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Abstract

In this report we consider selfish node behavior
in ad hoc networks and discuss trust and reputa-
tion mechanisms that will stimulate cooperation
between nodes. We propose a Locally Aware
Reputation system that addresses selfish behav-
ior by using locally available information.

1 Introduction

Mobile ad hoc networks are paradigms for mo-
bile communication in which mobile nodes are
dynamically and arbitrarily located in such a
manner that communication between nodes does
not rely on any underlying static network in-
frastructure [1]. The communication medium is
broadcast and the nodes in a mobile ad hoc net-
work are usually portable mobile devices with
constrained resources, such as power, computa-
tion ability and storage capacity. Since no fixed
infrastructure or centralized administration is
available, these networks are self-organized and
end-to-end communication may require routing
information via several intermediate nodes.

Due to the lack of infrastructure and the lim-
ited transmission range of a node in a mobile

ad hoc network, a node has to rely on neighbor
nodes to route a packet to the destination node.
In particular, all network functions are based on
the node cooperation. Currently, routing pro-
tocols for mobile ad hoc network, such as the
Dynamic Source Routing (DSR) [33] and the Ad
hoc On Demand Distance Vector Routing Pro-
tocol (AODV) [5], are based on the assumption
that all nodes will cooperate. Without node co-
operation, in a mobile ad hoc network, no route
can be established, no packet can be forwarded,
let alone any network applications. However,
cooperative behavior, such as forwarding other
node’s messages, cannot be taken for granted.

We can identify two types of uncoopera-
tive nodes: faulty or malicious and selfish.
Faulty/malicious behavior refers to the broad
class of misbehavior in which nodes are either
faulty and therefore cannot follow a protocol, or
are intentionally malicious and try to attack the
system. Selfishness refers to noncooperation in
certain network operations. In mobile ad hoc
networks, the main threat from selfish nodes is
dropping of packets (blackhole), which may af-
fect the performance of the network severely.
Both Faulty/malicious nodes and selfish nodes
are misbehaved nodes.
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Due to the ad hoc nature of mobile ad hoc net-
works, enforcing cooperation in such networks
is particularly challenging. The unique charac-
teristics of mobile ad hoc networks raise certain
requirements for the security mechanism.

1. Security mechanisms for enforce coopera-
tion in mobile ad hoc networks should be
distributed and self-organized. Security
mechanisms involving any centralized ser-
vice may no longer be viable because mo-
bile ad hoc networks are self-organized and
they cannot rely on any central authorities
or external management.

2. Due to the constraints in bandwidth, com-
puter power, and battery power in mobile
devices, mechanisms should not cause un-
due resource consumption so as to degrade
the performance of the network. Thus,
there is an application-specific trade-off be-
tween security and functionality.

3. The dynamic topology of mobile ad hoc net-
work requires that the security mechanisms
be scalable and reliable.

The rest of the report is organized in the fol-
lowing way. Section 2 discusses recent related
work. To address the problem of selfishness and
to stimulate cooperation, virtual currency based
schemes, such as Nuglets and Sprite. Reputation
based schemes, such as CONFIDANT, CORE
and OCEAN, are also introduced. Section 3
discusses some issues of the reputation methods
in general, including the problem of calculating
and updating reputation values, tracing faults,
and reacting to uncooperative nodes. Section 4
presents the overview of our solution to improve
the security of mobile ad hoc networks, followed
by a discussion on implementations in Section 5.

In Section 6, we conclude and discuss the future
work.

2 Related Work

Schemes that stimulate cooperation and mit-
igate the detrimental effect of uncooperative
nodes in mobile ad hoc network can be classi-
fied as 1) virtual currency based schemes and
2) reputation based schemes. Virtual currency
schemes [7, 9, 10, 11, 31] use some form of in-
centive to enforce nodes’ cooperation. Nodes
get the incentives upon serving the network and
use these to gain service from the network. If
a node does not have any incentives, it will not
get any service from the network. Reputation
schemes [14, 17, 18] on the other hand uses the
nodes’ reputation to mitigate selfish behavior.
Nodes maintain the reputation of other nodes
based on direct observation or the exchange of
reputation messages with other nodes. We will
describe schemes under this classification below.

