
Anemone: Adaptive Network Memory Engine
Michael R. Hines, Mark Lewandowski and Kartik Gopalan

Department of Computer Science
Florida State University

{mhines,lewandow,kartik}@cs.fsu.edu

I. M OTIVATION AND PROBLEM STATEMENT

Large-memory high-performance applications such as sci-
entific computing, weather prediction simulations, database
management, and graphics rendering applications are in-
creasingly claiming a prominent share of the cluster-based
application space. Even though improvements in Dynamic
Random Access Memory (DRAM) technology have yielded
an enormous increase in the memory capacity of off-the-
shelf systems, the memory-intensive applications continue
to hunger for even larger amounts of memory. The issue is
not whether one can provide enough DRAM to satisfy these
applications; rather the more DRAM one provides, the more
these applications ask for. These large-memory applications
quickly hit the physical memory limit and start paging to
the local disk. As a consequence, application execution time
is degraded due to higher disk latency involved in paging
operations.

At the same time, while memory resources in one ma-
chine in a LAN-based cluster might be heavily loaded,
large amounts of memory in other machines might remain
idle or under-utilized. Since affordable Gigabit LANs with
attractive cost-to-performance ratios are now very common,
one could significantly reduce access latencies by first paging
over a high-speed LAN to the unused memory of remote
machines and then resort to disk-based paging only as the
last resort when remote resources are full. Thus, remote
memory access can be viewed as another level between the
traditional memory hierarchy memory and the disk. In fact,
typical remote memory paging latencies of100 to 500µs can
be easily achieved whereas the latency of paging to slow
local disk (especially while paging in) is typically around
2 to 10ms, depending upon seek and rotational overheads.
Thus remote memory paging could potentially be one to two
orders of magnitude faster than paging to disk [13].

II. RESEARCHOBJECTIVES

Our primary research objective, called theAnemone
(Adaptive NEtwork MemOry engiNE) project, is to harness
a large collective pool of memory resources across nodes
in a high-speed LAN. The ultimate performance objective
of Anemone is to enable memory hungry applications to
gain transparent, fault-tolerant, and low-overhead access to
potentially “unlimited” memory resources. The novel aspect
that distinguishes the Anemone project from prior efforts

is that no modifications are required either to the memory-
intensive applications or to the end-hosts, thus eliminating
painstaking and expensive end-system modifications. Instead,
Anemone exploits the standard features that arrive bundled
with these systems - the RAM disk (or memory-resident disk
interface) and the Network File System (NFS) protocol - in a
novel manner to provide transparent and low-latency access
to remote-memory.

Virtualization is emerging as a fundamental paradigm that
will drive the provisioning and management of resources in
future large scale clusters. Virtualization is the ability to sub-
divide a pool of physical resources, such as computation,
memory, storage, and bandwidth, into higher level logical
partitions, each of which can be assigned to individual users
of the resource pool. This high-level view of a cluster’s
resources greatly simplifies their provisioning and manage-
ment. In this work, we specifically tackle the challenge of
virtualizing thedistributed memory resourcesin a cluster to
support the memory needs of high-performance applications.

III. STATE OF THE ART

While the advantages of accessing memory over the net-
work have been explored in prior works, their acceptance
by high performance application community in running real-
world memory-intensive applications has been scant in spite
of their enormous potential benefits. The primary reason
is that all earlier approaches advocate significant modifica-
tions to the end-systems that need the extra memory. These
modifications range from application-specific programming
interfaces that programmers must follow to changes in the
end-host’s operating system (OS) and device drivers.

In early 1990’s the first two remote paging mechanisms
were proposed [4], [8], both of which employed a customized
remote paging protocol between clients and servers and
incorporated extensive OS changes. Global Memory Sys-
tem (GMS) [7] provides network-wide memory management
support at the lowest level of the OS for activities such as
paging, memory mapped files and file caching. The Network
RamDisk [9] offers remote paging with data replication and
adaptive parity caching. Network RamDisk is implemented as
a device driver inside the OS, thus increasing the installation
and management complexity at each node in the LAN.
Dodo [10] provides a user-level library based interface that a
programmer that coordinates all data transfer to and from a
remote memory cache. Samson [12] is a dedicated memory

