SVM and SNoW

methods [56] as the input dimension must be the same in order to perform dot product of

the kernel functions.

One of the disadvantages of the spectral histogram representation is the required

computation if implemented on serial computers as the convolution operation is time

consuming. This problem can be alleviated substantially by estimating the histograms based

on a subset of pixels. For example, we can do convolution only at pixels on a m × m grid

and thus reduce the convolution time by m2. Figure 1.8(a) shows the recognition error

rate in percentage and the average computation time for recognition with respect to the

grid size. Here 8 views are used for training and the rest 64 views are used for test. As

shown in Fig. 1.8(a), we can reduce the computation time dramatically, but the recognition

performance does not change quickly even though the recognition error increases as the grid

size increases. But if we consider the correct being within the five closest, the error increase

is within one percent, as shown by the dashed line shows in Fig. 1.8(a). As our method

is a bottom-up method, this shows it is effective for candidate shortlisting (see e.g. [51])

for a wide range of m. If we compare this result with other methods shown Tab. 1.1, our

recognition performance is still beyond 90.0% for grid size up to 8, significantly better than

the best from other methods (which is 85.13%).

To show that our method is insensitive to the choice of classifier configurations, we repeat

the experiment shown in Fig. 1.8(a) but with one MLP for each class. In other words, we

train simultaneously 100 MLPs, one for each class and the label is assigned to the class with

the highest output. The results are shown in Fig. 1.8(b). Compared to that shown Fig.

1.8(a), they are very similar, supporting our claim that the choice of the classifier is not

critical.

1.4.2. Face Recognition

In recent years, the problem of face recognition has been studied extensively in the

literature (see [9] for a survey). Our method is different from most existing methods for face

recognition in that it is a general method for image classification and recognition. However,
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Figure 1.8. The computation time and recognition error rate in percentage with respect to
grid size. In each plot, solid line is the relative computation time; dotted line is the error
rate with the correct class being the first; dashed line the error rate with the correct being
among the five closest. (a) One MLP for all the classes. (b) One MLP for each class.

due to the perceptually meaningful representation, our method is also very effective for face

recognition as demonstrated using a face recognition dataset.

Here we use the ORL database of faces6. The dataset consists of faces of 40 different

subjects with 10 images for each subject. The images were taken at different times with

different lighting conditions on a dark background. While only limited side movement and

tilt were allowed in this dataset, there was no restriction on facial expression. All the subjects

are shown in Fig. 1.9(a) and all the 10 images of a particular subject are shown in Fig. 1.9(b)

to demonstrate the variations of facial expression and lighting conditions.

Because there are only 10 faces per subject, we use 5 of them as training and the remaining

5 for testing. As some images are more representative for a subject than others, we randomly

choose training faces to avoid the potential bias on the performance. We then repeat the same

procedure many times to have a statistically more significant evaluation. It is interesting to

see the filters selected by our algorithm for this dataset. It chose four Gabor filters at the

largest scales to characterize the global face patterns and two Laplacian of Gaussian filters

whose scales are comparable with local facial patterns. Table 1.2 shows the recognition

results for 100 trials. Here we report the average, the best and worst performance among

6http://www.uk.research.att.com/facedatabase.html
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(b)

Figure 1.9. ORL face database. The size of the images is 112 × 92. (a) 40 subjects in
the database. (b) 10 face images of one subject taken at different facial expression and
illumination conditions.

the 100 trials. On average we have achieved over 95% correct recognition rate. Compared

to a study using hidden Markov models [46], where the topographic configuration of faces is

incorporated, our method outperforms theirs by a large margin.

Table 1.2. Recognition results for the 40 face dataset shown in Fig. 1.9

Criterion Average correct rate Best correct rate Worst correct rate
Correct to be the first 95.4 % 98.5% 90.5%
Correct within the first three 98.9% 100% 96.0%

To show the effectiveness of the filter selection algorithm, we compute the recognition

rate with different number of chosen filters. The result is shown in Tab. 1.3. Note that while

the selection algorithm is based on the training set only, the performance of the test set also

improves initially with the number of filters chosen. As shown in the table, the selection

algorithm selects six most effective filters and they give the best average performance over

100 trials.
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Table 1.3. Recognition performance with respect to number of selected filters
Number of filters selected Average error rate Best error rate Worst error rate

1 66.29% 70.60% 60.12%
2 87.11% 89.40% 84.46%
3 91.14% 93.21% 87.86%
4 93.78% 95.48% 91.13%
5 94.27% 95.89% 90.54%
6∗ 95.40% 98.50% 90.50%
39 95.20% 97.14% 92.14%

1.4.3. Texture Classification

Without any change, we have also applied our method to the problem of texture

classification, which has been studied extensively as a separate topic in computer vision.

We argue that texture models should be consistent with perceptual models for objects as

they need to be addressed within one generic recognition system; we demonstrate here that

our method can be applied equally well to the texture classification problem.

To demonstrate the effectiveness of our approach, we use a dataset consisting of 40

textures, as shown in Fig. 1.10. Each texture image is partitioned into non-overlapping

patches with size 32 × 32 and then all the obtained patches are divided into a training set

and a test set with no common patch between the two sets. As for 3D object recognition and

face recognition, we start with the same 39 filters and apply our filter selection algorithm

on the training set. The network trained with the chosen filters is then used to classify the

patches in the test set. To avoid a bias due to the choice of the training set, we randomly

choose the training set for each texture and run our algorithm many times for a better

evaluation. We also change the number of patches in the training set to demonstrate the

generalization capability of our representation.

