
Push vs. Pull: Implications of Protocol Design on
Controlling Unwanted Traffic

Zhenhai Duan
Florida State University

duan@cs.fsu.edu

Yingfei Dong
University of Hawaii
yingfei@hawaii.edu

Kartik Gopalan
Florida State University

kartik@cs.fsu.edu

Abstract— In this paper we argue that the difficulties
in controlling unwanted Internet traffic, such as Email
SPAM, stem from the fact that many Internet appli-
cations are fundamentally sender-driven and distinctly
lack receiver control over traffic delivery. However, since
only receivers know what they want to receive, receiver-
driven approaches may often have clear advantages in
restraining unwanted traffic. In this paper, we re-examine
the implications of the two common traffic delivery models:
sender-push and receiver-pull. In the sender-push model,
a sender can at will deliver traffic to a receiver, who
can only passively accept the traffic, such as in the
SMTP-based Email delivery system. In contrast, in the
receiver-pull model, receivers can regulate if and when
they wish to retrieve data, such as the HTTP-based web
access system. We argue that the problem of unwanted
Internet traffic can be mitigated to a great extent if the
receiver-pull model is employed by Internet applications,
whenever appropriate. Using three popular applications
– Email, mobile text messages, and asynchronous voice
messages – as examples, we demonstrate that asynchronous
communication protocols can be easily designed using the
receiver-pull communication model to suppress unwanted
Internet traffic.

I. INTRODUCTION

In recent years the Internet has been increasingly
plagued by the seemingly-never-ending unwanted traffic,
manifesting itself in large volumes of unsolicited bulk
Emails (spam), frequent outbreaks of virus/worm attacks,
and large scale Distributed Denial of Services (DDoS)
attacks. For example, it was estimated that 32 billion
spam messages were sent daily on the Internet as of
November 2003 [10]. Worse, spammers and virus/worm
attackers are increasingly joining force to automate
spamming by hijacking (home) user machines through
virus/worm attacks. A recent study reported that as high
as 80% of spam messages were sent from compromised
user machines (zombies) [7]. In this paper, we focus
our attention on spam-like unwanted Internet traffic,

which plagues critical Internet applications and services
such as Emails, mobile text messages, and asynchronous
voice messages (where a recorded voice message is sent
to a list of receivers). We refer to such applications
collectively as message services. In this paper, we are
especially interested in the implications of the protocol
design on controlling unwanted traffic on the Internet.

Given the importance of controlling spam for preserv-
ing the value of the message systems, this issue has
attracted a great amount of attention in both network-
ing research and industrial communities. Many different
spam control schemes (in the context of Internet Emails)
have been proposed, and some of them have been
deployed on the Internet [2], [6], [8], [11], [13], [14].
On the other hand, despite these anti-spam research and
development efforts, the proportion of spam seen on
the Internet has been continuously on the rise. It was
estimated that nowadays spam messages constitute 79%
of all business Emails, up from 68% since the US federal
Can-Spam Act of 2003 took effect in January 2004 [1].
It was also reported that 80% of mobile phone text
messages were unsolicited in Japan [12], where SMS
(Short Message Services) is popular, and is therefore
attractive to spammers.

In this paper we argue that the difficulties in restrain-
ing spam can be attributed to the lack of receiver control
over how messages should be delivered on the Internet.
For example, in the current SMTP-based Email delivery
architecture [9], any user can send an Email to another at
will, regardless of whether or not the receiver is willing
to accept the message. In the early days of the Internet
development, this was not a big problem as people on
the network largely trusted each other. However, since
the commercialization of the Internet in mid-1990, the
nature of the Internet community has changed. It has
become less trustworthy, and Email spam is possibly one
of the most notable examples of the untrustworthy nature
of the Internet.

In order to effectively address the spam issue in the
untrustworthy Internet, we argue that receivers must gain
more control over if and when a message should be deliv-
ered to them. Asynchronous messages on the Internet are
delivered primarily using two different models: sender-
push and receiver-pull (or a combination of the two).
They differ in who initiates the message delivery process.
In the sender-push model, senders control the delivery
of traffic, and receivers passively accept whatever the
senders push to them. The current SMTP-based Email
delivery system is a typical example of this model. In
contrast, the receiver-pull model grants receivers the
control over if and when they want to retrieve data from
the senders. In this model, senders can only prepare the
data but they cannot push the data to receivers. Examples
of the receiver-pull model include the HTTP-based web
access services and the FTP-based file transfers.

