Anemone: Adaptive Network Memory Engine

Michael R. Hines, Mark Lewandowski and Kartik Gopalan
Department of Computer Science
Florida State University
{mhines,lewandow,karti@cs.fsu.edu

. MOTIVATION AND PROBLEM STATEMENT is that no modifications are required either to the memory-

; C intensive applications or to the end-hosts, thus eliminating
Large-memory high-performance applications such as sg-

. X S . . ainstaking and expensive end-system modifications. Instead,
entific computing, weather prediction simulations, databaSe . .
. . o Ahemone exploits the standard features that arrive bundled

management, and graphics rendering applications are in- : : .
; L X with these systems - the RAM disk (or memory-resident disk
creasingly claiming a prominent share of the cluster-base ;)

s)) hterface) and the Network File System (NFS) protocol - in a
application space. Even though improvements in Dynamic

4 ovel manner to provide transparent and low-latency access
Random Access Memory (DRAM) technology have yielde L remote-memory.

an enormous increase in the memory capacity of off-the- S . .
) . S .~ Virtualizationis emerging as a fundamental paradigm that
shelf systems, the memory-intensive applications continu

. Wil drive the provisioning and management of resources in
to hunger for even larger amounts of memory. The issue

| : A -
not whether one can provide enough DRAM to satisfy theéu%gre large scale clustgrs. Virtualization is the ability to sqb—
ivide a pool of physical resources, such as computation,

applications; rather the more DRAM one provides, the more X) . .
o .. memory, storage, and bandwidth, into higher level logical
these applications ask for. These large-memory applications

quickly hit the physical memory limit and start paging tdaartltlons, each of which can be assigned to individual users

. Co .2 of the resource pool. This high-level view of a cluster’s
the local disk. As a consequence, application execution time L . L
. resources greatly simplifies their provisioning and manage-

is degraded due to higher disk latency involved in PagiNdent. In this work, we specifically tackle the challenge of

operations. . o S .
At the same time, while memory resources in one mwrtuahzmg thedistributed memory resourcés a cluster to
o : : . upport the memory n f high-performan lications.
chine in a LAN-based cluster might be heavily Ioadet?,quOtt e memory needs of high-performance applications
large amounts of memory in other machines might remain 1. STATE OF THEART
idle or under-utilized. Since affordable Gigabit LANs with

attractive cost-to-performance ratios are now very commap
one could significantly reduce access latencies by first pagi high performance application community in running real-

over a high-speed LAN to the_ unused memory of remo orld memory-intensive applications has been scant in spite
machines and then resort to disk-based paging only as g}etheir enormous potential benefits. The primary reason
last resort when remote_resources are full. Thus, TeMQEinat all earlier approaches advocate significant modifica-
memory access can .be viewed as another Ievel_ between E fis to the end-systems that need the extra memory. These
tra(_jmonal memory hlerarchy memory and the disk. In faCi‘nodiﬁcations range from application-specific programming
typical remote memory paging latencieslai to 500us can interfaces that programmers must follow to changes in the

be easily achieved whereas the latency of paging to sl Wd-host's operating system (OS) and device drivers.

local disk (especially while paging in) is typically aroun) ' . .
2 to 10ms, depending upon seek and rotational overheal In early 1990's the first two remote paging mechanisms

)) ere proposed [4], [8], both of which employed a customized
Thus remote memary paging could potentlallly be one to Womote paging protocol between clients and servers and
orders of magnitude faster than paging to disk [13] incorporated extensive OS changes. Global Memory Sys-

tem (GMS) [7] provides network-wide memory management
support at the lowest level of the OS for activities such as
Our primary research objective, called th®nemone paging, memory mapped files and file caching. The Network
(Adaptive NEtwork MemOry engiNE) project, is to harnes®amDisk [9] offers remote paging with data replication and
a large collective pool of memory resources across nodagaptive parity caching. Network RamDisk is implemented as
in a high-speed LAN. The ultimate performance objectiva device driver inside the OS, thus increasing the installation
of Anemone is to enable memory hungry applications @nd management complexity at each node in the LAN.
gain transparent, fault-tolerant, and low-overhead accesstodo [10] provides a user-level library based interface that a
potentially “unlimited” memory resources. The novel aspegrogrammer that coordinates all data transfer to and from a
that distinguishes the Anemone project from prior effortemote memory cache. Samson [12] is a dedicated memory