MEMORY CLIENT

Module
Virtual Memory

/mnt/ramdisk

Memory
Main

NFS mount

NFS LAYER

Swap Daemon

Memory Intensive
Application

/dev/ram0
RamDisk

MEMORY SERVER

Fig. 1. A Basic Remote Memory Access Architecture using RamDisk &
NFS. Clients transparently utilize remote memory instead of local disk.

server that actively attempts to predict client page require-
ments and delivers the pages just-in-time to hide the paging
latencies. The drivers and OS in both the memory server and
clients are extensively modified. Simulation studies for a load
sharing scheme that combines job migrations with the use of
network RAM are presented in [13]. The NOW project [1]
performs cooperative caching via a global file cache. Other
efforts include software distributed shared memory (DSM)
systems [6], and alternative cache replacement/replication
strategies [3], [5].

IV. A RCHITECTURE& RESEARCHMETHODOLOGY

In contrast to prior efforts, Anemone maintains complete
client transparency and does not require any OS, device driver
or application level modifications in the clients’ configura-
tion. It exploits the standard Network File System (NFS) [11]
protocol which is available by default with most end systems.

A. Basic Architecture: A Memory Client mounts a
remote Linux ”RamDisk” from a Memory Server and con-
figures it as a swap device. A RamDisk is a portion of
physical memory that one can set aside for access as a regular
disk partition via the standard device interface (such as
/dev/ram0, /dev/ram1 etc. in Linux). The server can
then export this RamDisk through NFS to be mounted. When
the client mounts the RamDisk onto its local file-system, it
can create a file inside the mounted RamDisk and configure
the file as the primary swap device or allow applications
to create memory-mapped files on the mount-point. Using
this new swap space, applications on the memory client can
transparently swap to remote memory instead of to disk.
In Figure 1, this basic architecture is demonstrated. As a
fallback option, one can also configure a local disk partition
as a secondary swap device in the unlikely event that remote
RamDisk becomes full. Next, we can augment this basic
architecture in several ways more appropriate for enterprise
scale applications.

B. The Memory Engine - An Agent for End-host
Transparency: The Anemone project explores the design
space of full-scale distributed remote memory paging by

Module
Virtual Memory

/mnt/ramdisk

Swap Daemon

Memory Intensive
Application

Server 1

Client 2

Client 1

Server 2

Client 3
Memory

Server 3

/mnt/z

/mnt/y

/mnt/x

Switch

Engine1

Engine2
Memory

MEMORY CLIENT

NFS mount UDP Protocol

Memory

MEMORY SERVER

Main

Module
Server

VAI 1

VAI 2

VAI 3

MODULE
TRANSLATION

Fig. 2. Architecture of Anemone. Memory clients mount a Virtual Access
Interface (VAI) from the Memory Engine, which corresponds to memory
spaces hosted by back-end memory servers. The Memory Engine multiplexes
client paging requests among back-end memory servers.

way of the fundamental entity - thememory engine. Simply
speaking, the engine acts as a bridge between memory clients
on one side and servers hosting the remote memory resources
on the other side. The memory engine may not provide
any memory resources; rather it helps pool together and
present a unified access interface for distributed memory
resources across the cluster. Figure 2 shows the archi-
tecture of Anemone. The memory engine is a dedicated
device connected to the same switched Gigabit network as
other memory clients and back-end servers. The client-side
face of the engine consists of thevirtual access interface
(VAI), a pseudo device that can be NFS mounted by remote
memory clients and configured as either a swap device
or a memory mapped file. Swapped pages from the client
are then directed over NFS to the remote VAI. Note that
VAI is not a real device but only a convenient logical
device through which clients can transparently access the
distributed memory resources. On the server-side, instead of
using RamDisks, we use a simple, reliable light-weight UDP-
based communication protocol between the engine and the
server. The server accepts pages through this protocol and
stores them in a local in-memory data structure (such as a
hash table). The memory engine tracks the memory resource
usage on individual servers and transparently multiplexes
client page requests to these back-end servers through the
communication protocol.