As we will discuss in the next section, the receiver-pull
model comes with several appealing advantages because
it grants receivers greater control over the message
delivery mechanism. It takes advantage of the fact that
receivers have more reliable knowledge of what traffic
they want to receive. Moreover, the receiver-pull model
may also simplify the challenging issues related to the
resource usage accountability and sender authentication.
For example, because spammers need to store and man-
age Email messages on their own mail servers (waiting
for receivers to pull), it becomes relatively easier to hold
spammers responsible for the resources they consume.
As a proof of concept, in this paper we present examples
of three asynchronous messaging applications – Emails,
mobile text messages, and asynchronous voice messages.

The objective of the paper is two-fold. First, through
the example design of the message applications, we
would like to demonstrate the feasibility and advantages
of using receiver-pull model to design protocols for
asynchronous messaging applications. Second, and more
importantly, we want to raise the explicit awareness of
the difference between the sender-push and receiver-
pull models, and argue that, the receiver-pull model
should be the strongly favored design choice, whenever
appropriate.

The rest of the paper is structured as follows. In Sec-
tion II we elaborate on the two different traffic models
on the Internet. We outline the example design to support
Emails, mobile text messages, and asynchronous voice
messages using the receiver-pull model in Section III.
We summarize the paper in Section IV.

II. PUSH VS. PULL: IMPLICATIONS OF PROTOCOL

DESIGN CHOICE

The choices made during protocol design phase have
fundamental implications on security, usability, and ro-
bustness of any distributed message delivery systems.
One such important design decision is whether to adopt a
sender-push or a receiver-pull model or a combination of
the two models (see Figure 1). In this section we discuss
the implication of these design choices and make the
case that the receiver-pull model can prove to be highly
effective in discouraging unwanted traffic.

A. The Sender-Push Model

In the sender-push model, the sender knows the iden-
tity of a receiver in advance and pushes the message
in an asynchronous manner to the receiver. The receiver
accepts the entire message, may choose to optionally
examine the message, and then accept or discard it. An
important aspect of sender-push model is that the entire
message is received before any receiver-side processing
is performed. A number of communication services in
the Internet rely on the sender-push model. A prime
example is Email in which the sender relies on the
Simple Mail Transfer Protocol (SMTP) to push an entire
email message to a passive receiver. Asynchronous voice
messages over the telephone network (both traditional
and IP based) represent another important application of
the sender-push model.

A common variation of the sender-push concept is
the receiver-intent-based sender-push (RISP) model. The
most common examples of the RISP model are the
subscription-based services such as mailing lists, where
users need to subscribe to the services to get content.
Similarly, Instant Messaging is another application where
the message itself is pushed by the sender, but the
receiver can allow or disallow messages from specific
users. Other popular applications of the RISP model
include stock and news ticker applications and automatic
software updates, where user subscribes to a service
which subsequently pushes the data to the receiver.

A common feature among all the above examples is
that the content itself is pushed to the receiver, whereas
the receiver may optionally provide minimal control
feedback to the sender. The primary advantage of the
sender-push model is that its asynchronous message
delivery framework is conceptually simple and fits nat-
urally for many useful applications such as Email and
text messaging. Sender initiates message transfer when
the message is ready, the receiver simply waits passively
for any message to arrive and accepts one when it

(1) Intent to receive

(2) Content Push

Sender Receiver Sender ReceiverContent Pull

Sender Receiver Sender Receiver

(1) Intent to send

(2) Content Pull

Content Push

(b) Receiver Intent Based Sender Push (d) Sender Intent Based Receiver Pull

(a) Sender Push (c) Receiver Pull

Fig. 1. Traffic delivery models.

does arrive. Furthermore, there is no significant storage
requirement on the sender side.

The biggest disadvantage of the sender-push model
is that it is the sender who completely controls what
message is delivered and when it is delivered. The
receiver has neither the knowledge of what message
he will receive, nor when he will receive the message.
The receiver is ideally expected to receive the entire
message before processing or discarding it. Apart from
generating and transmitting the message, the sender does
not commit any resources for the transmitted message.
On the other hand, the receiver has to wait, receive,
process and store (or discard) the message even if the
message is not of interest to the receiver.