While the advantages of accessing memory over the net-
ork have been explored in prior works, their acceptance

Il. RESEARCHOBJECTIVES

Memory

' Engine2, =
Application cios1 e I / N
Virtual Memory _ / I \‘i o
g - erver

MEMORY CLIENT MEMORY SERVER .

Module Main Client 2
Memory -
MEMORY CLIENT Enginel
RamDisk
< NFS_mount 3| Application TR;%;I;/‘ZON MEMORY SERVER
2~ f Virtual Memory AL 3 Main
|] NFS LAYER . Module Memory
5 T AL 2
................... ! |
NFS mount H . UDP Protocol Module
. (e) »
Fig. 1. A Basic Remote Memory Access Architecture using RamDisk & VAL 1
NFS. Clients transparently utilize remote memory instead of local disk.

h ivel di l . Fig. 2. Architecture of Anemone. Memory clients mount a Virtual Access
server that actively attempts to predict client page requirgertace (vAl) from the Memory Engine, which corresponds to memory
ments and delivers the pages just-in-time to hide the pagisyghces hosted by back-end memory servers. The Memory Engine multiplexes

latencies. The drivers and OS in both the memory server afigint paging requests among back-end memory servers.
clients are extensively modified. Simulation studies for a load

sharing scheme that combines job migrations with the use of) o
network RAM are presented in [13]. The NOW project [1}v@Y Of the fundamental entity - thmemory engineSimply

performs cooperative caching via a global file cache. OthaP®aking, the engine acts as a bridge between memory clients
efforts include software distributed shared memory (DSI\)B” one side and servers hosting the remote memory resources

systems [6], and alternative cache replacement/replicatigh the other side. The memory engine may not provide
strategies [3], [5]. any memory resources; rather it helps pool together and

present a unified access interface for distributed memory
IV. ARCHITECTURE& RESEARCHMETHODOLOGY resources across the cluster. Figure 2 shows the archi-

In contrast to prior efforts, Anemone maintains complef&cture of Anemone. The memory engine is a dedicated
client transparency and does not require any OS, device drifivice connected to the same switched Gigabit network as
or application level modifications in the clients’ configura®ther memory clients and back-end servers. The client-side
tion. It exploits the standard Network File System (NFS) [11ffice of the engine consists of thertual access interface
protocol which is available by default with most end system§¥Al), @ pseudo device that can be NFS mounted by remote

A. Basic Architecture: A Memory Client mounts a memory clients and configured as either a swap device
remote Linux "RamDisk” from a Memory Server and con®’ @ memory mapped file. Swapped pages from the client
figures it as a swap device. A RamDisk is a portion G'€ t_hen directed over NFS to the remote VAL Note.that
physical memory that one can set aside for access as a reg¥fdly is not a real device but only a convenient logical
disk partition via the standard device interface (such &§vice through which clients can transparently access the
/deviramO, /dev/raml etc. in Linux). The server can distributed memory resources. On the server-side, instead of
then export this RamDisk through NFS to be mounted. Whei§ing RamDisks, we use a simple, reliable light-weight UDP-
the client mounts the RamDisk onto its local file-system, #ased communication protocol between the engine and the
can create a file inside the mounted RamDisk and configui@/ver. The server accepts pages through this protocol and
the file as the primary swap device or allow application&fores them in a local in-memory data structure (such as a
to create memory-mapped files on the mount-point. Usiktgsh table). The memory engine tracks the memory resource
this new swap space, applications on the memory client cgpage on individual servers and transparently multiplexes
transparently swap to remote memory instead of to diskient page _requests to these back-end servers through the
In Figure 1, this basic architecture is demonstrated. AsC@Mmunication protocol.
fallback option, one can also configure a local disk partition Even though the Memory Engine does introduce an ad-
as a secondary swap device in the unlikely event that remalitonal level of indirection in comparison to the basic
RambDisk becomes full. Next, we can augment this basicchitecture, it provides a much greater benefit by hiding
architecture in several ways more appropriate for enterpriakk the complexity of managing global memory resources
scale applications. from the memory clients, and the complexity of managing

