
An Analysis of Fixed-Priority Schedulability

on a Multiprocessor

TR-050201

Theodore P. Baker
Department of Computer Science
Florida State University
Tallahassee, FL 32306-4530
e-mail: baker@cs.fsu.edu

Abstract.

A new feasibility test for preemptive scheduling of periodic or sporadic real-time tasks on a single-queue m-server
system allows for arbitrary fixed task priorities and arbitrary deadlines. For the special case when deadline equals period
and priorities are rate monotonic, any set of tasks with maximum individual task utilization umax is feasible if the total
utilization does not exceed m(1− umax)/2 + umax.

Keywords: deadline monotonic, fixed priority, multiprocessor, rate monotonic, real time, scheduling, symmetric multi-
processing, utilization bound

1. Introduction

Starting at least as early as the Safeguard anti-ballistic missile system[3] and continuing up to the

present[15, 11], high performance real-time embedded systems have relied on multiprocessor architec-

tures. With the trend toward multi-core architectures in the current and next generation of microprocessors[6,

5], embedded applications of multiprocessors are likely to become much more common.

The understanding of real-time multiprocessor scheduling has lagged behind that of single-processor

scheduling. Over the three decades since Liu and Layland’s 1973 seminal analysis of rate monotonic

and deadline scheduling[7], the theory of fixed-priority single-processor scheduling has been refined,

extended, and generalized, to the point that it is now very well understood [14]. During those same

decades comparatively little attention was paid to the possibility of extending the analysis to multiple

processors.

Much of the analysis of multiprocessor scheduling that has been done has focussed on a partitioned

model, in which tasks are assigned statically to processors[4, 12, 8, 9]. The alternative, global scheduling,

c© 2005 T. P. Baker. All rights reserved .

2

was shown in 1978 by Dhall and Liu[4] to have very poor worst-case performance. A task set may have

utilization arbitrarily close to 1 and still not be schedulable on m processors using rate monotonic

or earliest-deadline-first scheduling. By comparison, even though optimal partitioning is NP complete,

heuristic partitioning algorithms can do much better. For example, using rate monotonic local scheduling

and a simple first-fit-decreasing partitioning heuristic, a utilization level of at least m(21/2−1) is always

feasible for an m-processor system[12]. This is not only much better than the worst case for global

scheduling; is is not far from the limit of (m + 1)/2 which Andersson et al. showed applies to all

fixed-job-priority multiprocessor scheduling algorithms, partitioned or not[1].

Recently, progress has been made in understanding global multiprocessor scheduling, based on a

re-evaluation of Dhall’s result. Dhall worst-case example has two kinds of tasks: “heavy” ones, with

high ratio of computation time to deadline, and “light” ones, with low ratio of computation time to

deadline. It is the mixing of those two kinds of tasks that causes a problem. A scheduling policy that

segregates the heavy tasks from the light ones, on disjoint sets of CPU’s, would have no problem with

Dhall’s example. Examination of further examples leads one to conjecture that such a hybrid scheduling

policy would not miss any deadlines until a fairly high level of CPU utilization is achieved, and might

even permit the use of simple utilization-based schedulability tests.

In 2001 Andersson, Baruah, and Jonsson[1] examined the preemptive scheduling of periodic tasks

on multiprocessors, and showed that any system of independent periodic tasks for which the utilization

of every individual task is at most m/(3m − 2) can be scheduled successfully on m processors using

rate monotonic scheduling if the total utilization is at most m2/(3m − 1). Baruah and Goossens[2]

proved a similar result, showing that a total utilization of at least m/3 can be achieved if the individual

task utilizations do not exceed 1/3. Andersson, Baruah, and Johnsson proposed a hybrid scheduling

algorithm, called RM-US[m/(3m − 2)], which gives higher priority to tasks with utilizations above

m/(3m − 2), that is able to successfully schedule any set of independent periodic tasks with total

utilization up to m2/(3m− 1).

This paper further advances the theoretical understanding of global fixed-priority multiprocessor

schedulability. The main contribution is a new analysis concept, called the (µ, k−1) busy interval. By

analyzing the workload of a (µ, k−1) busy interval one can relax several of the assumptions made in the

prior analyses cited above, and derive a more general schedulability test. The principal consequences

are:

1. Applicability to all fixed priority assignments, rather than just rate monotonic.

3

2. Applicability to tasks with arbitrary deadlines, rather than just those where deadline equals period.

3. Applicability of the RM-US hybrid model to systems with higher utilization levels, by setting the

cut-off between “heavy” and “light” at any desired utilization level, rather than just 1/3.

These results provide a theoretical means of verifying the feasibility of task sets on multiprocessor

systems that make use of global scheduling, at non-trivial utilization levels and without arbitrary con-

straints on priorities and deadlines. By reducing the gap in guaranteed-feasible utilization levels between

the partitioned and global scheduling approaches, they also suggest that perhaps global scheduling

should be given more serious consideration for real-time systems. (The broader question of whether

global scheduling is preferable to partitioned scheduling, either theoretically or pragmatically, remains

a subject for further research.)

The rest of the paper presents the derivation of the theory. Section 2 defines the problem formally,

and outlines the overall approach. Section 3 derives a lower bound on the workload contributions of

competing tasks in an interval where a task misses a deadline. Section 4 defines the notion of (µ, k−1)

busy interval and derives an upper bound on the workload contributions of competing tasks in any such

interval. Section 5 combines the upper and lower bounds on workload to obtain schedulability tests,

including a utilization bound for rate monotonic scheduling, and compares the performance of those

tests on some randomly generated task sets. Section 6 shows that the utilization bound is not tight.

Section 7 reviews in more detail the connections to prior work, including an application to determining

an “optimal” value of λ for RM-US[λ] scheduling. Section 8 summarizes and concludes.