Table 1.4 shows the classification result with 100 trials for each setting. Compared

to the filters chosen for COIL-100 and ORL datasets, our filter selection algorithm chose

filters whose scale is comparable with dominant local texture patterns. This dataset is very

challenging in that some of textures are perceptually similar to other textures in the dataset

and some are inhomogeneous with significant variations. With as few as 8 training patches,

our method achieves a correct classification rate of 92% on average. With half of the patches
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Figure 1.10. Forty natural textures used in the classification experi-
ments. The input image size is 256 × 256. These images are available at
http://www-dbv.cs.uni-bonn.de/image/texture.tar.gz.

used for training, we achieve an average classification rate over 96%. Table 1.5 is more

convincing, which shows the correct classification rate when the correct is within the closest

three. The worst performance is above 97%, demonstrating the good generalization of our

system.

To further demonstrate the effectiveness of our method and compare with existing

methods, we apply our method to the two datasets that were shown to be very challenging

for all the methods included in a recent comprehensive comparative study [45]. Randen and

Husoy [45] studied and compared close to 100 different methods for texture classification.

For the dataset shown in Fig. 11(h) in [45], Fig. 1.11(a) shows the correct classification rate

of all the methods with an average of 52.55% and best being 67.70%. Similarly, for the other

dataset shown in Fig. 11(i) in [45], the average correct classification rate is 54.02% with
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Table 1.4. Classification results for the 40-texture dataset shown in Fig. 1.10
Test-to-training ratio Average correct rate Best correct rate Worst correct rate

56/8 92.07% 94.20% 90.22%
48/16 94.74% 95.83% 93.07%
42/22 95.64% 96.73% 94.35%
32/32 96.36% 97.42% 95.16%

Table 1.5. Classification results of the correct within the closest three for the 40-texture
dataset shown in Fig. 1.10

Test-to-training ratio Average within three Best within three Worst within three
56/8 98.70% 99.42% 97.86%
48/16 99.32% 99.69% 98.70%
42/22 99.52% 99.94% 99.11%
32/32 99.62% 99.92% 99.14%

the best 72.20%, plotted here in Fig. 1.11(b). For datasets of 10 textures, a classification

error of 33.3% is very significant. For a fair comparison, we apply our method to the same

dataset7. As in the original experiment setting, we use a training set to train the neural

network with filter selection. The learned network is then applied to a separate test set.

The results from our methods are summarized in Tab. 1.6. Because the texture images are

perceptually quite similar, an accurate perceptual texture model is needed in order to classify

the textures correctly. In addition, two different sets of textures for training and testing make

the classification even more difficult. The significant improvement demonstrates the necessity

of a perceptually meaningful model for texture classification such as the one proposed here.

Table 1.6. Classification results of the two datasets used in [45]
dataset Correct to be the first Correct within first two Best result from[45]
Fig. 11(h)[45] 93.49% 97.75% 67.70%
Fig. 11(i)[45] 92.96% 98.34% 72.20%

7Available at http://www.ux.his.no/∼tranden.
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Figure 1.11. The correct classification rate of all the methods studied in [45] on the texture
dataset shown in Fig. 11(h) of [45]. The dashed line shows our result for comparison.

Table 1.7. Recognition rate for the combined dataset
Total training / test images

5080 / 5080 2560 / 7600 1300 / 8860
Correct to be the first one 99.37% 97.97% 94.09%

Correct within the first three 99.92% 99.21% 99.73%

1.4.4 Combined Dataset

To further demonstrate the generality of the spectral histogram representation, we have

combined the three datasets together to form one with 40 texture types, 100 3-D object

classes, and 40 face classes with a total of 10,160 images. In order to perform well on

this dataset, the representation must be able to discriminate among different types and

within each type, therefore a challenging problem. However, as the spectral histogram

representation can capture the perceptual characteristics of faces, textures, and objects as

shown in Sect. 1.2.2, we expect that it should work well. Table 1.7 shows the recognition

result on the combined dataset with respect to different settings. If we consider to be

correct if the correct class is among the closest three, the recognition error here under all

the cases is over 99%. This further demonstrates the generality of the proposed approach

for appearance-based applications.
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1.5. Summary and Discussion

This chapter has presented spectral histogram representations for classification and

recognition of images derived from a generative process. While the derived model is simple,

it is effective for different appearance-based applications that have been primarily studied

separately. The marked improvement of our method over existing ones, along with the

image synthesis and clustering visualization results, justifies the effectiveness and generality

of the spectral histogram representation. Not only is our approach generic as demonstrated

through different datasets of real images, the representation also provides other advantages

such as illumination, rotation, and scale invariance by choosing proper filters.

Our representation along with the filter selection algorithm provides a unified framework

for appearance-based object recognition and image classification. Within this framework, the

difference among general object recognition, face recognition, and texture classification is the

choice of the most effective filters. While filters with large scales are most effective for face

recognition as faces are topographically very similar, filters whose scales are comparable with

texture elements are most effective for texture classification. Our filter selection algorithm

chooses the most effective set of filters in this regard. This may lead to a system that is

effective for different types of images, which is a key requirement for a generic recognition

system.