The RISP model alleviates this concern to some ex-
tent by allowing receivers to provide control feedback.
However it is not easy to implement in many popular
applications. For example, adopting the RISP model
for Email, mobile text and voice messages requires the
receiver to maintain an exhaustive white-list or black-
list of email addresses and phone numbers of potential
senders. Indeed, approaches such as Reverse Black Lists
(RBL) [13] adopt this philosophy in trying to blacklist
Email spammers. However most potential correspon-
dents, such as first time senders, fall in neither of the two
categories. To handle such unclassified cases, receivers
end up relying on content-based-filters, i.e. they receive
the entire message, scan it to determine if it is wanted
and then either accept or discard it. The fundamental
problem here lies in having to accept and examine the
entire message before culling it.

An additional disadvantage of the sender-push model
is that the sender can vanish (go offline) immediately
after pushing unwanted content to the receiver. This
makes it quick and easy for a malicious sender to hide
its identity. Once the receiver accepts the content, it is
difficult at best to trace back a malicious sender.

In summary, while the sender-push model is both
simple and convenient, it comes with a serious baggage,
namely, that senders control what to send and when to

send, and cannot be easily held accountable for sending
unwanted content to receivers.

B. The Receiver-Pull Model

In the receiver-pull model, it is the receiver who
initiates the message transfer by explicitly contacting
the sender. The sender passively waits for the receiver
and delivers the entire content upon receiving a request.
Since it is the receiver who initiates the message transfer,
the receiver would have explicit greater control over the
message transfer and implicit greater trust in the received
content, than in the sender-push model.

A number of successful communication services rely
on the receiver-pull model. The most important examples
using the receiver-pull model are the FTP and HTTP
protocols. In both cases, the receiver initiates the data
transfer by opening an FTP connection and by typ-
ing/clicking on a URL, respectively. (Interestingly, HTTP
supports both receiver-pull and as well as sender-push,
though the former is more commonly used. Examples of
sender-push techniques in HTTP include automatic page
refreshes and the hugely unpopular popup windows).

An interesting and useful variation of receiver-pull
model, which is of special interest to us, is the sender-
intent-based-receiver-pull (SIRP). In this model, the
sender first expresses an intent to send content to the
receiver via a small intention message. If the receiver
happens to be interested, it contacts the sender and
retrieves the content. A common example of the SIRP
model is the pager service. Here the caller expresses an
intent to talk to a callee by paging the latter and leaving
a callback number. If the callee is interested, he contacts
the caller back on the callback number. The main feature
of the SIRP model is that the content itself is pulled by
the receiver whereas only a short intent is pushed by the
sender.

The advantage of the receiver-pull model is that a
receiver exercises control over when and what it receives.
The receiver has the freedom to first determine its own
level of interest in the content (as well as the reputation
of the sender) before it actually requests the content.
Furthermore, it becomes the responsibility of the sender
to store and manage the content till the receiver is ready
to retrieve it. For instance, an FTP or web server needs to
store and manage its own files whereas receivers access
it only when they are interested. Additionally, there is
a large window of time over which a malicious sender
is forced to reveal its identity. For the pure receiver-
pull model, this window is forever before the content
is retrieved by the receiver. For the SIRP model, this

window is from the moment sender expresses its intent
to send till the time receiver retrieves the content. Thus,
unlike the sender push model, there is a large window
of time in which the receiver is free to verify a sender’s
identity.

One obvious disadvantage of receiver-pull model is
that the sender is burdened with greater content man-
agement complexity. The sender needs to store outgoing
messages and keep them available at least till the in-
tended receivers are willing to retrieve them, and needs
to have a deletion policy if a message is never retrieved
by the receiver. Another issue that the sender needs
to grapple with is to ensure that the party retrieving
a message is indeed the originally intended receiver.
However, another angle to look at these disadvantages
is that, in the sender-push model, it is the receiver who
needs to deal with the very same issues.

C. Implications on Unwanted Traffic

Given that the receiver-pull model grants more con-
trol to receivers in terms of traffic delivery, and only
receivers know what they want to receive, the receiver-
pull model has clear advantages in restraining unwanted
traffic compared to the sender-push model. Moreover,
the above discussion also makes it clear that the sender
is accountable to a greater degree in the receiver-pull
model than in the sender-push model. This brings us
to the following key idea which underlies the theme of
this paper: When designing any communication protocol,
it is advantageous to first consider using a receiver-
pull model which inherently provides greater protection
against unwanted traffic.