2.1 Virtual Currency Schemes

Since forwarding a message will incur a cost (of
energy and other resources) to a node, an un-
cooperative node will need an incentive in or-
der to forward messages of other nodes. Virtual
currency systems [7, 9, 10, 11, 31] use credit or
micro payments to compensate for the service
of a node. A node receives a virtual payment
for forwarding the message of another node, and
this payment is deducted from the sender (or the
destination node). Two example of such systems
are: Nuglets [7, 9, 10, 11] and Sprite [31].
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2.1.1 Nuglets

Buttyan and Hubaux introduced a virtual cur-
rency, called nuglets, and present a mechanism
of charging/rewarding service usage/provision to
stimulate cooperation in self-organized mobile
ad hoc network [7, 9, 10, 11].

Two models were presented for using the nu-
glets: packet purse model, in which the source of
the packet is charged and packet trade mode, in
which the destination is charged.

In the packet purse model, when sending the
packet, the source loads it with a number of nu-
glets sufficient to reach the destination. Each
intermediate node takes some nuglets for the for-
warding service.

In the packet trade model, packets are traded
for nuglets by intermediate nodes. Each interme-
diary node “buys” the packet from the previous
node for some nuglets and “sells” it to the next
node for more nuglets. In this way, every inter-
mediate node gains nuglets for forwarding and
the total cost of forwarding the packet is paid
by the destination node.

To implement either the packet purse model or
the packet trade model, tamper-proof hardware is
required at each node to prevent the node from
illegitimately increasing its own nuglets and to
ensure that the correct amount of nuglets is de-
ducted or credited at each node. Mechanisms
that use nuglets have some other problems:

2.1.2 Sprite

S. Zhong et al. proposed Sprite [31], a simple,
cheat-proof, credit-based system for mobile ad
hoc networks. Sprite uses credit to provide in-
centives for mobile nodes to cooperate and re-
port actions honestly.

The basic idea of their scheme is as follows:

a Credit Clearance Service (CCS) is introduced
to determine the charge and credit to each node
involved in the transmission of a message. When
a node receives a message, the node keeps a re-
ceipt of the message and later reports it to the
CCS when the node has a fast connection with
the CCS. Payments and charges are determined
from a game theory perspective.

In this scheme, the sender is charged, in or-
der to prevent a denial-of-service attack to the
destination by sending it a large amount of traf-
fic. A node that has tried to forward a message is
compensated, but the credit that a node receives
depends on whether or not its forwarding action
is successful. Forwarding is considered successful
if and only if the next node on the path reports
a valid receipt to the CCS.

Modelling the submissions of receipts regard-
ing a given message as a one-round game, the
authors proved the correctness of the receipt-
submission system using game theory [31, 32].

2.1.3 Discussion on Virtual Currency
Schemes

The basic problem with virtual currency schemes
is they either depend on the use of tamper-proof
hardware to monitor the increase or deduction
of the virtual currency (as Nuglets does), or re-
quire a central server to determine the charge
and credit to each node involved in the trans-
mission of a message (as Sprite does). Both ap-
proaches may not be appropriate for truly mobile
ad hoc network scenarios.

Also, they suffer from the location privilege
problem [34]. Nodes in different locations of
the network will have different chances for earn
virtual currency, which may not be fair for all
nodes. Usually, nodes at the periphery of the
network will have less chance to be rewarded.
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2.2 Reputation Based Schemes

Reputation systems are used in many area
of electronic transactions, such as eBay and
Amazon. Reputation mechanisms are applied
to wireless mobile ad hoc network to address
threats arising from uncooperative nodes. They
rely on neighbor monitoring to dynamically as-
sess the trustworthiness of neighbor nodes and
excluding untrustworthy nodes.

Several reputation systems have been pro-
posed to mitigate selfishness and stimulate co-
operation in mobile ad hoc network, including:

• CONFIDANT [14]

• CORE [17]

• OCEAN [18]

2.2.1 CONFIDANT

Buchegger and Boudec present a reputation
based protocol, called CONFIDANT, for mak-
ing misbehavior unattractive [14, 15]. CONFI-
DANT stands for Cooperation Of Nodes: Fair-
ness In Dynamic Ad-hoc Network, it works as an
extension to on demand routing protocols.