Our representation has been derived and proposed not as an ultimate solution to the

classification and recognition problem. Rather, it is proposed as an effective bottom-up

feature statistic which can prune irrelevant templates for more accurate top-down matching

methods [51]. In this regard, the filter responses can also be used as top-down templates, an

example of which was implemented by Lades et al. [31] for object recognition in general and

face recognition in particular. This is also consistent with our generative process discussed in

Sect. 1.2. With marginal distributions as bottom-up feature statistics and filter responses as

templates, the top-down and bottom-up solutions can be integrated in a coherent framework.

In this chapter, we have chosen MLPs as the classifier for our experiments. Recently

support vector machines (SVMs) [55] seem to provide better performance for some appli-

cations. As discussed and shown earlier, the desirable properties of the spectral histogram

representation makes the choice of classifiers not critical. To further justify our claim, we
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have also used an SVM on the face recognition problem using the spectral histogram. Because

the SVM is designed for two-class problems, it needs to be extended to the multiple class

problems. There are two commonly used methods [29]: 1 against the rest and 1 against

another. For a K class problem, in the first case, one needs K SVMs and in the second case,

one needs K ∗ (K +1)/2 SVMs. We implemented both methods and the results are shown in

Tab. 1.8. Compared to the result using an MLP shown in Tab. 1.2, there is no significance

between the MLP result and the SVM result using one against the rest.

Table 1.8. Recognition results for the 40 face dataset shown in Fig. 1.9
Criterion Average correct rate Best correct rate Worst correct rate
1-against-the rest 94.8% 98.0% 89.0%
1-against-another 91.0% 95.0% 85.5%

While the spectral histogram representation is insensitive to some amount of distortions,

the appearance of an object may be heavily influenced by external conditions such as lighting

conditions, view angles, view points, and by other objects. This may not impose a serious

problem to our method as long as training examples under different conditions are available as

is required by all example-based systems. However, a more effective alternative is to utilize

the fact that the marginal distributions are functions of those conditions. By modeling

the generative process under those conditions parametrically or numerically, inference can

be done in the marginal distribution space, which in general is smooth with respect to

the parameters. Our preliminary results on pose estimation are encouraging and we are

currently investigating how to use our representation for multiple object recognition in a

cluttered environment.
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CHAPTER 2

HIERARCHICAL LEARNING FOR OCA

2.1 Introduction

Optimization problems on manifolds such as Grassmann [2, 20] and Stiefel [52] have been

a subject of active research recently. For example, Smith [48] explored the geometry of the

Stiefel manifold in the context of optimization problems and subspace tracking. Edelman

et al. [12] developed new Newton and conjugate gradient algorithms on the Grassman and

Stiefel manifolds. For more examples that use Grassmann and Stiefel manifolds see e.g.

[50] for subspace tracking, [38] for motion and structure estimation, and [3, 13] for neural

network learning algorithms. However the learning process can be slow when the dimension

of the data is high. As a learning example on the Grassmann manifold, optimal component

analysis (OCA) [34] provides a general subspace formulation and a stochastic optimization

algorithm is applied to learn the optimal basis. In this chapter, we propose a technique called

hierarchical learning that can reduce the learning time of OCA dramatically. Hierarchical

learning decomposes the original optimization problem into several levels according to a

specifically designed hierarchical organization and the dimension of the data is reduced at

each level using a shrinkage matrix. The learning process starts from the lowest level with

an arbitrary initial point. The following approach is then applied recursively: (i) optimize

the recognition performance in the reduced space using the expanded result of optimal basis

of the next lower level as an initial point, and (ii) expand the optimal subspace to the

bigger space in a pre-specified way. By applying this decomposition procedure recursively,

a hierarchy of layers is formed. We show that the optimal performance obtained in the

reduced space is maintained after the expansion. Therefore, the learning process of each

level starts with a good initial point obtained from the next lower level. This speeds up the
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original algorithm significantly since the learning is performed mainly in reduced spaces and

the computational complexity is reduced greatly at each iteration. The effectiveness of the

hierarchical learning is illustrated on two popular datasets, where the computation time is

reduced by a factor of about 30 compared to the original algorithm.

The remainder of the chapter is organized into four sections. In Section II we review the

relevent issues regarding optimal component analysis. The hierarchical learning is presented

in Section III. Experimental results are given in Section IV . Section V concludes the chapter

with a discussion.

2.2 Review of Optimal Component Analysis

As a learning example on the Grassmann manifold, optimal component analysis provides

a general subspace formulation and a stochastic optimization algorithm is applied to learn

the optimal basis. Comparing to principal component analysis [54], independent component

analysis [26] [27] and Fisher discriminant analysis [5], optimal component analysis has shown

its advantage in solving object recognition problems on some datasets. More specifically, in

[34], the performance function F is defined in the following way. Let there be C classes to be

recognized from the images; each class has ktrain training images (denoted by Ic,1, . . . , Ic,ktrain
)

and ktest test images (denoted by I ′
c,1, . . . , I

′
c,ktest

) to evaluate the recognition performance

measure.

F (U) =
1

Cktest

C
∑

c=1

ktest
∑

i=1

h(ρ(I ′
c,i, U) − 1). (2.1)

In our implementation, h(x) = 1/(1 + exp(−2βx)) and

ρ(I ′
c,i, U) =

minc′ 6=c,j d(I ′
c,i, Ic′,j; U)

minj d(I ′
c,i, Ic,j; U) + ε

. (2.2)

Here

d(I1, I2; U) = ‖α(I1, U) − α(I2, U)‖, (2.3)

‖ · ‖ denotes the 2-norm,

α(I, U) = UT I, (2.4)
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and ε > 0 is a small number to avoid division by zero. As stated in [34], F is presicely the

recognition performance of the nearest neighbor classifier when we let β → ∞. The gradient

vector of F at any point U is defined to be a skew-symmetric matrix given by:

A(U) = (
d

∑

i=1

n
∑

j=d+1

αij(U)Eij) ∈ <n×n, (2.5)

where

αij(U) = lim
ε↓0

(

(F (eεEijU) − F (U))

ε

)

.