2. Definition of the Problem

Suppose one is given a set of N simple independent sporadic tasks τ1, . . . , τN , where each task τi has

minimum inter-release time (called period for short) Ti, worst case computation time ci, and relative

deadline di, where ci ≤ di, and ci ≤ Ti. Each task generates a sequence of jobs, each of whose release

time is separated from that of its predecessor by at least Ti. No special assumptions are made about

the first release time of each task.

Time is represented by the domain of rational numbers. Square brackets and parentheses are used to

distinguish whether time intervals include their endpoints. For example the time interval [t1, t2) contains

4

the time values greater than or equal to t1 and less than t2. All of the intervals [t1, t2], [t1, t2), (t1, t2]

and (t1, t2) are said to be of length t2 − t1.

The objective of this paper is to formulate a simple test for schedulability of a task set, expressed

in terms of the periods, deadlines, and worst-case computation times of the tasks, such that if the test

is passed no deadlines will be missed. The problem is approached by analyzing the minimum processor

load that is needed over an interval of time to cause a missed deadline.

DEFINITION 1. Let S = {τ1, . . . , τN} be any task set. A release-time assignment for S is a function

r : {1, . . . , N} × N → Time. The value r(i, j) is interpreted as the release time of the jth job of τi. All

task releases are required to be separated by at least the task period, i.e., r(i, j) + Ti ≤ r(i, j + 1).

The jobs of each task must be executed sequentially, and all jobs are scheduled on m identical

processors according to a global preemptive fixed-priority policy, where task τi always has priority over

task τi+1. Here “global” means that jobs are assigned to processors dynamically, so that whenever there

are m or fewer jobs ready they will all be executing, and whenever there are more than m jobs ready

there will be m jobs executing, all with priority higher than or equal to the priorities of the jobs that

are not executing.

Since it is not the intent of this paper to compare the efficiency of global versus partitioned scheduling,

and for the sake of simplicity of analysis, the abstract computational model does not include any

execution time penalty for preemption or for interprocessor task migration. In a real system there will

be some penalty for interrupting the execution of a processor, and there may be some penalty for

reloading the cache of the new processor with instructions/data of the task (if the cache of the old

processor has not already been overwritten by intervening other tasks). The cache penalty is variable,

and in practical applications will add to the margin of error in schedulability analysis that already exists

due to variability in task execution times and cache effects due to preemption on a single processor.

However, if one prefers to take the task migration penalty into account explicitly, the analysis presented

in this paper could be modified to account for the worst-case preemption and migration costs by adding

an appropriately chosen constant to the execution time ci of each task.

DEFINITION 2. Given a task set S and a release-time assignment r, the work Wi done by task τi

over a time interval [t−∆, t) is the actual amount of computation time that is used by jobs of τi in the

interval, and the load due to task τi is Wi/∆. (This definition differs slightly from some other work on

5

demand analysis by counting only work that is actually executed in the interval.) Wherever the notation

Wi is used the release time assignment and time interval will be clear from context.

For any integer k, 1 ≤ k ≤ N , the level k work with release-time assignment r is
∑

i≤k Wi, and the

level k load is
∑

i≤k Wi/∆.

DEFINITION 3. For a given task set and release time assignment, a first missed deadline is a time

t at which some task misses a deadline and such that no task misses a deadline before t. If t is a first

missed deadline and task τk misses a deadline at time t, then t is em a first missed deadline of task τk.

If a task set misses a deadline for some release time assignment then it has a unique first missed

deadline for that release time assignment. If one can find a lower bound on the processor load over an

interval leading up to every first missed deadline, and one can guarantee that a given set of tasks could

not possibly generate so much load in such an interval, that would be sufficient to serve as a proof of

schedulability.

3. Lower Bound on Load

One can establish a lower bound on the level k− 1 load of the interval ending at a first missed deadline

of task τk and starting with the release time of the corresponding job, by observing that, since the job

does not complete by the end of the interval, the lengths of all the subintervals in which the job does

not execute must exceed its slack time. This fact is well known, and is the basis of the prior analysis

by Phillips et al.[13] and others. It is illustrated Figure 1 for the case where m = 3 and dk ≤ Tk. The

diagonally shaded rectangles indicate blocks of time during which τk executes. The dotted rectangles

indicate times during which all m processors must be busy executing other jobs that contribute to the

load for this interval. It is easy to see that the total level k − 1 work of the interval [t− dk, t) must be

at least m(dk − x), where x ≤ ck is the amount of time that τk executes in the interval.

To allow for the possibility that dk ≥ Tk, one needs to consider intervals that may include more than

one job of τk. Figure 2 shows the release times and deadlines of two such jobs τk,1 and τk,2. The job τk,1

is delayed by two blocks of higher priority interference. This interference is not enough to cause τk,1 to

miss its deadline, but (because jobs of the same task must be executed sequentially) it delays the start

of τk,2 enough to cause that job to miss its deadline.

6

dkt +

kd

τk τk

���������������
���������������
���������������

���������������
���������������
���������������

�������
�������
�������

�������
�������
�������

���������
���������
���������

���������
���������
���������

t

m(− x) x

iis released misses deadline

Figure 1. All processors must be busy whenever τk is not executing.

kT kT

dk
dk

τk,1 τk,2 τk,2 misses deadline

τk,1

������������������������������
��

�������������� ���������
���������
������������������ ���������������������

���������������������
��

is released is released

t
completes on time

Figure 2. More than one job of τk may execute in a τk-busy interval if dk ≥ Tk.

DEFINITION 4. A job is backlogged at a time t if it is released before time t and has nonzero execution

time remaining at time t. A task is backlogged if it has a backlogged job.

For any task τk, a time interval [t′, t) is τk-busy if there are backlogged jobs of τk continually

throughout the interval (t′, t).

LEMMA 5. For a given a set of tasks S and a given release-time assignment r, if τk is backlogged at

time t then there is a unique τk-busy interval [t−∆, t) such that:

1. There are no backlogged jobs of τk at time t−∆.

2. There is a job of τk released at time t−∆.

Proof. Let t′′ be the latest time before t at which τk is not backlogged. There must be such a time,

since τk is not backlogged at the system start time. Let t′ be the next release time of τk on or after t′′.