The receiver-pull based model is a relatively low-cost
design choice that can be considered early during any
communication system design. Even if the receiver-pull
model results in slightly greater protocol complexity, it
can greatly help to simplify accountability and authenti-
cation issues by placing the overheads where they truly
belong – at the sender of the unwanted traffic.

A legitimate concern with a receiver-pull model is that
it may end up increasing the cost of sending messages
for malicious as well as honest senders. We will show
in the next section through an example of a receiver-
pull based Email architecture that, using simple design
optimizations, one can easily lower the sending cost for
honest senders while still holding senders of unwanted
content accountable.

We do not claim that a receiver-pull based model may
be universally suitable for all forms of communications.
For example, soldiers in the middle of a desert war

Sender MUA

Sender MTA Receiver MTA

Receiver MUA

MSID(msid)

GTML(msid)

Fig. 2. An Email delivery architecture with receiver-pull model.

may not want to rely on remote senders being reachable
when trying to retrieve their messages. However, in
many important applications, such as civilian use of
Email, mobile text messages, and asynchronous voice
messages, the receiver-pull architecture appears to offer
strong advantages in fight against unwanted traffic.

III. APPLICATIONS OF THE RECEIVER-PULL MODEL

In order to illustrate the feasibility and advantages
of the sender-intent-based-receiver-pull (SIRP) model
in supporting asynchronous applications, in this section
we outline the design of three important applications
using the model: Emails, mobile text messages, and
asynchronous voice messages. We present the design of
the SIRP based Email system in greater detail and briefly
sketch the design for the other two applications using a
framework similar to the Email design. We emphasize
that these designs serve only as a proof of concept on
the feasibility and effectiveness of supporting message
services using the SIRP model, in reducing unwanted
(Internet) traffic. Many design details are left for future
investigations (but see [3] for supporting the Internet
Email application using the SIRP model).

A. SIRP based Email System

In the SIRP based Email delivery system, senders can-
not directly push messages to arbitrary receivers. Instead,
receivers decide if and when they want to retrieve (or
pull) messages from senders. Figure 2 illustrates the
basic architecture of the new Email delivery system.
In the following we will present the new system from
both the senders’ and receivers’ perspectives. Before we
delve into details, it is worth noting that the new sys-
tem extends the current Simple Mail Transfer Protocol
(SMTP) [9] by adding two new commands: MSID and
GTML (Table I). In other words, all the commands and
reply codes in SMTP are also supported in the new
system. We will explain the two new commands when
we use them below.

TABLE I

NEWS MESSAGE DELIVERY COMMANDS

Commands Explanation
MSID For SMTA to notify RMTA a new message
GTML For RMTA to retrieve a message from SMTA

1) Sender: Message Composition and Receiver Noti-
fication: Like in the current Email architecture, a sender
uses a Mail User Agent (MUA) to compose outgoing
messages [9]. After a message is composed by the
sender, the sender delivers the message to the sender
Mail Transfer Agent (MTA). For simplicity, we refer to
a sender MTA server as an SMTA, and a receiver MTA
server as an RMTA.

All the outgoing messages are stored at the SMTA. For
this purpose, the SMTA maintains an outgoing message
folder for each sender. Instead of the complete message
being directly pushed from the SMTA to the RMTA, only
the envelopes (headers) of the messages are delivered.
In particular, the SMTA notifies the RMTA about a new
message by the new message identifier command MSID,
which contains the unique identifier msid of the message.
The identifier of a message is generated based on the
sender, the message, the receiver, and a secret key of
the sender. A sender can explicitly delete its outgoing
messages from the SMTA folder. An SMTA can also
delete a message on behalf of senders, after the message
has been delivered to all the intended receivers or after
a certain sender-configurable expiry time.

We note that there is a fundamental difference between
message pull in the new Email delivery system and
URL embedded in many current spam messages. The
address in the URL is normally not related to the
sending machine of the message, which makes it hard
to identify the actual sender who is responsible for the
spam message. On the other hand, outgoing messages in
the new Email system have to be stored on the sender
mail servers instead of third-party machines before they
are retrieved. In this way, we obtain several advantages
in restricting spam. For example, senders need to keep
their mail servers up until the messages are retrieved
by receivers. This presents less flexibility for senders to
move around by frequently changing their IP addresses
and/or domains. In contrast, in the current (sender-push)
SMTP-based Email delivery architecture, spammers can
send a large number of spam messages and shut down
their mail servers, which makes it hard to hold spammers
responsible for spamming. Moreover, in the new system,
senders have greater responsibility to store and manage

their outgoing Email messages in comparison to the
current Email architecture, which imposes negligible
responsibility on the senders.