αijs are the directional derivatives of F in the directions given by Eij, respectively. Here Eij

is an n × n skew-symmetric matrix such that: for 1 ≤ i ≤ d and d < j ≤ n,

Eij(k, l) =







1 if k = i, l = j
−1 if k = j, l = i
0 otherwise .

(2.6)

They form an orthogonal basis of the vector space tangent to Gn,d at identity.

The deterministic gradient flow is a solution of the following equation:

dX(t)

dt
= A(X(t)), X(0) = U0 ∈ Gn,d . (2.7)

In [34], a Markov chain Monte Carlo (MCMC) type stochastic gradient-based algorithm

is used to find an optimal subspace Û 1. At each iteration, the gradient vector of F with

respect to U , which is a skew-symmetric matrix, is computed. By following the gradient, a

new solution is generated, which is used as a proposal and is accepted with a probability that

depends on the performance improvement. If the performance of the new solution is better

than the current solution, it is always accepted. Otherwise, the worse the new solution’s

performance, the lower the probability the solution is being accepted. The computational

complexity Cn of each iteration of this algorithm is Cn = O(d×(n−d)×ktest×ktraining×n×d).

Cn is obtained by the following computation. d × (n − d) is the dimension of the gradient

vector. For each dimension and for each test image, the closest images in all the classes need

to be found to compute the ratio in Eqn. 2.2 and to compute the performance F in Eqn.

2.1. This gives the product ktest ×ktraining. The term n×d comes from Eqn. 2.3. Therefore,

we obtained the complexity for one iteration as the expression. The overall computational

complexity is Cn × t where t is the number of iterations.

1Note that the optimal solution may not be unqiue.
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2.3 Hierarchical Learning

From the analysis in previous section, we see that the computation at each iteration

depends on several factors and the complexity is O(n2) in terms of n, the size of the data.

For typical applications, n, which is the number of pixels in the image, is relative large.

Thus the algorithm can be time consuming at each iteration. Also when n is large, the

dimension of the searching space, which is the Grassmann manifold whose dimension is

d×(n−d), is large. As the other factors in the computational complexity can not be avoided,

here we propose a hierarchical learning process by decomposing the original optimization

problem into several levels according to a specifically designed hierarchical organization and

the dimension of the data is reduced at each level using a shrinkage matrix. The learning

process starts from the lowest level with an arbitrary initial point. The following idea is then

applied recursively: (i) optimize the recognition performance in the reduced space using the

expanded learning result of optimal basis of the next lower level as an initial point, and

(ii) expand the optimal subspace to the bigger space in a pre-specified way. By applying

this decomposition procedure recursively, a hierarchy of layers is formed. We show that

the optimal performance obtained in the reduced space is maintained after the expansion.

Therefore, the learning process of each level starts with a good initial point obtained from

the next lower level. This speeds up the original algorithm significantly since the learning

is performed mainly in reduced spaces and the computational complexity is reduced greatly

at each iteration.

2.3.1 Speeding Up the Search

First we state the following setup that gives a specific way to shrink the dimension of

the search space and expand the optimal basis obtained in the shrunk space to the original

space with a nice property that the performance is maintained.

Basic learning setup: If Î1 = AI1, Î2 = AI2 and U = AT Û , in which I1 ∈ <n0,

I2 ∈ <n0, Î1 ∈ <n1, Î2 ∈ <n1, A ∈ <n1×n0, U ∈ <n0×d, Û ∈ <n1×d, d, n0, n1 ∈ Z+.

Then d(I1, I2; U) = d(Î1, Î2; Û).

Proof: Using definitions of α (Eqn. 2.4) and d(·, ·; ·) (Eqn. 2.3), we get
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d(I1, I2; U) = ‖α(I1, U) − α(I2, U)‖
= ‖UT I1 − UT I2‖
= ‖ÛT AI1 − ÛT AI2‖
= ‖ÛT Î1 − ÛT Î2‖
= ‖α(Î1, Û) − α(Î2, Û)‖
= d(Î1, Î2; Û).

(2.8)

2

To simplify our narration in the future, we give the following terms. Let the size of the

original image be n0 and the size of the dimension reduced image be n1. The matrix A in

basic learning setup is called the shrinkage matrix, m = n0

n1
is called the shrinkage factor.

Multiplying AT with Û to get U is called basis expansion Û by shrinkage matrix A.

Hierarchical learning OCA setup: Let F be the OCA performance function defined by

Eqn. 2.1. If Î1 = AI1, Î2 = AI2 and U = AT Û , in which I1 ∈ <n0, I2 ∈ <n0, Î1 ∈ <n1,

Î2 ∈ <n1, A ∈ <n1×n0,AAT = I, U ∈ <n0×d, Û ∈ <n1×d, d, n0, n1 ∈ Z+. Then

F (U) = F (Û).

Proof: By definition, F depends only on d(·, ·; ·), the distance between the representation

of images. The conclusion of basic learning setup tells us that d(I1, I2; U) = d(Î1, Î2; Û).