There must be such a time, since τk is backlogged at time t. The interval [t′, t) satisfies the definition of

τk-busy. The value t′ is unique, since τk is not backlogged at time t′ and τk is backlogged at all times

from t′ through t.

7

2

The unique interval guaranteed by Lemma 5 is called the maximal τk-busy interval ending at t. If

dk ≤ Tk this interval cannot be longer than dk, but if dk > Tk the interval may be arbitrarily longer

than dk. For example, consider a system of m + 1 tasks, such that T1 = · · ·=Tm+1 =1, d1 = · · ·=dm =1,

dm+1 = 2, c1 = · · ·=cm =ε, and cm+1 = 1. The first m tasks create a block of interference of duration ε

for every release of τm+1, so that each successive job of τm+1 completes later by ε. The first job of task

τm+1 to miss its deadline will be the jth job, where j is the least integer greater than 1/ε. It will miss

its deadline at time jTm+1 + dm+1 = j + 1, since jε > dm+1 − Tm+1 = 1. One can make j arbitrarily

large by choosing ε small enough.

LEMMA 6 (lower bound on load). If t is a first missed deadline of τk then the maximal τk-busy interval

[t−∆, t) has level (k−1) load greater than m(1− ck
min{Tk,dk}).

Proof. Let x be the amount of time τk executes in the interval [t − ∆, t). Since τk is continually

backlogged over the interval, the only times that τk does not execute are the times that all m processors

are executing jobs of tasks with higher priority than τk. The level (k−1) work of [t − ∆, t) must be at

least equal to the work of these higher priority tasks, i.e.,∑
i<k

Wi

∆
≥ m(∆− x)

∆
= m(1− x

∆
) (1)

Let j be the number of jobs of τk that execute in the interval. The amount x of time that τk executes

in the interval is bounded as follows:

x < jck (2)

Since τk is not backlogged at the start of the interval, all of the j jobs are released on or after t−∆

and not later than t − dk (because t is a missed deadline), and the release times are separated by at

least Tk, so:

(j − 1)Tk + dk ≤ ∆ (3)

It follows from (1-3) that ∑
i<k

Wi

∆
> m(1− jck

(j − 1)Tk + dk
)

8

Let f : N → Time be the function defined by f(j) = jck
(j−1)Tk+dk

. The objective here is to find an

upper bound for f(j), subject to the available constraints. There are two cases to consider:

1. If dk ≤ Tk then ck
dk
≥ ck

Tk
, f is non-increasing with respect to j, and since j ≥ 1,

f(j) ≤ f(1) =
ck

dk

2. If dk > Tk then ck
dk

< ck
Tk

, f is increasing with respect to j, and

f(j) ≤ lim
j→∞

f(j) =
ck

Tk

Putting the above two cases together, it follows that:

∑
i<k

Wi

∆
> m(1− ck

min{dk, Tk}
)

2

4. Upper Bound on Load

The next step is to derive an upper bound on the level (k−1) load of an interval leading up to a first

missed deadline of task τk. If one can find such an upper bound βk, it will follow that schedulability of a

task system can be guaranteed by checking that βk is less than the minimum level (k−1) load needed to

cause a missed deadline of τk. The upper bound will be defined as the sum of individual upper bounds

on the load due to each task that can preempt τk in the interval.

The work Wi done by task τi in any interval [t − ∆, t) is clearly bounded by the length ∆ of the

interval and may include:

1. a portion of the execution times of zero or more jobs that are released before t−∆ but are unable

to complete by that time, which are called carried-in jobs;

2. the full execution times ci of zero or more jobs that are released on or after time t−∆ and complete

by time t;

9

3. a portion of the execution time of at most one that is released at some time t− δ, 0 < δ ≤ ∆, but

is unable to complete by time t.

To bound the size of the carried-in contribution of τi the maximal τk-busy interval is extended

downward as far as possible while still maintaining the level (k−1) load that caused τk to miss its

deadline at time t.

DEFINITION 7. A time interval [t′, t) is (µ, k−1) busy if the level (k−1) load is greater than µ. It is a

maximal (µ, k−1) busy interval if it is (µ, k−1) busy and there is no t′′ < t′ such that [t′′, t) is also (µ, k−1)

busy.

LEMMA 8. If t is a first missed deadline of τk and 0 < µ ≤ m(1 − ck
min{Tk,dk}) then there is a unique

maximal (µ, k−1) busy interval [t− ∆̂, t), and ∆̂ ≥ dk.

Proof. By Lemma 5, there is a unique maximal τk-busy interval [t′, t). Since t is a missed deadline

for τk, the length of this τk-busy interval is at least dk. By Lemma 6, the level (k−1) load of this interval

is greater than µ. Therefore, the set of all starting points t′′ < t′ of (µ, k−1) busy intervals [t′′, t) is

non-empty. This set must have a minimal member, since there are no backlogged jobs at the start time

of the system. Let ∆̂ = t− t′′ for this minimum value t′′ and the lemma is satisfied.

2

DEFINITION 9. Given a task set S, a release-time assignment r, a task τk that has a first missed

deadline at time t, and a value µ, the unique interval [t− ∆̂, t) that is guaranteed by Lemma 8 is called

the (µ, k−1) busy interval of τk. From this point on, let [t− ∆̂, t) denote such an interval.

The next step in the analysis is to find an upper bound on the load Wi

∆̂
due to each task τi in a (µ, k−1)

busy interval. The only interesting cases are those where τi makes a contribution to the the level (k−1),

that is, where i < k.

LEMMA 10 (upper bound on load). If t is a first missed deadline of task τk, 0 < µ ≤ m(1− ck
min{Tk,dk}),

and [t − ∆̂, t) is the corresponding (µ, k−1) busy interval, then the contribution Wi/∆̂ of each task τi,

i < k, to the load of the interval is strictly bounded above by the function βµ,k(i) defined by Table I.