CONFIDANT aims at detecting and isolating
uncooperative nodes, thus making it unattrac-
tive to deny cooperation. Nodes rely on pas-
sive observation of all packets within a one-hop
neighborhood. With CONFIDANT, each node
has the following four components: a monitor, a
trust manager, a reputation system and a path
manager. These components interact with each
other to provide and process protocol informa-
tion.

• The monitor is the equivalent of a “neighbor
watch”, where nodes locally monitor deviat-
ing behavior. A node can detect deviation

by its neighbor on the source route by lis-
tening to the transmission of its neighbor.
The monitor reports any suspicious events
and any incoming ALARM messages to the
trust manager.

• The trust manager makes decisions about
providing or accepting route information,
accepting a node as part of a route, or taking
part in a route originated by another node.
It consists of the following components:

– An alarm table containing information
about received alarms.

– A trust table managing trust levels for
nodes to determine the trustworthiness
of an alarm.

– A friends list containing all the
“friends” that the node may sends
alarms to.

ALARM messages contains the type and
frequency of protocol violations, are sent by
the trust manager of a node to warn oth-
ers of malicious nodes. Outgoing ALARM
messages are generated by the node itself
after having experienced, observed, or re-
ceived a report of malicious behavior. The
recipients of these ALARM messages are
so-called friends, which are administered
in a friends list. Incoming ALARM mes-
sages originated from either outside friends
or other nodes, so the source of an ALARM
has to be checked for trustworthiness before
triggering a reaction.

• The reputation system in this protocol man-
ages a table consisting of entries for nodes
and their rating. The rating is changed only
when there is sufficient evidence of malicious
behavior that is significant for a node and
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that has occurred a number of times ex-
ceeding a threshold to rule out coincidences.
To avoid a centralized rating, local rating
lists and/or black lists are maintained at
each node and potentially exchanged with
friends.

• The path manager performs the following
functions: path re-ranking according to rep-
utation of the nodes in the path; deletion of
paths containing malicious nodes, action on
receiving a request for a route from a ma-
licious node (e.g. ignore, do not send any
reply) and action on receiving request for
a route containing a malicious node in the
source route (e.g. ignore, alter the source).

Each node monitors the behavior of its neigh-
bors. If a suspicious event is detected, the in-
formation is given to the reputation system. If
the event is significant for the node, it is checked
whether the event has occurred more often than
a predefined threshold that is high enough to dis-
tinguish deliberate malicious behavior from sim-
ple coincidences such as collisions. What consti-
tutes a significance rating can be defined for dif-
ferent types of nodes according to their security
requirements. If a certain threshold is exceeded,
the reputation system updates the rating of the
node that caused the event. If the rating turns
out to be intolerable, the information is relayed
to the path manager, which proceeds to delete
all routes containing the misbehaving node from
the path cache.

Buchegger et al. improved the CONFIDANT
protocol in [16] to cope with false disseminated
reputation information. A trust rating is intro-
duced to represent the trustworthiness of a node.
In addition to reputation rating, each node also
maintains a trust rating for every other node and

first hand information about its neighbors. The
first hand information is disseminated, but the
reputation rating and trust rating are never pub-
lished, they are updated accordingly.

Only second hand reputation information that
is compatible with the current reputation rat-
ing will be accepted. It works as follows. First,
whenever a node i makes first hand observation
of node j’s behavior, it updates its first hand
information Fi,j and the reputation rating Ri,j.
Second, nodes broadcast their first hand infor-
mation to their neighbors. For example, node i

receives from node k the first hand information
Fk,j about j. If according to the trust rating
of node k, Ti,k, node k is trustworthy, then Fk,j

is accepted and used to update Ri,j and Ti,k is
also slightly improved. Otherwise, Ri,j is not up-
dated, and Ti,k is slightly worsened. A Bayesian
approach is used to evaluate both reputation rat-
ing and trust rating.