Therefore, F (U) = F (Û).

2

Therefore, by hierarchical learning OCA setup, to save time when searching for the

optimal basis U of size n0 × d on the Grassmann manifold Gn0,d of dimension d × (n0 − d)

we can do the following three steps:

1. Shrink the image size to get dimension reduced training and test images of length n1

by multiplying the shrinkage matrix A with original images.

2. Apply the OCA algorithm to search for the optimal basis Ū of size n1 × d on the

Grassmann manifold Gn1,d of dimesion d× (n1−d) with dimension shrunk training and

test images.
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3. Expand the basis by equation U = AT Ū to get the basis U of size n0 × d.

It’s worthy to note the fact that the recognition rate using U is exactly the same as it is

using Ū .

Let’s take a look at how much is gained by applying these steps. For each iteration, the

computational complexity with images of size n0 is Cn0 = O(d× (n0 − d)× ktest × ktraining ×
n0 × d). While the computational complexity with images of size n1 is

Cn1 = O(d × (n0

m
− d) × ktest × ktraining × n0

m
× d)

= n0−md
m2(n0−d)

CN1

≈ 1
m2 Cn0 ,

(2.9)

considering the fact n0 >> d.

Obviously it is much more efficient to learn on Gn1,d than on Gn0,d when the dimension of

search space is reduced from d × (n0 − d) to d × (n1 − d). With the nice property stated in

hierarchical learning OCA setup, step 3 keeps the performance. Therefore, we get the basis

U of size n0 × d with performing the time saving learning process in a smaller space.

2.3.2 Hierarchical Learning Algorithm

Intuitively, the larger shrinkage factor m, the more computationally efficient in the

search. However, the success of this procedure depends on whether the highest performance

achievable in the reduced space Gn1,d is acceptable or not. If the performance offered by

the optimal basis Ū is not high enough, after expanding the basis, U also offers the same

unsatisfied performance. To achieve high performance we have to search on Gn0,d with an

initial point U , which is potentially time consuming since the search space is large and the

computational complexity of each iteration is high.

To overcome this problem, we propose to perform the search hierarchically at different

levels. The basic idea is as follows. Instead of choosing large m to shrink the dimension only

once, we can choose a relatively smaller shrinkage factor mk to shrink the original images to

get the training and test images at level k, where k = 0, 1, ..., L and m0 < m1 < ... < mL

where m0 ≡ 1. Level 0 is called the highest level and level L is called the lowest level. The

size of images at level k is n0

mk
where n0 is the size of the original images. Our goal is to find

an optimal basis of size n0 × d at level 0. To fulfill this task, we do the search hierarchically
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L

1

BasisImageLevel

0

Figure 2.1. Hierarchical search process. Image size is reduced as level number increases.
Firstly, the optimal basis UL is obtained at level L as a learning result on G n0

mL
,d. We obtain

a basis ŪL−1 of level L − 1 by expanding UL. Hierarchical learning OCA setup shows that
ŪL−1 and UL have the same performance. ŪL−1 is used as an initial point to perform the
learning at level L − 1 on G n0

mL−1
,d. The ’search – expand basis – search’ process goes on till

we get the optimal basis at level 0.

as follows. The search begins from level L on G n0
mL

,d with dimension-reduced images of size

n0

mL
. The computational complexity at this level is 1

m2
L

Cn0 for each iteration. The search can

be effectively done since the learning space G n0
mL

,d is relatively small and the computational

complexity of each iteration is low. After getting an optimal basis UL at level L, we obtain a

basis ŪL−1 of level L−1 by expanding UL. Based on the above discussion we know that ŪL−1

and UL have the same performance. If we use ŪL−1 as an initial point to perform the search

at level L − 1 on G n0
mL−1

,d with images of size n0

mL−1
, the search can be performed relatively

effectively. The computational complexity at this level is 1
m2

L−1
Cn0 for each iteration. The

search result of this level will be used to obtain a basis ŪL−2 of level L − 2, which is used

as an initial point for further search at level L − 2. This process is repeated until we have

reached level 0. In summary, the search is performed from the lowest level L to the highest

level 0. The lower the level, the more efficient the search. The search result of the lower level
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offers a good initial point for the next upper level. The recognition performance keeps on

increasing at each level. We hope the acceptable recognition performance can be obtained

at lower level. It’s not then necessary to perform the time consuming search at upper levels

and the optimal basis of level 0 is directly computed by expanding the basis from level 1.

This process is summarized and illustrated in Fig. 2.1. The hierarchical learning

algorithm is given below.

Hierarchical Learning Algorithm: Suppose we decompose the learning process to L + 1

levels, and the shrinkage factors are m1, ...,mL with m0 ≡ 1,m0 < m1 < ... < mL. The

original image size is n0. Our aim is to find the optimal basis U0 of level 0.

1. Choose the dimension shrinkage matrices Ak of size n0

mk
× n0

mk−1
, for k = 1, . . . , L. Next

prepare new training and test images at each level i for i = 1, . . . , L: shrinking the

image dimension on the training and test images for i times by left-multilplying
1

∏

k=i

Ak

with the original images.

2. Learn starting from level L for the optimal basis UL at level L on G n0
mL

,d with training

and test images of size n0

mL
.

3. For each k = L − 1, . . . , 0,

BEGIN

(a) let Ūk = AT
k+1Uk+1,

(b) using Ūk as the initial point, search for the optimal basis Uk at level k on G n0
mk

,d

with training and test images of size n0

mk
.