In summary, while the current SMTP-based Email
delivery architecture provides a call-by-copy interface
to senders, the new system provides a call-by-reference
interface to senders [4].

2) Receiver: Pulling Messages from Senders: The
new Email delivery system grants more control to re-
ceivers regarding if and when receivers want to read
a message, senders cannot arbitrarily push a message
to them. Receivers can be discriminate about which
messages need to be retrieved, and which ones need not.
Given that a receiver will most unlikely be interested
in the majority of (spam) messages, this will result in
a large volume of unwanted traffic being not delivered
on the Internet. If the receiver indeed wants to read a
message, he will inform his own RMTA, and the RMTA
will retrieve the message from the SMTA on behalf of the
receiver. An RMTA retrieves an Email message using a
get mail command GTML, which includes the identifier
msid of the message to be retrieved. After the message
has been pulled to the RMTA, conventional virus/worm
scanning tools and content-based spam filter can be
applied to further alert the receiver on potential virus or
spam. Therefore, the new Email delivery system does not
exclude the use of existing Email protection schemes. For
security reasons, when an SMTA receives the GTML
command, it needs to verify that the corresponding
message is for the receiver, and more importantly, the
requesting MTA is the mail server responsible for the
receiver (i.e. the one which was originally contacted for
message delivery).

By only delivering the envelope (including msid) of a
message from a sender to the receiver, less bandwidth,
storage, and processing time is used at the receiver side,
which is especially important for resource constrained
users, e.g., wireless, PDA, or dial-up users. On the other
hand, if the receiver indeed wants to read the message,
negligible extra time and bandwidth is required. Since
the receiver is less likely interested in messages from
unknown sources, the majority of such messages will
not be retrieved. As a result, considering the huge
volume of spam on the Internet, much less bandwidth
will be wasted by spam. As a simple back of envelope
calculation, assuming there are 30 billion spam messages
sent daily on the Internet [10] and the average size
of these messages is 5 KBytes [5]. We further assume
the envelope of these messages occupies 1KBytes on
average. Then it is easy to see that we will have daily 120

Sending text
message

Message
header

Message id
Retrieving
message

Retrieving
message

Sender Receiver

Sender TMS Receiver TMS

Fig. 3. Supporting mobile text messages with SIRP model.

Tera Bytes worth of bandwidth saving on the Internet.
Note that if content-based filter is used alone, these spam
messages are still delivered on the Internet.

3) Differentiating Message Deliveries: The simple
SIRP model not only puts more burden on spammers but
also regular contacts of a receiver. To address this issue a
hybrid Email delivery system can be designed to support
both the sender-push and receiver-pull models. In such a
system, each receiver maintains a list of regular contacts,
whose (complete) messages can be directly pushed from
the senders to the receiver using the current SMTP
protocol. Messages from non-regular contacts should be
stored and managed by the sender mail servers, and only
the envelopes of such messages are directly delivered to
the receiver to notify the pending messages. The com-
plete messages from regular contacts and the envelopes
of messages from non-regular contacts are stored in
different mailboxes, so that receivers may not need to
spend time on (envelopes of) messages from non-regular
contacts. For such a hybrid system to work properly,
we must prevent spammers from impersonating other
users. As a starting point, existing sender authentication
schemes such as Sender-ID [11] and DomainKeys [2]
can be used for this purpose.

4) Practical Deployment Considerations: It can be
shown that the new Email delivery system can be de-
ployed incrementally, and popular message applications
such as mailing lists can also be supported [3].

B. Mobile Text Messages and Asynchronous Voice Mes-
sages

In this subsection we briefly outline how mobile
text messages and asynchronous voice messages can be
developed using the SIRP model.