2.2.2 CORE

P. Michiardi et al. proposed a mechanism called
CORE (COllaborative REputation mechanism),
to enforce node cooperation in mobile ad hoc
network [17]. It is a generic mechanism that
can be integrated with any network function
like packet forwarding, route discovery, network
management and location management.

CORE stimulates node cooperation by using
a collaborative monitoring technique and a rep-
utation mechanism. In this mechanism, reputa-
tion is a measure of someone’s contribution to
network operations. Members that have a good
reputation can use the resources while members
with a bad reputation, because they refused to
cooperate, are gradually excluded from the com-
munity.

CORE defines three types of reputation [17,
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28]:

1. Subjective reputation is a reputation value
which is locally calculated based on direct
observation. For example, node A calcu-
lates the reputation of a neighbor node B

at a given time for a particular function.

2. Indirect reputation is second hand repu-
tation information which is established by
other nodes. For example, in CORE, node
A will accept the indirect reputation of node
B from node C. To eliminate an attack
where a malicious node disseminates false
negative reputation information, only posi-
tive reputation information is distributed in
CORE.

3. Functional reputation is related to a cer-
tain function, where each function is given
a weight as to its importance. For example,
data packet forwarding may be deemed to
be more important than forwarding packets
with route information, so data packet for-
warding will be given greater weight in the
reputation calculations.

Each node computes a reputation value for
every neighbor using a sophisticated reputation
mechanism that differentiates between subjec-
tive reputation, indirect reputation and func-
tional reputation.

CORE consists of two basic components: a
watchdog mechanism and a reputation table.
The watchdog mechanism [24, 17] is used to de-
tect misbehavior nodes. When a node forwards
a packet, the node’s watchdog verifies that the
next node in the path also forwards the packet.
The watchdog does this by listening promiscu-
ously to the next node’s transmissions. If the
next node does not forward the packet, then it
is considered as misbehaving.

The reputation table is a data structure stored
in each node. Each row of the table consists of
four entries: the unique identifier of the entity, a
collection of recent subjective observations made
on that entity’s behavior, a list of the recent indi-
rect reputation values provided by other entities
and the value of the reputation evaluated for a
predefined function.

2.2.3 OCEAN

S. Bansal et al. proposed an Observation-based
Cooperation Enforcement in Ad hoc Networks
(OCEAN) [18]. In contrast to CONFIDANT
and CORE, OCEAN avoids indirect (second
hand) reputation information and uses only di-
rect first-hand observations of other nodes be-
havior. A node makes routing decisions based
solely on direct observations of its neighboring
nodes interaction.

In OCEAN, the rating of each node is initial-
ized to Neutral(0), with every positive action re-
sulting in an increment (+1) of the rating, and
every negative action resulting in a decrement
(-2) of the rating. Once the rating of a node
falls below a certain faulty threshold (-40), the
node is added to a faulty list. The faulty list
represents a list of misbehaving nodes.

OCEAN has five components reside in each
node to detect and mitigate misbehavior.

• NeighborWatch observes the behavior of the
neighbors of a node. It works the same
way as watchdog [24]. Whenever misbehav-
ior is detected, NeighborWatch reports to
the RouteRanker, which maintains ratings
of the neighbor nodes.

• RouteRanker maintains a rating for each of
its neighboring nodes. The rating is ini-
tialized to Neutral and is incremented and
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decremented based on observed events from
the NeighborWatch component.

• Rank-Based Routing uses the information
from NeighborWatch to make the decision
of selection of routes. An additional field,
called the avoid-list, is added to the DSR
Route-Request Packet (RREQ) to avoid
routes containing nodes in the faulty list.

• Malicious Traffic Rejection rejects traffic
from nodes which is considered misbehav-
ing. All traffic from a misbehaving node are
rejected so that a node is not able to relay
its own traffic under the guise of forwarding
it on.

• Second Chance Mechanism allows nodes
previously considered misbehaving to be-
come useful again. A timeout approach is
used where a misbehaving node is removed
from the faulty list after a fixed period of in-
activity. Even though the node is removed
from the faulty list, its rating is not in-
creased, so that it can quickly be added back
to the faulty list if it continues the misbe-
havior.