10

Table I. Cases for βµ,k(i), the upper bound on Wi

∆̂
.

Case βµ,k(i)

m−µ
m−1

≥ ci

Ti

ci

Ti
(1 + Ti−ci

dk
)

m−µ
m−1

< ci

Ti

ci

Ti
(1 + Ti−ci

dk
) + di

dk
(ci

Ti
− m−µ

m−1
)

Proof.

Let j be the number of jobs of τi that execute in the interval. If j = 0 the lemma is satisfied trivially.

Therefore, it is only necessary to consider the case where j ≥ 1.

Let ε > 0 be the amount of time that the last of these j jobs of τi executes in the interval, and let

t− δ be the release time of this job. Observe that ε ≤ δ and ε ≤ ci.

Let t− ∆̂− φ be the release time of the first job of τi that is released before t− ∆̂ and executes in

the interval, if such exists; otherwise, let φ = 0.

ic ic ic

(µ,k−1)

ic

tt − δ

preamble

d
T T T T

di

i iii

i

busy interval

∆ −φ t − ∆̂t − ̂

. . .

Figure 3. Preamble of (µ, k−1) busy interval.

If φ > 0 the interval [t− ∆̂−φ, t− ∆̂) is non-empty and must be τi-busy. Call this the preamble with

respect to ti of [t − ∆̂, t). In this case reasoning similar to that of Lemma 6 can be used to bound the

amount of work that τi may carry from the preamble into [t− ∆̂, t), as follows.

Let x be the total amount of time spent executing jobs of τi in the preamble and let y be the

sum of the lengths of all the subintervals within the preamble where all m processors are simultaneously

executing jobs that preempt τi. Since τi can execute when and only when there are less than m processors

executing jobs that preempt τi, y = φ − x. It follows that the total amount of level i work executed in

the preamble must be at least my + x. Putting this together with the fact that the interval [t− ∆̂, t) is

11

(µ, k−1) busy, one can conclude that the level (k−1) work of the entire interval [t − ∆̂ − φ, t) is at least

µ∆̂ + my + x.

By the definition of maximal (µ, k−1) busy, the level (k−1) load of the interval [t − ∆̂ − φ, t) is less

than µ. It follows that if φ > 0

µ∆̂ + my + x < µ(φ + ∆̂)

m(φ− x) + x = my + x < µφ

x(1−m) > φ(µ−m)

x ≥ m− µ

m− 1
φ

If φ = 0 the preamble is empty and so it followss that in all cases x ≥ m−µ
m−1 φ.

By subtracting out m−µ
m−1 φ as a lower bound on the work x of τi that is done in the preamble, one can

obtain the following bound on the load due to τi in the (µ, k−1) busy interval [t− ∆̂, t):

Wi

∆̂
≤

ci(j − 1) + ε− m−µ
m−1 φ

∆̂
(4)

Because of the minimum separation constraint,

(j − 1)Ti + δ ≤ ∆̂ + φ

(j − 1) ≤ ∆̂ + φ− δ

Ti

and so
Wi

∆̂
≤

ci
∆̂+φ−δ

Ti
+ ε− m−µ

m−1 φ

∆̂

The expression on the right of the inequality above is increasing with respect to ε. Since ε ≤ ci, the

value of the expression is never greater than when ε = ci.

The same expression is decreasing with respect to δ. By definition, δ ≥ ε. It follows that the maximum

value of the expression on the right side of the inequality is never greater than when δ = ε = ci.

Wi

∆̂
≤

ci
∆̂+φ−ci

Ti
+ ci − m−µ

m−1 φ

∆̂
(5)

=
ci

Ti
(1 +

Ti − ci

∆̂
) +

φ(ci
Ti
− m−µ

m−1)

∆̂
(6)

12

The value of the expression on the right side of the inequality above may be increasing or decreasing

with respect to φ, depending on whether ci
Ti
≤ m−µ

m−1 .

Case 1: If ci
Ti
≤ m−µ

m−1 the value of the expression on the right of inequality (6) is non-increasing with

respect to φ, and since φ ≥ 0, the global maximum is achieved when φ = 0. It follows that

Wi

∆̂
<

ci

Ti
(1 +

Ti − ci

∆̂
) ≤ ci

Ti
(1 +

Ti − ci

dk
) (7)

Case 2: If ci
Ti

> m−µ
m−1 the value of the expression on the right of inequality (6) is increasing with respect

to φ. Since there are no missed deadlines prior to t and the job released at time t − ∆̂ − φ does not

complete by t− ∆̂, φ < di. It follows that

Wi

∆̂
<

ci

Ti
(1 +

Ti − ci

∆̂
) +

di(ci
Ti
− m−µ

m−1)

∆̂

Since ci
Ti

> m−µ
m−1 and ∆̂ ≥ dk,

Wi

∆̂
<

ci

Ti
(1 +

Ti − ci

dk
) +

di(ci
Ti
− m−µ

m−1)
dk

(8)

The upper bounds for Wi

∆̂
derived in each of the cases above correspond to the definition of βµ,k(i)

in Table I.

2

5. Schedulability Tests

Based on the above analysis, one can now prove the following theorem, which provides a sufficient

condition for schedulability.

THEOREM 11 (O(N3) schedulability test). A set of sporadic tasks S = {τ1, . . . , τN} is schedulable on

m processors using preemptive fixed-priority scheduling if, for every task τk, k = m + 1, . . . , N , there

exists a positive value µ ≤ m(1− ck
min{Tk,dk}) such that

k−1∑
i=1

βµ,k(i) ≤ µ (9)

where βµ,k(i) is as defined in Table I.