Even though the Memory Engine does introduce an ad-
ditional level of indirection in comparison to the basic
architecture, it provides a much greater benefit by hiding
all the complexity of managing global memory resources
from the memory clients, and the complexity of managing
client requirements from the memory servers. Additionally,
the three different latency reduction mechanisms discussed
later in Section IV-E can hide much of the overheads due to

indirection.
C. Virtualizing The Collective Memory Resource Pool:

The Memory Engine is ideally placed to virtualize the collec-
tive back-end memory resources. Each VAI carries associated
attributes such as logical capacity of the partition, its priority
relative to other VAIs, reliability requirements, and current
back-end servers storing VAI contents. Atranslation module
at the memory engine maps the contents of each VAI to back-
end servers. Thus, each client is attached to a single VAI
while the translation module hides and efficiently manages
the underlying virtualization complexities. The translation
module resides between the data-link layer and the IP layer
of the memory engine’s protocol stack as a pluggable module
that interacts with the runtime kernel. The translation module
intercepts the clients’ page requests from NFS and maps each
one to a back-end server. For instance, if a client sends a
page-out request to its VAI, the translation module intercepts,
interprets, and schedules the request and sends it to a chosen
back-end server. Similarly, for a page-in request, the trans-
lation module first identifies the server where the requested
page is stored. Subsequently, the translation module itself
can either retrieve and return the page to the client or take
advantage of thesplit page-inlatency reduction mechanism
described later.

Anemone’s virtualization techniques also enables the
Memory Engine to transparently perform fine-grained mem-
ory resource management. Three specific resource manage-
ment dimensions are being explored in Anemone: (1) Instead
of dedicating a single back-end server’s entire allocated
memory space to each client, the Memory Engine could
transparentlymultiplex the resources so that a server can
hold the pages of multiple clients. This also has the benefit
of distributing the load on the servers, keeping all servers
equally utilized. (2) The Memory Engine can seamlessly
absorb the increase/decrease in global paging capacity as
servers constantly join or leave the network, thus insulating
the memory clients from fluctuations in total system capacity.
(3) When a particular server needs to reclaim its memory
resources for its own applications, the Memory Engine can
transparently migrate the pages stored at that server to other
less loaded servers (using the communication protocol as
described), thus adapting to load variations.

D. Scalability of Transparent Remote Memory Access:
One may argue that a single Memory Engine can become a
performance bottleneck if it has to service a large number
of clients. We can easily address this bottleneck by placing
multiple engines in the cluster (as shown in Figure 2), which
share a common domain-level name but have different IP
addresses. Clients can be transparently redirected to mount
VAIs from the least loaded engine by employing a cus-
tomized Domain Name Service (DNS) based load-balancing
mechanism, which is just a one-time initialization overhead.

E. Latency Reduction Mechanisms:The most attrac-
tive feature of remote paging is that data transfer latencies
over a network are orders of magnitude smaller than disk

transfer latencies. Even though the Memory Engine can yield
significant performance improvements without any special
optimizations, it is still important to minimize network access
latencies.

Page-out vs. Page-in:Writes (Page-out) can be delayed
by allowing the swap daemon to schedule and buffer them
based on the usage status of local memory. However, Reads
(Page-in) are more critical because an application absolutely
cannot continue after a page-fault without the required page.
Thus, reads are the prime target of optimization efforts.

We are investigating three specific latency reduction
mechanisms: (1) Split Page-in, (2) Concurrent paging and
(3) Memory Engine Page Cache.

• Split Page-in: This technique optimizes a potentially
expensive two-step transfer of large memory pages into
a direct single-step transfer from the back-end server to
the memory client, avoiding an extra hop through the
Memory Engine.

• Concurrent Paging: This technique exploits the inher-
ent concurrency in interacting with multiple back-end
servers. A memory page can be broken into multiple
packets that can be exchanged simultaneously between
the Memory Engine and multiple back-end servers.