OCEAN focuses on the robustness of packet
forwarding: maintaining the overall packet
throughput of mobile an ad hoc network with
the existence of misbehaving nodes at the rout-
ing layer. OCEAN’s approach is to disallow any
second-hand reputation exchanges. Routing de-
cisions are made based solely on direct observa-
tions of neighboring nodes behavior. This elimi-
nates most trust management complexity.

3 Issues with Reputation

Methods

As see from section 2.2, although the reputation
based schemes applied to mobile ad hoc networks
may be different in implementation, they are all
composed of essentially three different parts:

1. The calculation and update of reputation
values

2. The detection of misbehavior

3. The reaction to uncooperative behavior

3.1 Calculation and Update of Repu-

tation Values

Applied to mobile ad hoc networks, reputation
can be defined as one node’s perception of an-
other node’s performance of some network oper-
ation [28]. It is used as a prediction of future
quality of service. However, since reputation is
not a tangible property, the reputation value has
to be explicitly defined. There are some issues
that should be considered during the calculation
and update of the reputation value.

3.1.1 Trust vs. Reputation

An important concept in network security is
trust, interpreted as a relation among entities
that participate in various protocols. Trust rela-
tions are based on evidence related to the previ-
ous interactions of entities within a protocol [19].
A lot of research has been done to evaluate and
manage trust in mobile ad hoc networks, such
as [19, 20, 21, 22, 23]. Most of the research fo-
cuses on establishing an indirect trust relation
between two nodes (to exchange public keys or
certificates) without previous direct interaction.
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We will not discuss this problem in detail here,
instead, we will focus on the relationship of trust
and reputation in reputation based systems for
mobile ad hoc networks.

In most reputation systems [15, 30, 17, 18],
reputation value is a metric for trust. A node
with a good reputation means it behaves very
well and thus is trustworthy, while nodes with
bad reputation are uncooperative and not trust-
worthy.

Buchegger et al. distinguish trust from repu-
tation in [16]. For each node, reputation rating
represents how well a node behaves and trust rat-
ing represents how honest a node is. Reputation
value is used to decide whether the node is reg-
ular or misbehaved, while trust rating is used to
decide whether the node is trustworthy or not,
thus the indirect reputation message from the
node is accepted or not.

3.1.2 Direct vs. Indirect Trust (Reputa-
tion)

Direct reputation is derived from first hand expe-
rience. A node gets such information about an-
other node, usually its one-hop neighbor, by di-
rect observation. For example, node M forwards
a message (either a routing message or a data
packet) to its next hop neighbor, N , and expects
N to further forward the message. M can get
first hand information by monitoring whether N

correctly participates in the protocol.

Indirect reputation information (also refers to
second hand reputation information) is reputa-
tion information about a node from other nodes.
Such reputation information can be in the form
of a blacklist, friends list or a reputation table.
It may be first hand information of the sender
or maybe transmitted hop-by-hop from the orig-
inator.

We can model trust and reputation as follows:

• Direct trust and reputation are based on di-
rect knowledge or observation.

• Trust and reputation may not be symmet-
ric.

For example, if node A knows that node B

to be trustworthy, this does not imply that
B knows that A is trustworthy.

• Trust and reputation are usually assumed
to be transitive .

For example, if node A knows that node B

is trustworthy and node B knows that node
C is trustworthy, then node A can trust C.

• Indirect trust and indirect reputation are
based on trust and reputation that link
nodes. For example, if node A trusts node
B is trustworthy and node B trusts node
C, then A trusts C. On the other hand, if
node A does not trust node B, then A will
not trust C even if B trusts C.

• A node A can know something about an-
other node C from the indirect reputation
message if and only if A knows the indirect
reputation information is from a trustwor-
thy node B.

 
 

 

A B C 

1/-1 1/-1 1 

-1(0) 1/-1 0/0 

Figure 1: An example of trust and indirect rep-
utation information

In Figure 1, we use 1 to represent trust-
worthy, -1 for untrustworthy and 0 for un-
sure of the trustworthiness. The arrowed
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double line indicates the direction of trust.
The dashed line indicates the transmission
of a indirect reputation message and the ar-
rowed line indicates the indirect reputation
message.

As show in Figure 1, if A knows B is trust-
worthy, then A can trust what B said and
decide either trust C or not.