13

Proof. The proof is by contradiction. Suppose there are a task set S and a release time assignment

r for which some task τk has a first missed deadline at time t. By the priority ordering, k > m. Let

[t− ∆̂, t) be the (µ, k−1) busy interval guaranteed by Lemma 8. By definition of (µ, k−1) busy,

k−1∑
i=1

Wi

∆̂
> µ

By Lemma 10, Wi

∆̂
≤ βµ,k(i), for i = 1, . . . , k − 1. It follows that

k−1∑
i=1

βµ,k(i) ≥
k−1∑
i=1

Wi

∆̂
> µ

The above is a contradiction of (9).

2

To use the condition above as a schedulability test, it might seem necessary to consider all possible

values of µ for each k. On the contrary, the only values of µ that need to be considered are the upper

bound and the points at which the function βµ,k(i) is discontinuous with respect to the parameter µ.

That is, at the points

µi = m− ci

Ti
(m− 1)

for i = 1, . . . , k, and

µmax = m(1− ck

min{Tk, dk}
)

The computational complexity of checking (9) for all such values of of µ for each value of k is O(N3).

Therefore, it is referred to here as the O(N3) schedulability test. If one is willing to sacrifice some

precision for a faster test, one can check fewer values of µ, resulting in an O(N2) schedulability test.

Any one of the values of µ checked in the O(N3) test would be sufficient, but using the largest possible

value gives better results in most cases.

COROLLARY 12 (O(N2) test). A set of sporadic tasks τ1, . . . , τN is schedulable on m processors if for

every task τk, k = m + 1, . . . , N ,

k−1∑
i=1

ci

Ti
(1 +

Ti − ci

dk
) ≤ m(1− λk) (10)

where λk = ck
min{Tk,dk} .

14

Proof.

The proof is by application of Theorem 11. Let µ = m(1− λk). It follows that m−µ
m−1 > λk. Therefore,

if condition (10) is satisfied then

k−1∑
i=1

βµ,k(i) =
k−1∑
i=1

ci

Ti
(1 +

Ti − ci

dk
)

If this condition is satisfied for k = m + 1, . . . , N then, by Theorem 11, the task set must be

schedulable.

2

If one is willing to sacrifice some more precision for a stil faster test, there is an O(N).

COROLLARY 13 (O(N) schedulability test). A set of sporadic tasks τ1, . . . , τN is schedulable on m

processors if

N−1∑
i=1

ci

Ti
(1 +

Ti − ci

dmin
) ≤ m(1− λmax) (11)

where λmax = max{ ci
min{Ti,di} | i = 1, . . . , N}, and dmin = min{dk | i = 1, . . . , N}.

Proof.

Corollary 13 is proved by application of Theorem 11. Let µ = m(1 − λmax). It follows that m−µ
m−1 >

ck
min{Tk,dk} for k = 1, . . . , N . Therefore,

k−1∑
i=1

βµ,k(i) =
k−1∑
i=1

ci

Ti
(1 +

Ti − ci

dk
)

Since k ≤ N and dk ≤ dmin,

k−1∑
i=1

βµ,k(i) ≤
N−1∑
i=1

ci

Ti
(1 +

Ti − ci

dmin
)

If condition (11) is satisfied then, for all k = m + 1, . . . , N ,

k∑
i=1

βµ,k(i) ≤ m(1− λmax) ≤ m(1− ck

min{Tk, dk}
)

15

By Theorem 11, the task set must be schedulable.

2

If one assumes the deadline of each task is equal to its period Theorem 11 also yields a lower bound

on the minimum achievable utilization for rate monotonic scheduling.

COROLLARY 14 (utilization test). A set of sporadic tasks, all with deadline equal to period, is guar-

anteed to be schedulable on m processors using preemptive rate monotonic scheduling if

N∑
i=1

ci

Ti
≤ m

2
(1− umax) + umax (12)

where umax = max{ ci
Ti

| i = 1, . . . , N}.

Proof.

The proof is similar to that of Corollary 13. Since deadline equals period, λmax = umax. Let µ =

m(1−λmax) = m(1−umax). It follows that m−µ
m−1 > ck

min{Tk,dk} for k = 1, . . . , N . Therefore, since dk = Tk,

k−1∑
i=1

βµ,k(i) =
k−1∑
i=1

ci

Ti
(1 +

Ti − ci

Tk
)

By the rate monotonic ordering of task priorities, Ti ≤ Tk for i < k, and so

ci

Ti
(1 +

Ti − ci

Tk
) ≥ ci

Ti
(1 +

Ti − ci

Ti
) = 2

ci

Ti
− (

ci

Ti
)2 (13)

By substitution of (13) into (12), and using the fact that umax ≥ ck
Tk

, it follows that

k−1∑
i=1

βµ,k(i) ≤
k−1∑
i=1

(2
ci

Ti
− (

ci

Ti
)2)

≤ 2
N∑

i=1

ci

Ti
− 2umax

Suppose condition (12) is satisfied. It follows that, for k = 1, . . . , N ,

k∑
i=1

βµ,k(i) ≤ 2(
m

2
(1− umax) + umax)− 2umax = µ

16

Since µ ≤ m(1− ck
min{Tk,dk}) for k = m + 1, . . . , N , by Theorem 11, the task set must be schedulable.

2

The above theorem and its corollaries provide three general fixed-priority schedulability tests, one

of complexity O(N3), one of complexity O(N2), and one of complexity O(N), and a utilization-bound

test for rate monotonic scheduling in the case where deadline equals period. It is natural to wonder how

the performances of these tests compare. In order to address this question, simulation experiments were

conducted, using randomly generated task sets.

The performance measure chosen for these simulations is the ratio A/B, where A is the number of

task sets that a given test verifies as schedulable and B is the number of task sets for which no missed

deadlines occur over the course of a simulated execution. The simulated execution is of periodic tasks,

all released at time zero. If each task τk reaches a level (k−1) idle point without missing a deadline, the

simulation test is considered to have passed. Although this pseudo-polynomial-time test is a sufficient

test for schedulability on a single processor, due to Liu and Layland’s critical zone theorem, the critical

zone property does not extend to multiprocessors, so it is only a necessary (not sufficient) test for

multiprocessor schedulability. However, it is still useful as a filter for weeding out of the test sample

many task sets that are clearly unschedulable.