END

2.3.3 Shrinking Dimension through Adaptive K-means

For the hierarchical search algorithm to be effective, the key is to keep the learning process

to be performed mostly at lower levels and exempt the heavy computation at higher levels.

This requires the best achievable performance in the higher level be preserved as high as
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possible in the lower levels. In essence, this arises the question of how to reduce the dimension

from the original images such that the performance obtained with the dimension reduced

images is as high as possible. Since we reduce the image dimension by left-multiplying a

shrinkage matrix, the above question may be restated as follows: how to choose a shrinkage

matrix such that the performance of the dimension reduced image can be as high as possible?

To answer the above question, ideally one would require a search over all shrinkage matrices

to obtain the desired one. However, performing such a search may be more time consuming

and complex than the original problem itself. Instead we propose an efficient way to reduce

the dimension of images based on heuristics. The main idea is illustrated with the following

example.

Example: Let

I1 = ( 10 30 10 80 30 80 10 80 30 )T ,

I2 = ( 15 35 15 70 35 70 15 70 35 )T ,

A1 =
1

3





1 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 0 1 0



 ,

A2 =
1

3





1 1 0 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1



 .

If we choose A1 as a shrinkage matrix, we get

Î1 = A1I1 = ( 10 30 80 )T ,

Î2 = A1I2 = ( 15 35 70 )T .

We can see that any performance achievable using I1 and I2 can be achieved using Î1 and

Î2. Therefore A1 is a good choice as a shrinkage matrix.
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On the other hand, if we choose A2 as a shrinkage matrix, we get

Ĩ1 = A2I1 = ( 40 40 40 )T ,

Ĩ2 = A2I2 = ( 40 40 40 )T .

We can see that the reduced images Ĩ1, Ĩ2 do not provide any information for recognition

any more, since Ĩ1 and Ĩ2 are identical while I1 and I2 are different. Therefore A2 is a bad

choice as a shrinkage matrix.

Let us do some analysis to see why A1 performs well while A2 does not. Let M be a

matrix with I1 and I2 being its two columns.

M̂ = A1M,

M̃ = A2M

in which M̂ = [Î1 Î2],M̃ = [Ĩ1 Ĩ2]. Matrices A1 and A2 correspond to two different ways

of grouping row vectors of M and represent them M̂ and M̃ respectively. Matrix A1 groups

together rows of small distance and represent each cluster with its mean. However matrix

A2 groups rows of large distance and gives a bad result.

Based on the example, we argue that to keep the best achievable performance in the

original space we should group pixels with similar values in the original image together and

represent them in the dimension reduced images by their mean. To achieve this, we propose

a pixel grouping algorithm called adaptive K-means, which is an adapted version of the

commonly used K-means algorithm [14]. This method is used in the hierarchical learning

algorithm to generate shrinkage matrix Ak implicitly. It is designed such that pixels that

are clustered together contribute to the same coordinate in the reduced space.

Suppose the image sizes of nl and nl+1 at level l and l+1 satisfy the relation nl = mnl+1,

where m is the shrinkage factor. As all the training images should be shrunk in the same

way, we put all of them in a matrix M of size nl × n where each column of M is an image

and n is the number of training images. We want to get a matrix M̄ of size nl+1 × n where

each row is the mean of m rows of M . Let M = [MT
1 MT

2 ...MT
nl

]T where Mi(i = 1, .., nl) is

the i - th row of M . Treating Mi as a point in <n, we give the following algorithm to group

the nl points Mi(i = 1, .., nl) to nl+1 clusters M i(i = 1, . . . , nl+1).

Adaptive K-means Algorighm: Let S = {Mi|i = 1, . . . , nl}. Randomly choose nl+1

points M i ∈ <n, i = 1, . . . , nl+1. Choose maximum iteration number T .
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1. j = 0. For each M i, choose the nearest m points in S, group them into cluster M i.

Remove the chosen points from S.

2. For each cluster with center M i, compute variance V i and mean (M i)new, set M i =

(M i)new.

3. Let S = {Mi|i = 1, . . . , nl}. Sorting according to V i, get list L : V i1 ≤ V i2 ≤ · · · ≤
V inl+1

, in which (i1, · · · , inl+1
) is a permutation of (1, · · · , nl+1).

4. According to L, for each cluster with center M ik we choose the nearest m points in S

and put them into this cluster. Remove the chosen points from S.

5. For each cluster with center M ik , compute variance V ik and mean (M ik)new. If

(M ik)new = M ik for every cluster or j > T , stop, else j = j + 1, go to step 3.

2.3.4 Shrinking Dimension Through PCA

Besides the adaptive K-means algorithm, principal component analysis is another choice

to shrink image dimension.

Considering the fact that for n images of size n0 there are at most p
∆
= min(n−1, n0 −1)

PCA bases, as the rest of the eigenvalues of the covariance matrix are zero. The p bases span

a subspace S of <n. If we project the original images to S, the achievable recognition rate

using the projected images should be the same as using the original images. This observation

gives us the idea that we can use the matrix composed of PCA basis as a shrinkage matrix.

The time used to compute the PCA basis is a part of the total time of the hierarchical

learning. When p is relatively small, we prefer to use PCA to generate the shrinkage matrix,

because the time spent on computing the PCA basis is relatively small by using the fast PCA

algorithm. When p is relatively large, the time spent on computing PCA basis is relatively

long too. In this case, we prefer to use the adaptive kmeans algorithm.