If A knows B is not trustworthy or unsure
of B’s trustworthiness, then A will not trust
what B said because B may tell the truth
or lie. So A can’t decide whether to trust C

or not.

• A node A can know something about the
indirect reputation message provider, B, if
and only if what B says about node C is
contrast from what A knows C is.

 
 

A B C 

1/-1 0/-1 

1 

-1 

1/-1 -1/0 

Figure 2: An example of trust and indirect rep-
utation information

As show in Figure 2, if A knows C is trust-
worthy / not trustworthy, but what B said
is contrast from this knowledge, then A

knows B must be false accuse / praise C

and A will consider B not trustworthy.

If A knows C is trustworthy / not trustwor-
thy and what B said is the same with this
knowledge, then B may be trustworthy and
telling the truth (as always) or it maybe a
liar but is honest this time. A can’t decide
if B is trustworthy or not.

If A is not sure of C’s trustworthiness, then
A knows nothing about B or C from the
indirect reputation message.

3.1.3 Global vs. Local reputation

Most reputation systems [30, 15, 16, 17] for
mobile ad hoc network uses global reputation,
in which every node knows reputation of every
other node in the network. This is achieved
by exchange indirect reputation messages among
the network. Since indirect reputation informa-
tion may be from an untrustworthy node, repu-
tation systems using global reputation informa-
tion suffer from false rating, either false accusa-
tion or false praise [28]. Other issues with global
reputation mechanism include:

1. Since each node maintains reputation val-
ues of every other node, storing such infor-
mation requires more storage at each node.
Take CONFIDANT and CORE for exam-
ple, every node has to maintain O(N) repu-
tation information, where N is the number
of nodes in the network.

2. Disseminate reputation information greatly
increases the volume of network traffic. As
for CONFIDANT and CORE, the reputa-
tion message distributed during each repu-
tation disseminate period is O(N 2), where
N is the number of nodes in the network.
Consider mobile ad hoc network, where
bandwidth is very limited, this is an impor-
tant issue.

3. Every time a node receives indirect reputa-
tion information, it has to decide whether
to accept or not. If the information is ac-
cepted, then it is incorporated and the rep-
utation table is updated. This causes addi-
tional computation at each node.
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4. Reputation information, as data packet,
could be modified, replayed or accidentally
lost during transmission.

As discussed, global reputation methods are
unreliable and complex, distributing reputation
information cause additional expense for both
the node and the overall network. Is global repu-
tation really necessary? The answer is no. Some
may argue that global reputation is helpful if a
node moves in the network. But a well-behaved
node here does not mean it will behave as well
when it moves to another place. For example, a
malicious node may build its reputation first and
then moves to a certain location to behave ma-
liciously. Furthermore, nodes usually does not
care about reputation of distant nodes. They
are more concerned about reputation of nodes
in their neighborhood, that is, they care more
about local reputation rather than global repu-
tation.

OCEAN uses only local reputation, which is
based on direct first-hand observations of one-
hop neighbors. Any second-hand reputation ex-
changes are disallowed. According to their sim-
ulation, OCEAN achieves a reasonable perfor-
mance, in terms of network throughput, while
being less complex and less vulnerable to false
accusations [18]. Compare with global reputa-
tion, local reputation mechanism has low cost,
is more reliable and more efficient.

3.1.4 Initiate Reputation Value

When a new node enters the network, or a node
moves to a new location, where nobody knows
about its reputation, an initial reputation value
should be given. Each reputation system has a
learning period, as the network will not know
how a new node will behave.

Assign the lowest possible reputation value to
a new node will force it to perform positive work
to gain a good reputation, and thus discourage
new participants from malicious behavior. But
this mechanism may not be feasible in an ad hoc
network, where instantaneous connection is re-
quired and nodes are more mobile. It may take
too much time for a new node to establish its
reputation.

Assigning a null value is a reasonable ap-
proach and CONFIDANT, CORE and OCEAN
all allocate neutral reputations to new nodes
[14, 17, 18, 28].

3.1.5 Inconsistent Reputation Value

In reputation systems, different nodes may have
different reputation values for the same node.
This is called the inconsistent reputation prob-
lem. It may be caused by many reasons.