B. The Memory Engine - An Agent for End-host client requirements from the memory servers. Additionally,
Transparency: The Anemone project explores the desigthe three different latency reduction mechanisms discussed
space of full-scale distributed remote memory paging bster in Section IV-E can hide much of the overheads due to

indirection. transfer latencies. Even though the Memory Engine can yield
C. Virtualizing The Collective Memory Resource Pool: significant performance improvements without any special
The Memory Engine is ideally placed to virtualize the collegptimizations, it is still important to minimize network access
tive back-end memory resources. Each VAI carries associatatencies.
attributes such as logical capacity of the partition, its priority Page-out vs. Page-inWrites (Page-out) can be delayed
relative to other VAls, reliability requirements, and currenty allowing the swap daemon to schedule and buffer them
back-end servers storing VAI contents.translation module based on the usage status of local memory. However, Reads
at the memory engine maps the contents of each VAI to badRage-in) are more critical because an application absolutely
end servers. Thus, each client is attached to a single \Wannot continue after a page-fault without the required page.
while the translation module hides and efficiently managddwus, reads are the prime target of optimization efforts.
the underlying virtualization complexities. The translation We are investigating three specific latency reduction
module resides between the data-link layer and the IP laysechanisms: (1) Split Page-in, (2) Concurrent paging and
of the memory engine’s protocol stack as a pluggable mody® Memory Engine Page Cache.
that interacts with the runtime kernel. The translation module « Split Page-in This technique optimizes a potentially
intercepts the clients’ page requests from NFS and maps each expensive two-step transfer of large memory pages into
one to a back-end server. For instance, if a client sends a a direct single-step transfer from the back-end server to
page-out request to its VAI, the translation module intercepts, the memory client, avoiding an extra hop through the
interprets, and schedules the request and sends it to a chosenMemory Engine.
back-end server. Similarly, for a page-in request, the trans-. Concurrent Paging: This technique exploits the inher-
lation module first identifies the server where the requested ent concurrency in interacting with multiple back-end
page is stored. Subsequently, the translation module itself servers. A memory page can be broken into multiple
can either retrieve and return the page to the client or take packets that can be exchanged simultaneously between
advantage of theplit page-inlatency reduction mechanism the Memory Engine and multiple back-end servers.
described later. « Memory Engine Page CacheIn this technique, the
Anemone’s virtualization techniques also enables the Memory Engine can maintain an actileage Cache
Memory Engine to transparently perform fine-grained mem- that contains copies of the most frequently accessed
ory resource management. Three specific resource manage- client pages. If a client's page-in request is successfully
ment dimensions are being explored in Anemone: (1) Instead located in the page cache, the Memory Engine does not
of dedicating a single back-end server's entire allocated need to contact any back-end servers, thus reducing the
memory space to each client, the Memory Engine could page-in latency by almost half.