2.4 Experimental Results

Here we use the ORL database of faces2 and part of the CMU PIE dataset [43]. The ORL

dataset consists of faces of 40 different subjects with 10 images for each subject. The images

2http://www.uk.research.att.com/facedatabase.html
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were taken at different times with different lighting conditions on a dark background. While

only limited side movement and tilt were allowed in this dataset, there was no restriction

on facial expression. All the subjects are shown in Fig. 2.2(a) and all the 10 images of a

particular subject are shown in Fig. 2.2(b) to demonstrate the variations of facial expression

and lighting condition. The PIE dataset we used consists of faces of 66 different subjects

with 21 images each.

(a)            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(b)

Figure 2.2. ORL face database. (a) 40 subjects in the database. (b) 10 face images of one
subject taken at different facial expression and illumination conditions.

1. First, we have studied the time for searching for the optimal basis versus the total

number of levels L. Figure 2.3 shows the experimental result, which highlights the

effectiveness of hierarchical learning algorithm. For (a), when L is zero, i.e. learning

without hierarchical algorithm, it takes 21341 seconds (6 hours) to get the optimal

basis. However, after applying hierarchical learning algorithm, it only takes 675 seconds

(11 minutes) to finish the search when L=3. The hierarchical algorithm speeds up the

original one with a factor of 31. In this experiment, we shrink image size by adaptive

K-means algorithm. The PIE dataset is used and the image size is 10000, image sizes
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Figure 2.3. Plots of learning time versus the total number of levels L, shrinking with
adaptive-kmeans. (a) Dataset: PIE, image size is 10000, reduced image sizes of level 1
throuth 3 are 2500, 625 and 157 respectively. d = 10, ktrain = 660, and ktest = 726. (b)
Dataset: ORL, image size is 2576, reduced image sizes of level 1 throuth 3 are 1288, 644 and
322 respectively. d = 12, ktrain = 120, and ktest = 160.

of level 1 through 3 are 2500, 625 and 157 respectively, d = 10, ktrain = 660, and

ktest = 726. For (b), the ORL dataset is used and image size is 2576, image sizes of

level 1 through 3 are 1288, 644 and 322. d = 12, ktrain = 120, and ktest = 160. The

result shows that the learning time is reduced from 17523 seconds (4.8 hours) to 527

seconds (8.8 minutes) when L=3. The speed up factor is 33.
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2. Fig. 2.4 shows cases at different levels for the total number of levels L = 3. We plot

the recognition rate versus iteration and the distance between Xt and X0 versus t, in

which Xt is the basis of the subspace at iteration t. The distance between any two

subspaces U1 and U2 is computed as: ‖U1U
T
1 − U2U

T
2 ‖. We can see that it costs 600

iterations to achieve a performance near perfect at level 3 (a). Starting the search

with the good initial point obtained at level 3 and searching in the relatively small

space, it takes only 8 iterations at level 2 to achieve perfect performance (b). From

(c) and (d) we see that without a computationally heavy search in a large space, it

gets the optimal basis directly at level 1 (c) and level 0 (d), respectively, by expanding

the optimal basis from the lower level. In this experiment we use the ORL dataset

and shrink the image size by the adaptive kmeans algorithm. Original image size is

chosen to be 2576, the reduced image sizes of level 1 through 3 are 644, 136 and 34

respectively. d = 10, ktrain = 5, and ktest = 5.

3. When shrinking the image size by PCA, the proposed algorithm also shows its

effectiveness in saving learning time. The experimental results showed by Fig. 2.5

once again convince the effectiveness of hierarchical learning algorithm.

(a) The PIE dataset is used and original image size n is chosen to be 2500, the reduced

image sizes of level 1 and level 2 are 1385 and 100 respectively. d = 12, ktrain = 660,

and ktest = 726.

(b) The ORL dataset is used and original image size n is chosen to be 2576, the reduced

image sizes of level 1 and level 2 are 279 and 100 respectively, d = 12, ktrain = 120,

and ktest = 160.

4. We also compared the two proposed shrink methods: adaptive kmeans and PCA. We

found that shrinking the image size by the adaptive kmeans works better than PCA

when the total number of training and test images is relatively large and shrink image

size by PCA worked better when the number is relatively small. The reason for this

phenomenon is that computing PCA is more time consuming than adaptive K-means

when the subspace dimension is large. Fig. 2.6 shows the comparison between the two

shrinking methods.
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(a) The PIE dataset is used and original image size n is chosen to be 2500, the reduced

image sizes of level 1 and level 2 are 1385 and 100 respectively, d = 12, ktrain = 660

and ktest = 726. Here the solid line is the time using adaptive kmeans, dashed line

PCA.

(b) The ORL dataset is used and original image size n is chosen to be 2576, the reduced

image sizes of level 1 and level 2 are 279 and 100 respectively, d = 12, ktrain = 120 and

ktest = 160. Here the solid line is the time using adaptive kmeans, dashed line PCA.

2.5 Discussion

This chapter offers a new technique called hierarchical learning that can effectively reduce

the learning time of one application of optimal component analysis, which can be treated as a

learning example on the Grassmann manifold. Hierarchical learning decomposes the original

optimization problem into several levels according to a specifically designed hierarchical

organization and the dimension of the data is reduced at each level using a shrinkage matrix.