Simulations were conducted for various numbers of processors, task sizes, and priority assignment

rules, and with various algorithms for randomly generating the task periods, deadlines, and execution

times. In the interest of brevity, just a few of the results are presented here, all for the case of m = 4

processors. The results shown are for simulations of 1,000,000 task sets. Times were represented as

integers. The procedure was to generate a random set of m + 1 tasks, run all the schedulability tests

on that set, then add a randomly generated task to the set, run all the schedulability tests on the

new set, etc., until the set grew to a size that it missed a deadline when simulated with all tasks

released together at time zero. The procedure was then repeated. This method of generating random

task sets produces a fairly uniform distribution of total utilizations, except at the two extremes. Figure

4 shows the distributions of task set utilizations in two experiments with four processors. One used rate

monotonic scheduling and deadline equal to period, and the other used deadline monotonic scheduling

and randomly chosen deadlines uniformly distributed over the range between the execution time and the

period. The distributions are sparse at the low ends because sets with low utilization mostly had fewer

than four tasks. Such task sets were thrown out of the sample because they are trivially schedulable. The

17

distributions are sparse at the high ends because most of the sets with high utilization missed a deadline

in the simulation test, and so were also thrown out of the sample because they are unschedulable.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 50 100 150 200 250 300 350 400

Sc
he

du
la

bl
e

Fr
ac

tio
n

of
 T

as
k

Se
ts

Utilization

Rate Monotonic
Deadline Monotonic

Figure 4. Distribution of total utilizations in experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

Sc
he

du
la

bl
e

Fr
ac

tio
n

of
 T

as
k

Se
ts

Utilization

ON3
ON2

U
ON

Figure 5. Deadline equals period and rate monotonic priorities.

Figure 5 shows the performances of the schedulability tests for a four processor system when deadline

equals period and priorities are rate-monotonic. Figure 6 shows the performances for randomly chosen

deadlines and deadline-monotonic priorities. The vertical axis corresponds to the fraction of the total

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

Sc
he

du
la

bl
e

Fr
ac

tio
n

of
 T

as
k

Se
ts

Utilization

ON3
ON2
ON

Figure 6. Random deadlines and deadline monotonic priorities.

number of task sets that each schedulability test reports to be schedulable, for each utilization level.

The higher-complexity tests clearly are able to identify a larger number of schedulable task sets at the

higher utilization levels. In all experiments, the O(N) test performed much worse than the O(N2) and

O(N3) tests. The O(N3) performed consistently better than the O(N2) test, but the margin was not

large. The utilization-bound test performed well where it could be applied, but the extension of this

test to pre-period deadlines using padding (not shown here) performed extremely poorly, much worse

than the O(N) test.

6. Untightness of Utilization Bound

The lower bound on the minimum achievable utilization given by Corollary 14 is close, but it is not

tight. The following theorem provides an estimate of how tight it is.

THEOREM 15 (upper bound on minimum achievable RM utilization). There exist task sets that are

not feasible with preemptive RM scheduling on m processors and have utilization arbitrarily close to

umax + m ln(2
1+umax

), where umax is the maximum single-task utilization.

Proof.

19

The goal of the proof is to show that there is an infinite sequence of task sets S′m,1, S
′
m,2, S

′
m,3, . . .,

each of which is not schedulable on m processors and for which

lim
k→∞

U(Sm,k) = umax + m ln(
2

1 + umax
)

Instead of constructing such a sequence of unschedulable task sets directly, it will be sufficient to

construct an infinite sequence of barely schedulable task sets Sm,1, Sm,2, Sm,3, . . ., whose utilizations

converge to the desired limit. Then, for each k, an unschedulable task set S′m,k can be obtained from

Sm,k by increasing the execution time cN of the lowest-priority task by an amount that converges to zero

for sufficiently large k. Since the limit of the amounts by which the task execution times are increased

is zero, the limit of the utilizations of the sequence of unschedulable task sets S′m,k is the same as the

limit of the utilizations of the barely schedulable task sets Sm,k. Therefore, to prove the theorem it is

sufficient to construct the sequence Sm,1, Sm,2, Sm,3, . . . of barely schedulable task sets.

The construction of the barely schedulable task sets and the proof of the limiting utilization are

derived from Liu and Layland[7]. The differences are that there are m processors instead of one, and

the utilization of the longest-period task is bounded by umax.

Let pi = (2
1+umax

)
i
k for i = 1, . . . , k + 1. The periods of the N = mk + 1 tasks in Sm,k are defined to

be

T(i−1)m+1 =T(i−1)m+2 = · · ·=Ti·m = pi for i = 1, . . . , k

TN = pk+1

and the execution times of the tasks are defined to be

c(i−1)m+1 =c(i−1)m+2 = · · ·=ci·m = pi+1 − pi for i = 1, . . . , k

cN = 2p1 − pk+1 = TN − 2
k∑

i=1

(pi+1 − pi)

As shown schematically in Figure 7, when all the tasks are released together at time zero they execute

as k blocks of m, with task τN being forced to execute during the time the other tasks are idle. Such

a task set is barely schedulable. Any increase in the execution time of task τN will cause it to miss its

deadline. The utilization of such a task set is

U(Sm,k) =
2p1 − pk+1

pk+1
+

k∑
i=1

m
pi+1 − pi

pi

20

c1 c1

c1

c1
c1

c1

c2 ck

c2

c2 ck ck
ck
ck

c2

c2
ck

c2

p1 pkp3p2 pk+1

...

...

... ...

...

...

0

 deadlineτ τN N

cN

release

=TN

Figure 7. Task set that is barely schedulable.