• Memory Engine Page Cache: In this technique, the
Memory Engine can maintain an activePage Cache
that contains copies of the most frequently accessed
client pages. If a client’s page-in request is successfully
located in the page cache, the Memory Engine does not
need to contact any back-end servers, thus reducing the
page-in latency by almost half.
F. Compression and Its Impact on Latency and Stor-

age: Another attractive option is to let the Memory Engine
compress the swapped pages before transferring them to
back-end servers, storing them in compressed form. Upon
a page-in request, either the server or the engine can decom-
press the pages before returning them to the client. Com-
pression at the Memory Engine provides two advantages:
(1) The communication overhead between memory engine
and back-end server is minimized and (2) The back-end
server’s total storage capacity greatly increases. The main
challenge will be to balance the computation overhead of
compressing and decompressing pages against the potential
savings in communication latency and storage. We will also
explore two novel features unique to Anemone: (1) To
maintain a compressed page cache at the Memory Engine
which stores frequently accessed remote pages and (2) To
perform application-specific compression/decompression by
observing the page content characteristics.

G. Reliability of Remote Memory Access:A degree of
uncertainty arises from critical swap contents being remotely
stored, possibly on multiple back-end servers. (1) First, we
will explore strategies for efficient replication and striping
of memory pages on multiple back-end servers. (2) Second
we will explore the memory engine itself as a single point
of failure. We propose to apply theprocess-pairconcept [2]

in which the operations of a primary memory engine will be
mirrored by a backup memory engine. The specific design is-
sues in the process-pair approach include (1) how the backup
engine will intercept NFS packets destined to the primary
engine, (2) how the backup will maintain synchronization
with the primary without impacting its normal operations,
and (3) the mechanism of failure detection, such as using
heartbeats, and recovery by redirecting the clients to the
backup device.

H. Performance Testing Using Graphics Rendering
and Database Applications:Graphics and image processing
applications are one class of applications that need to process
large amounts of data. For instance, volume rendering and
ray tracing programs require enormous amounts of memory
to perform rendering computations. Performance testing of
Anemone will be conducted using a popular graphics ren-
dering application calledPovray. Povray provides a meta-
language to specify very large rendering scenarios. We will
execute Povray on the Anemone system to demonstrate the
improvement in rendering times. Similarly, a number of
database applications need to sort large data-sets in order
to satisfy queries to the database. Also, we will demonstrate
the performance improvement of popular sorting algorithms
such as QuickSort and HeapSort.

I. Preliminary Results: As a proof-of-concept Anemone
prototype, we have implemented a user-level Memory Engine
which exposes a set of in-memory VAIs to a client ma-
chine and intercepts/responds to NFS mount and read-write
requests directly without depending upon the file-system
stack. The Memory Engine also communicates with a back-
end memory server to store page-in/page-out requests. We
compared the latencies of page-in operations using the user-
level implementation against disk-based paging when simul-
taneously executing multiple memory intensive applications.
We observed that disk based page-in latencies varied from
6.3–7.1ms. On the other hand the page-in latencies using
the Memory Engine on a Gigabit LAN varied between 1.8–
2.1ms – an improvement of up to 3.5 times. The majority of
the remote page-in overhead (about 1.3ms) lies in copying
and context switching between user-space and kernel-space at
the Memory Engine node. An efficient kernel-level Memory
Engine is expected to reduce this overhead to within500µs.

V. CONCLUSIONS

In this research we address the problem of harnessing
the distributed memory resources in a cluster to support
memory-intensive high-performance applications. We pre-
sented the architectural design and implementation aspects of
Anemone - an Adaptive NEtwork MemOry Engine - which
is designed to provide transparent, fault-tolerant, low-latency
access distributed memory resources. The novel aspect of
Anemone is that no modifications are required to either the
memory intensive application or to the end-host system. Our
preliminary results based on a user-level Anemone prototype
promise up to 3.5 times improvement in page-in latencies

849.27 108.82 1075.07 4.19 6342.02 0 2037.35 1
903.24 9.18 1069.79 4.26 6698.61 0 1986.47 2

917.798 8.85859 1072 4.07071 6232.34 0 2002.727 3
918.152 8.92929 1072.25 4.16162 6902.06 0 2003.493 4
900.612 8.88776 1070.6 4.37755 6044.45 0 1984.477 5

917.88 9.01 1074.63 4.25 6488.58 0 2005.77 6
939.525 8.82828 1071.38 4.21212 6700.7 0 2023.945 7
911.247 9.08247 1070.04 4.18557 6317.97 0 1994.555 8
928.398 8.81633 1074.01 4.2551 6330.84 0 2015.479 9
876.293 8.83838 1072.45 4.26263 6251.69 0 1961.844 10