transparentlymultiplex the resources so that a server can F. Compression and Its Impact on Latency and Stor-
hold the pages of multiple clients. This also has the benedi§e: Another attractive option is to let the Memory Engine
of distributing the load on the servers, keeping all serveggmpress the swapped pages before transferring them to
equally utilized. (2) The Memory Engine can seamlesslyack-end servers, storing them in compressed form. Upon
absorb the increase/decrease in global paging capacityadsage-in request, either the server or the engine can decom-
servers Constantly join or leave the network, thus inSU|atiI’pﬁess the pages before returning them to the client. Com-
the memory clients from fluctuations in total system capacityression at the Memory Engine provides two advantages:
(3) When a particular server needs to reclaim its memo(y) The communication overhead between memory engine
resources for its own applications, the Memory Engine cafhd back-end server is minimized and (2) The back-end
transparently migrate the pages stored at that server to ot§gfver's total storage capacity greatly increases. The main
less loaded servers (using the communication protocol @allenge will be to balance the computation overhead of
described), thus adapting to load variations. compressing and decompressing pages against the potential
D. Scalability of Transparent Remote Memory Accesssavings in communication latency and storage. We will also
One may argue that a single Memory Engine can becomexplore two novel features unique to Anemone: (1) To
performance bottleneck if it has to service a large numbgrfaintain a compressed page cache at the Memory Engine
of clients. We can easily address this bottleneck by placinghich stores frequently accessed remote pages and (2) To
multiple engines in the cluster (as shown in Figure 2), whigberform application-specific compression/decompression by
share a common domain-level name but have different §bserving the page content characteristics.
addresses. Clients can be transparently redirected to mount G. Reliability of Remote Memory AccessA degree of
VAls from the least loaded engine by employing a cusincertainty arises from critical swap contents being remotely
tomized Domain Name Service (DNS) based load-balanciggred, possibly on multiple back-end servers. (1) First, we
mechanism, which is just a one-time initialization overheadkill explore strategies for efficient replication and striping
E. Latency Reduction MechanismsThe most attrac- of memory pages on multiple back-end servers. (2) Second
tive feature of remote paging is that data transfer latencie® will explore the memory engine itself as a single point
over a network are orders of magnitude smaller than digk failure. We propose to apply thgrocess-pairconcept [2]

in which the operations of a primary memory engine will be \ DoeryErgne Conm mpgne Processing - ClEngine/Senver Comm
mirrored by a backup memory engine. The specific design is

sues in the process-pair approach include (1) how the backi =
engine will intercept NFS packets destined to the primarn .,
engine, (2) how the backup will maintain synchronization
with the primary without impacting its normal operations, 5
and (3) the mechanism of failure detection, such as usin%‘“"
heartbeats, and recovery by redirecting the clients to th =
backup device.

H. Performance Testing Using Graphics Rendering [{

8000

and Database ApplicationsGraphics and image processing
applications are one class of applications that need to proce ° e s e 1 e s mn mm w s s m s o a w a o m
large amounts of data. For instance, volume rendering anu Trial Run

ray tracing programs require enormous amounts of mem g

to perform rendering computations. Performance testing @i
Anemone will be conducted using a popular graphics ren-

dering application calledPovray. Povray provides a meta- oyer disk-based paging mechanisms. Currently we are inves-
language to specify very large rendering scenarios. We Willating kernel-level mechanisms to overcome data copying
execute Povray on the Anemone system to demonstrate figy context switching overheads, various latency reduction,
improvement in rendering times. Similarly, a number Qfgjiability and scalability techniques, and finally benefits of
database applications need to sort large data-sets in Orﬁlﬁhg compression and caching.

to satisfy queries to the database. Also, we will demonstrate

the performance improvement of popular sorting algorithms REFERENCES

such as QuickSort and HeapSort. [1] T. Anderson, D. Culler, and D. Patterson. A case for NOW (Networks

|. Preliminary Results: As a proof-of-concept Anemone __ of Workstations).IEEE Micro, 15(1):54-64, 1995.
y b P 2] J. Bartlett. A nonstop kernel. IRroc. 8th ACM SIGOPS SOSP981.