The following idea is then applied recursively: (i) optimize the recognition performance in

the reduced space using the expanded learning result of optimal basis of the next lower level

as an initial point, and (ii) expand the optimal subspace to the bigger space in a pre-specified

way. By applying this decomposition procedure recursively, a hierarchy of layers is formed.

We show that the optimal performance obtained in the reduced space is maintained after

the expansion. Therefore, the learning process of each level starts with a good initial point

obtained from the next lower level. This speeds up the original algorithm significantly since

the learning is performed mainly in reduced spaces and the computational complexity is

reduced greatly for each iteration. The experimental results show the effectiveness of the

proposed technique.

To simplify our discussion, let HL denote a family of functions: HL = {F |F (U) is a

function, where U is an n -by- d matrix, n, d ∈ Z+ and F (·) satisfies the condition: for any

n′ -by- d matrix Ū (n′ < n), there exists an n-by-n′ matrix A such that F (AŪ) = F (Ū) }.
While the hierarchical learning technique is used here to speed up an application of OCA,

the idea can be applied to a broad range of optimization problems on Grassmann and Stiefel

manifolds. For example, the Newton and conjugate gradient algorithms on the Grassmann

38



and Stiefel manifolds proposed by Edelman et al. in [12] can be accelerated by hierarchical

learning if the objective function is a member of the family of functions HL.

Note the efficiency is gained by decomposing the learning process on a large Grassmann

manifold to a number of hierarchically organized Grassmann manifolds with small dimen-

sions, the effectiveness of the algorithm depends on the best achievable performance in the

reduced dimension. While the proposed adaptive K-means algorithm is shown to be effective

for the dataset we have used, its effectiveness is not guaranteed. The conditions under which

the algorithm is effective need to be further investigated. Another future research issue is to

find better pixel grouping algorithms to generate the shrinkage matrix.
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Figure 2.4. Plots of recognition rate F (Xt) (left) and distance of Xt from X0 (right) versus
t for different level using hierarchical learning algorithm for L = 3. (a) level 3, (b) level 2,
(c) level 1, (d) level 0. For these curves, image size is 2576, reduced image sizes of level 1
through 3 are 644, 136 and 34 respectively. d = 10, ktrain = 5, and ktest = 5. Dataset: ORL.
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Figure 2.5. Plot of searching time versus L, shrinking with PCA. (a) Dataset: PIE, image
size is 2500, reduced image sizes of level 1 and level 2 are 1385 and 100 respectively, d = 12,
ktrain = 660, and ktest = 726. (b)Dataset: ORL, image size is 2576, reduced image sizes of
level 1 and level 2 are 279 and 100 respectively, d = 12, ktrain = 120, and ktest = 160.
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Figure 2.6. Comparison of the two shrinkage methods: adaptive K-means and PCA. Plot
of searching time versus L. (a) Dataset: PIE, image size is 2500, reduced image sizes of level
1 and level 2 are 1385 and 100 respectively, d = 12, ktrain = 660, and ktest = 726. Here
the solid line is the time using adaptive kmeans, dashed line PCA. (b)Dataset: ORL, image
size is 2576, reduced image sizes of level 1 and level 2 are 279 and 100 respectively, d = 12,
ktrain = 120, and ktest = 160. Here the solid line is the time using adaptive kmeans, dashed
line PCA.
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CHAPTER 3

CONCLUSION

In this thesis, two techniques are proposed. Part one is Appearance-Based Classification

and Recognition Using Spectral Histogram Representations. In this part, we presented

spectral histogram representations for classification and recognition of images derived from a

generative process. While the derived model is simple, it is effective for different appearance-

based applications that have been primarily studied separately. The marked improvement of

our method over existing ones, along with the image synthesis and clustering visualization

results, justifies the effectiveness and generality of the spectral histogram representation.

Not only is our approach generic as demonstrated through different datasets of real images,

the representation also provides other advantages such as illumination, rotation, and scale

invariance by choosing proper filters. Our representation along with the filter selection

algorithm provides a unified framework for appearance-based object recognition and image

classification. Within this framework, the difference among general object recognition, face

recognition, and texture classification is the choice of most effective filters. While filters

with large scales are most effective for face recognition as faces are topographically very

similar, filters whose scales are comparable with texture elements are most effective for

texture classification. Our filter selection algorithm chooses the most effective set of filters

in this regard. This may lead to a system that is effective for different types of images, which

is a key requirement for a generic recognition system.

Part two is Hierarchical Learning for Optimal Component Analysis. In this part, we offer

a new technique called hierarchical learning that can effectively reduce the learning time of

one application of optimal component analysis, which can be treated as a learning example

on the Grassmann manifold. Hierarchical learning decomposes the original optimization

problem into several levels according to a specifically designed hierarchical organization and

the dimension of the data is reduced at each level using a shrinkage matrix. The following

43



idea is then applied recursively: (i) optimize the recognition performance in the reduced space

using the expanded learning result of optimal basis of the next lower level as an initial point,

and (ii) expand the optimal subspace to the bigger space in a pre-specified way. By applying

this decomposition procedure recursively, a hierarchy of layers is formed. We show that

the optimal performance obtained in the reduced space is maintained after the expansion.

Therefore, the learning process of each level starts with a good initial point obtained from

the next lower level. This speeds up the original algorithm significantly since the learning is

performed mainly in reduced spaces and the computational complexity is reduced greatly for

each iteration. The experimental results show the effectiveness of the proposed technique.
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