1) Mobile Text Messages: Figure 3 illustrates the
architecture in supporting mobile text messages using

Recording voice
message

Message
header

Message id
Retrieving
message

Retrieving
message

Sender Receiver

Sender VMS Receiver VMS

Fig. 4. Supporting asynchronous voice messages with SIRP model.

the SIRP model. Each mobile phone service provider
will deploy one or multiple text message servers (TMS).
When a user sends a text message to another user (who
may be with another provider), the text message is stored
in the sender provider’s TMS, and only the message
header (including the corresponding phone number and a
message id) is sent to the receiver provider’s TMS. The
receiver provider’s TMS will notify the receiver about
the message header. If the receiver wants to read the
message, the receiver provider’s TMS will retrieve the
message from the sender provider’s TMS on behalf of
the receiver.

2) Asynchronous Voice Messages: Asynchronous
voice messages are currently supported by cell phone
service providers, where a recorded voice message is sent
to a receiver, or a group of receivers. This service can be
potentially exploited by spammers given its capability to
send a voice message to a large number of receivers with
relatively little effort. Moreover, as the service is being
integrated into VoIP based applications, it becomes even
more attractive to spammers. As we show below, this
service can be supported using the SIRP model instead
of the sender-push model essentially in the same manner
as mobile text messages using the SIRP model.

Figure 4 depicts the architecture in supporting asyn-
chronous voice messages using the SIRP model. Each
asynchronous voice message service provider (such as a
cell phone service provider or a VoIP service provider)
will deploy one or multiple voice message servers
(VMS). When a user sends a voice message to another
user (who may be with another provider), the voice
message is stored in the sender provider’s VMS, and
only the message header (including the corresponding
phone number and a message id) is sent to the receiver
provider’s VMS. The receiver provider’s VMS will no-
tify the receiver the message header. If the receiver wants

to read the message, the receiver provider’s VMS will
retrieve the message from the sender provider’s VMS on
behalf of the receiver.

Note that some security measures are needed to au-
thenticate both senders (by the receiver’s message server
when a message header is received) and receivers (by the
sender’s message server when a receiver tries to retrieve
a message). Moreover, as in the new Email delivery
system, a receiver may maintain a regular contact list,
whose (text or voice) messages can be directly delivered
from the sender to the receiver using the sender-push
model instead of the SIRP model.

IV. SUMMARY

In this paper we examined the fundamental implica-
tions of the two different traffic delivery models, sender-
push vs. receiver-pull, on controlling unwanted traffic on
the Internet. Using examples of three popular applica-
tions – Email, mobile text messaging, and asynchronous
voice messaging – we illustrated that the receiver-pull
model can be effectively used for asynchronous messag-
ing in place of the current sender-push model to reduce
unwanted Internet traffic. Another important contribution
of this paper is that, by examining the implications of
two traffic delivery models, we attempt to raise explicit
awareness of the impact of the two models on unwanted
Internet traffic, and argue that, a receiver-pull model
should be strongly favored, whenever appropriate.

REFERENCES

[1] T. Claburn. Big guns aim at spam. Information Week, March
2004.

[2] M. Delany. Domain-based email authentication using public-
keys avertised in the DNS (domainkeys). Internet Draft, August
2004.

[3] Z. Duan, Y. Dong, and K. Gopalan. Diffmail: A differentiated
message delivery architecture to control spam. Technical Report
TR-041025, Department of Computer Science, Florida State
University, October 2004.

[4] K. Fu. Personal communication. MIT, March 2005.
[5] L. Gomes, C. Cazita, J. Almeida, V. Almeida, and W. Meira.

Charactering a spam traffic. In Proc. of IMC’04, 2004.
[6] P. Graham. A plan for spam.

http://www.paulgraham.com/spam.html, 2003.
[7] Sandvine Incorporated. Trend analysis: Spam trojans and their

impact on broadband service providers, June 2004.
[8] A. Juels and J. Brainard. Client puzzles: A cryptographic

defense against connection depletion attacks. In Proceedings
of NDSS-1999 (Networks and Distributed Security Systems),
February 1999.

[9] J. Klensin. Simple mail transfer protocol. RFC 2821, April
2001.

[10] B. Laurie and R. Clayton. ”Proof-of-Work” proves not to work.
http://www.apache-ssl.org/proofwork.pdf, May 2004.

[11] J. Lyon and M. Wong. Sender ID: Authenticating e-mail.
Internet Draft, August 2004.

[12] The Washington Post. Fcc sets sights on mobile phone spam,
March 2004.

[13] RBL. Real-time spam black lists (rbl). http://www.email-
policy.com/Spam-black-lists.htm.

[14] V. Rishi. Free lunch ends: e-mail to go paid. The Economic
Times, February 2004.