= 2(
k∏

i=1

pi

pi+1
)− 1 + m(

k∑
i=1

pi+1

pi
)−mk

= 2(
k∏

i=1

(
1 + umax

2
)

1
k)− 1 + m(

k∑
i=1

(
2

1 + umax
)

1
k)−mk

= 2(
1 + umax

2
)− 1 + mk(

2
1 + umax

)
1
k)−mk

= umax + mk((
2

1 + umax
)

i
k − 1)

L’Hôpital’s Rule can be applied to find the limit of the above expression for large k, which is

lim
k→∞

U(Sm,k) = umax + m ln(
2

1 + umax
)

2

The actual minimum achievable RM utilization is somewhere between the lower bound given by

Corollary 14 and the upper bound given by Theorem 15.

7. Relation to Prior Work

Andersson, Baruah, and Jonsson[1] defined a periodic task set {τ1, τ2, . . . , τN} to be a light system on

m processors if it satisfies the following properties:

1.
∑N

i=1
ci
Ti
≤ m2

3m−2

2. ci
Ti
≤ m

3m−2 , for 1 ≤ i ≤ n.

21

They then proved the following theorem:

THEOREM 16 (Andersson, Baruah, Jonsson). Any periodic task system that is light on m processors is

scheduled to meet all deadlines on m processors by the preemptive rate monotonic scheduling algorithm.

The above result is a special case of Corollary 14. If one takes umax = m/(3m − 2), it follows that

the system of tasks is schedulable to meet deadlines if

N∑
i=1

ci

Ti
≤ m

2
(1− m

3m− 2
) +

m

3m− 2
=

m2

3m− 2

Baruah and Goossens[2] proved the following similar result.

COROLLARY 17 (Baruah & Goossens). A set of tasks, all with deadline equal to period, is guaranteed

to be schedulable on m processors using rate monotonic scheduling if ci
Ti
≤ 1/3 for i = 1, . . . , N and

N∑
i=1

ci

Ti
≤ m/3

This, too, follows from a special case of Corollary 14. If one takes umax = 1/3, it follows that the

system of tasks is schedulable to meet deadlines if

N−1∑
i=1

ci

Ti
≤ m

2
(1− 1/3) + 1/3 = m/3 + 1/3

The results presented in this paper generalize and extend the above cited results in the following

ways:

1. Theorem 11 can be applied to tasks with arbitrary deadlines. This is important for systems where

some tasks have tighter deadlines, due to bounded jitter requirements, and other tasks have looser

deadlines, due to buffering.

2. Theorem 11 can be applied to any set of sporadic tasks, without an arbitrary upper bound on

individual task utilizations.

3. If the maximum utilization of all tasks is very low, Corollary 14 can guarantee higher levels of total

utilization than m2/(3m − 2) without missed deadlines. For example, if umax ≤ 1/4 the system is

guaranteed by Corollary 14 to be schedulable up to utilization 3
8m + 1/4, as compared to Baruah

and Goossens’ m2/(3m− 2).

22

4. So long as the total utilization is lower than m
2 (1 − umax) + umax Corollary 14 can accommodate

tasks with utilization higher than m/(3m− 2).

Andersson, Baruah, and Jonsson[1] proposed the following hybrid scheduling algorithm:

ALGORITHM 1. RM-US[λ]

(heavy task rule) If ci
Ti

> λ then schedule τi’s jobs at maximum priority.

(light task rule) If ci
Ti
≤ λ then schedule τi’s jobs according to their normal rate monotonic priorities.

They then proved that Algorithm RM-US[m/(3m − 2)] correctly schedules on m processors any

periodic task system whose total utilization is at most m2/(3m−2). The proof is based on the observation

that the upper bound on total utilization guarantees the number of heavy tasks cannot exceed m. The

essence of the argument is that Algorithm RM-US[m/(3m− 2)] can do no worse than scheduling each

of the heavy tasks on its own processor, and then scheduling the remainder (which must must be light

on the remaining processors) using RM.

Corollary 14 extends the analysis of RM-US[λ] to other values of λ. Let ξ be the number of tasks

with utilization greater than or equal to λ. If ξ < m, the algorithm can do no worse than scheduling the

ξ highest utilization tasks on dedicated processors and scheduling the N − ξ lowest-utilization tasks on

the remaining m− ξ processors. The corollary guarantees that the latter tasks can be scheduled unless

their combined utilization exceeds m−ξ
2 (1− λ) + λ. That is, no deadline can be missed unless the total

utilization, including both heavy and light tasks, exceeds

m− ξ

2
(1− λ) + (ξ + 1)λ

The value of the expression above is decreasing with respect to λ for λ < 1/3 and is increasing with

respect to λ for λ > 1/3. It follows that the optimal value of λ for use with RM-US and the utilization

bound test is 1/3, in which case the worst-case guaranteed feasible utilization is m+1
3 . Of course, the

value λ = 1/3 is optimal only with respect to verifying schedulability using the utilization test, which

is not tight.

Lundberg[10] has reasoned that the true optimum value of λ for RM-US[λ] is approximately 0.3748225282.

He asserts that a task experiences the maximum competing load when there is ‘block interference similar

to that shown in Figure 1, and argues that the worst-case block interference occurs with task sets similar

23

to the family of examples in the proof of Theorem 15, whose limiting utilization is λ + m ln(2
1+λ). If

Lundberg’s reasoning can be made rigorous, it would follow that umax + m ln(2
1+umax

) is the actual

worst-case RM utilization bound.

The schedulability tests presented in Section 5 also suggest the following generalization of the RM-US

idea:

ALGORITHM 2. RM-Hybrid[ξ]

Choose N − ξ tasks with the lowest utilizations and call those the light tasks; call the rest of the

tasks the heavy tasks. Schedule the ξ heavy tasks maximum priority, and the other tasks according to

deadline-monotonic priorities.

The number ξ of heavy tasks is chosen so that the remaining N − ξ tasks set can be verified as

schedulable on the remaining m − ξ processors, according to whatever schedulability test is available.