prO_tOtype' we have |mplem_ented a user-level Memo_ry Engin] F. Brasileiro, W. Cirne, E.B. Passos, and T.S. Stanchi. Using remote
which exposes a set of in-memory VAls to a client ma- memory to stabilise data efficiently on an EXT2 linux file system. In

chine and intercepts/responds to NFS mount and read-write Proc. of the 20th Brazilian Symposium on Computer Netwdvay

. . . . 2002.
requests directly without depending upon the file-syste D. Comer and J. Griffoen. A new design for distributed systems: the

stack. The Memory Engine also communicates with a back- remote memory model.Proceedings of the USENIX 1991 Summer
end memory server to store page-in/page-out requests. \i\éﬁ Technical Conferencepages 127-135, 1991.
S -

d the lat . f : ti . th F.M. Cuenca-Acuna and T.D. Nguyen. Cooperative caching middle-
compared tne latencies or page-in operations using the u ware for cluster-based servers. Proc. of 10th IEEE Intl. Symp. on

level implementation against disk-based paging when simul- High Performance Distributed Computing (HPDC-1@)ug 2001.
taneously execu“ng mul“ple memory |ntens|ve apphcatlonéG] S. DWarkadaS, N. Hardavellas, L. KontothanaSS|s, R. lehll, and

. . . . R. Stets. Cashmere-VLM: Remote memory paging for software
We observed that disk based page-in latencies varied from distributed shared memory. IRroc. of Intl. Parallel Processing

6.3—7.1ms. On the other hand the page-in latencies using Symposium, San Juan, Puerto Ripages 153-159, April 1999.

the Memory Engine on a Gigabit LAN varied between 1.8-17] M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, and C. Thekkath.
Implementing global memory management in a workstation cluster.

2.1ms —an impro‘_/emem of up to 3.5 times. The majority Pf Operating Systems Review, Fifteenth ACM Symposium on Operating
the remote page-in overhead (about 1.3ms) lies in copying Systems Principle9(5):201-212, 1995.

and context switching between user-space and kernel—spacéS&tE- Felten and J. Zahorjan. Issues in the implementation of a remote

. . . aging system. Technical Report TR 91-03-09, Computer Science
the Memory Engine node. An efficient kernel-level Memory ge%aﬂmgm University of Was,f’ington 1991, P

Engine is expected to reduce this overhead to witliie:s. [9] M. Flouris and E.P. Markatos. The network RamDisk: Using remote
memory on heterogeneous NOWGluster Computing2(4):281-293,

1999.
V. CONCLUSIONS [10] S. Koussih, A. Acharya, and S. Setia. Dodo: A user-level system

In this research we address the problem of harnessing for exploiting idle memory in workstation clusters. Proc. of the
S . Eighth IEEE Intl. Symp. on High Perf Distributed C ti
the distributed memory resources in a cluster to support (,_'PPDC_S) Togg.) P- On HigN Ferformance BIStrbuied Lompuing
memory-intensive high-performance applications. We prg-] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
sented the architectural design and implementation aspects of M- tE'S'fryRa”d > fNO\(/:ec'(- thWOFZ';g'ZS%Stem (NFS) version 4
. . . protocol. rRequest tTor Comments - .
A”emf)”e -an Ada_ptlve NEtwork MemOry Engine - Wh'C*Ilz] E. Stark. SAMSON: A scalable active memory server on a network,
is designed to provide transparent, fault-tolerant, low-latency” Aug. 2003.
access distributed memory resources. The novel aspect[léf L. Xiao, X. Zhang, and S.A. Kubricht. Incorporating job migration and

. el . . network RAM to share cluster memory resourcesPinc. of the 9th
Anemon? 1S th_at no mpd|f|cat|ons are required to either the IEEE Intl. Symposium on High Performance Distributed Computing
memory intensive application or to the end-host system. Our (HPDC-9), pages 71-78, August 2000.
preliminary results based on a user-level Anemone prototype

promise up to 3.5 times improvement in page-in latencies

3. Comparison of paging to local disk vs. paging to remote memory
g user-level anemone implementation.