911.66 8.79 1069.38 4.17 6837.28 0 1994 11
895.49 8.86735 1086.97 4.66327 6943.46 0 1995.991 12

916.827 8.89796 1090.53 4.42857 7139.43 0 2020.684 13
917.727 8.9596 1080.01 4.26263 6122.47 0 2010.959 14
907.208 8.85417 1075.8 4.30208 6640.12 0 1996.164 15
868.619 8.56701 1017.89 4.25773 6453.63 0 1899.334 16
907.442 8.73684 1074.74 4.27368 6622.65 0 1995.193 17
912.177 8.85417 1068.92 4.1875 6818.14 0 1994.139 18
900.646 8.875 1071.49 4.20833 6035.3 0 1985.219 19
902.786 8.93878 1070.44 4.2449 6973.6 0 1986.41 20
913.065 8.83871 1070.75 4.16129 6118.29 0 1996.815 21
901.087 9.04348 1071.25 4.26087 6828.49 0 1985.641 22
904.592 9.02041 1069.06 4.26531 6227.47 0 1986.938 23
894.467 9.1087 1076.11 4.34783 6914.83 0 1984.034 24
903.341 9.0989 1078.6 4.36264 6170.08 0 1995.403 25

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Trial Run

La
te

nc
y

Client/Engine Comm Engine Processing Engine/Server Comm
Server Processing Disk

Fig. 3. Comparison of paging to local disk vs. paging to remote memory
using user-level anemone implementation.

over disk-based paging mechanisms. Currently we are inves-
tigating kernel-level mechanisms to overcome data copying
and context switching overheads, various latency reduction,
reliability and scalability techniques, and finally benefits of
using compression and caching.

REFERENCES

[1] T. Anderson, D. Culler, and D. Patterson. A case for NOW (Networks
of Workstations).IEEE Micro, 15(1):54–64, 1995.

[2] J. Bartlett. A nonstop kernel. InProc. 8th ACM SIGOPS SOSP, 1981.
[3] F. Brasileiro, W. Cirne, E.B. Passos, and T.S. Stanchi. Using remote

memory to stabilise data efficiently on an EXT2 linux file system. In
Proc. of the 20th Brazilian Symposium on Computer Networks, May
2002.

[4] D. Comer and J. Griffoen. A new design for distributed systems: the
remote memory model.Proceedings of the USENIX 1991 Summer
Technical Conference, pages 127–135, 1991.

[5] F.M. Cuenca-Acuna and T.D. Nguyen. Cooperative caching middle-
ware for cluster-based servers. InProc. of 10th IEEE Intl. Symp. on
High Performance Distributed Computing (HPDC-10), Aug 2001.

[6] S. Dwarkadas, N. Hardavellas, L. Kontothanassis, R. Nikhil, and
R. Stets. Cashmere-VLM: Remote memory paging for software
distributed shared memory. InProc. of Intl. Parallel Processing
Symposium, San Juan, Puerto Rico, pages 153–159, April 1999.

[7] M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, and C. Thekkath.
Implementing global memory management in a workstation cluster.
Operating Systems Review, Fifteenth ACM Symposium on Operating
Systems Principles, 29(5):201–212, 1995.

[8] E. Felten and J. Zahorjan. Issues in the implementation of a remote
paging system. Technical Report TR 91-03-09, Computer Science
Department, University of Washington, 1991.

[9] M. Flouris and E.P. Markatos. The network RamDisk: Using remote
memory on heterogeneous NOWs.Cluster Computing, 2(4):281–293,
1999.

[10] S. Koussih, A. Acharya, and S. Setia. Dodo: A user-level system
for exploiting idle memory in workstation clusters. InProc. of the
Eighth IEEE Intl. Symp. on High Performance Distributed Computing
(HPDC-8), 1999.

[11] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck. Network file system (NFS) version 4
protocol. Request for Comments - RFC 3530.

[12] E. Stark. SAMSON: A scalable active memory server on a network,
Aug. 2003.

[13] L. Xiao, X. Zhang, and S.A. Kubricht. Incorporating job migration and
network RAM to share cluster memory resources. InProc. of the 9th
IEEE Intl. Symposium on High Performance Distributed Computing
(HPDC-9), pages 71–78, August 2000.