For example, if one uses the O(N3) test, one would choose the smallest ξ such that the N − ξ lowest-

utilization tasks pass the O(N3) test for schedulability on m− ξ processors. If such a ξ exists, it follows

that the task set is schedulable.

8. Conclusions

Efficiently computable schedulability tests have been given for general fixed-priority scheduling on a

homogeneous multiprocessor system, with arbitrary deadlines. These improve on previously known

multiprocessor RM schedulability conditions by relaxing the assumptions of rate monotonic priorities

and deadline being equal to period.

For the case where period equals deadline this analysis gives a simple lower bound on the minimum

achievable utilization. That is, a system of independent periodic or sporadic tasks can be scheduled

by RM scheduling to meet all deadlines if the total utilization is at most m
2 (1 − umax) + umax, where

umax is the maximum of the individual task utilizations. This result can be used to verify the RM

schedulability of systems of tasks with sufficiently low individual processor utilization, or combined with

a hybrid scheduling policy to verify the schedulability of systems with a few high-utilization tasks. It can

be applied statically, or applied dynamically as an admission test. This improves on previously known

24

utilization-based multiprocessor RM schedulability tests, by allowing both higher total utilizations and

higher individual task utilizations. In addition to the new lower bound on the minimum achievable RM

utilization, an upper bound of umax + m ln(2
1+umax

) has been derived.

The existence of these schedulability tests makes verification of single-queue (global) fixed-priority

multi-processor schedulability an option for certain classes of task sets. This may be of immediate

interest for real-time applications on popular symmetric multiprocessing operating systems, such as

Linux and Sun Microsystems’ Solaris, which support global scheduling as the default. Removing one

of the reasons often given for favoring a queue-per-processor (partitioned) approach to multiprocessor

scheduling also opens the way for additional research.

Further study is needed into the comparative strengths of global versus partitioned scheduling. One

question is about the average-case performance. The worst-case utilization bounds seem very close, but

is that also true of the average case? A second question is about the implementation overhead. Global

scheduling has higher overhead in at least two respects: the contention delay and the synchronization

overhead for a single dispatching queue is higher than for per-processor queues; the cost of resuming

a task may be higher if it is on a different processor (due to interprocessor interrupt handling and

cache reloading) than on the processor where it last executed. The latter cost can be quite variable,

since it depends on the actual portion of a task’s memory that remains in cache when the task resumes

execution, and how much of that remnant will be referenced again before it is overwritten. It seems that

only experimentation with actual implementations can determine how serious are these overheads, and

how they balance against any advantages global scheduling may have for on-time completion of tasks.

Acknowledgement

The author is thankful to the anonymous reviewers for their constructive comments, which improved

the quality of this paper. He is especially thankful to the reviewer who observed that most of the results

in the paper apply to arbitrary fixed priority assignments, and the reviewer who suggested adding some

simulation results.

References

1. B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multiprocessors. In Proc. 22nd IEEE Real-Time
Systems Symposium, pages 193–202, London, UK, December 2001.

25

2. S. Baruah and Joel Goossens. Rate-monotonic scheduling on uniform multiprocessors. IEEE Trans. Computers,
52(7):966–970, July 2003.

3. Willian Gardner Bell. Department of the army, historical summary fiscal year 1971 [online]. 1973. Available from:
http://www.army.mil/cmh-pg/books/DAHSUM/1971/chIV.htm.

4. S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research, 26(1):127–140, February 1978.
5. Intel Developer Support Forum. HT and pause vs. halt [online]. 2004. Available from: http://softwareforums.

intel.com/ids/board/print?board.id=42&message.id=%548.
6. Arik Hesseldahl. Broadcom unveils new multicore chip [online]. October 2004. Available from: http://www.forbes.

com/enterprisetech/2004/10/04/cx_ah_1004chips.html.
7. C. L. Liu and J. W. Layland. Scheduling alghorithms for multiprogramming in a hard real-time environment. Journal

of the ACM, 20(1):46–61, January 1973.
8. J. M. Lopez, J. L. Diaz, and D. F. Garcia. Minimum and maximum utilization bounds for multiprocessor RM

scheduling. In Proc. 13th Euromicro Conf. Real-Time Systems, pages 67–75, Delft, Netherlands, June 2001.
9. J. M. Lopez, J. L. Diaz, M. Garcia, and D. F. Garcia. Worst-case utilization bound for EDF scheduling on real-time

multiprocessor systems. In Proc. 12th Euromicro Conf. Real-Time Systems, pages 25–33, 2000.
10. L. Lundberg. Analyzing fixed-priority global multiprocessor scheduling. In Proc. 8th IEEE Real-Time and Embedded

Technology and Applications Symposium, pages 145–153, San Jose, CA, USA, 2002. IEEE Computer Society.
11. M. Meyer, G. Finger, H. Mehrgan, J. Stegmeier, and A. F. M. Moorwood. The ESO infrared detector high-speed

array control and processing electronics IRACE [online]. November 2004. Available from: http://www.eso.org/
projects/iridt/irace/pdffiles/Irace_from_messenger_n%o_86.pdf.

12. D. I. Oh and T. P. Baker. Utilization bounds for N -processor rate monotone scheduling with stable processor
assignment. Real Time Systems, 15(2):183–193, September 1998.

13. C. A. Phillips, C. Stein, E. Torng, and J Wein. Optimal time-critical scheduling via resource augmentation. In Proc.
29th Annual ACM Symposium on Theory of Computing, pages 140–149, El Paso, TX, 1997. ACM.

14. L. Sha, T. Abdelzaher, K. E. Årzén, A. Cervin, T. P. Baker, A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and
A. K. Mok. Real time scheduling theory: A historical perspective. Real-Time Systems, 28(2–3):101–155, November
2004.

15. Mercury Computer Systems. Mercury computer systems4 multicomputers selected for development phase of F-35
joint strike fighter program [online]. February 2004. Available from: http://www.dedicated-systems.com/VPR/

layout/display/pr.asp?PRID=6810.