• Nodes may calculate reputation values dif-
ferently. For example, in both CORE and
CONFIDANT, the overall reputation value
of a node is a combination of several ratings
of its network functions, with weighings ap-
plied to these functional reputation values.
The reputation mechanisms usually assume
that every node will assign the same weights
to the functions. This is a potentially in-
appropriate assumption in a mobile ad hoc
network, where nodes with different capa-
bilities and roles are likely to place differ-
ent levels of importance on different func-
tions [28].

• For different nodes, first hand reputation
values of a same node may vary. Every
node gets first hand reputation information
about nodes that it interact with based on
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its own experience. A node may behave dif-
ferently when interact with different nodes,
thus the reputation value for a same node
may vary. For example, two nodes, A and
B both interact with node C, but A and B

may have different reputation values for C.
This is possible if C react differently to re-
quest from A and B; or A or B may interact
with C often than the other.

• Every node deals with the received indirect
reputation information based on its own
judgement. This also results in the differ-
ence. Reputation information accepted by
node A may not be accepted by node B

because it is either incompatible with B’s
experience or B does not trust the sender.

None of the reputation methods discussed
above require nodes in a mobile ad hoc network
to reach a consensus on which nodes misbehave.
The problem caused by inconsistent reputation
value is that nodes at the network may have dif-
ferent ratings about others. A node may be con-
sidered regular by some nodes, while considered
misbehaved by others. This makes it hard to
distinguish correct reputation ratings from false
reputation message, the problem is especially
important when indirect reputation message is
distributed and global reputation value is calcu-
lated.

3.2 Detection of Misbehavior and

Tracing Fault

In order for reputation values to be valid, nodes
will need a reliable way of detecting good or bad
behavior. CONFIDANT, CORE and OCEAN
all rely on promiscuous observation for monitor-
ing function operations. However, passive obser-
vation presents several weaknesses used within

mobile ad hoc network, it might not detect a
misbehaving node in the presence of [24]:

 

 

 

S A B C D 

:  packet forwarding  

: X listens to Y 

: packet forwarding over    

  multiple hops 

X Y 

Figure 3: The watchdog mechanism.

1. Ambiguous collision. As shown in Figure 3,
an ambiguous collusion is the scenario that
packet collision occurs at A while it is lis-
tening for B to forward on a packet.

2. Receiver collisions. In the example, A can
only tell whether B sends the packet to C,
but it cannot tell if C receives it.

3. Limited transmission power, in which signal
is strong enough to be overheard by the pre-
vious node but too weak to be received by
the true recipient.

4. Collusion, where multiple nodes in collusion
can mount a more sophisticated attack. For
example, B forwards a packet to C but do
not report to A when C drops the packet.

5. Partial dropping, in which a node dropping
packets at a lower rate than the configured
minimum misbehavior threshold.

3.3 Reaction to Uncooperative Be-

havior

Once an uncooperative node has been identified,
it is isolated and exclude from the network. Usu-
ally, neighbors of the uncooperative node refuse
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to forward any packets originated from the con-
victed node, depriving the network services.

However, since the function of a mobile ad hoc
network depends on all the participate nodes.
The objective is to force the nodes to cooper-
ate and benefit each other [34]. Thus, an unco-
operative node should be punished temporally
and be given chance to behave normal again.
OCEAN uses the “Second Chance Mechanism”
to allow nodes previously considered misleading
to become useful again [18]. It uses a timeout-
based approach where an uncooperative node is
accepted by the network after a fixed period of
observed inactivity. The rating of the node is
not changed, so that it can quickly be detected
if the misbehavior continues.

4 Proposed Solution: Locally

Aware Reputation System

We propose a simple reputation based scheme,
called LARS (Locally Aware Reputation Sys-
tem), to mitigate misbehavior and enforce coop-
eration. Different from global reputation based
schemes, such as CONFIDANT and CORE, our
solution uses local reputation only. Each node
only keeps the reputation values of all its one-
hop neighbors.

To mitigate the detrimental effect of selfish
and malicious node, when an uncooperative node
is identified, its k-hop neighbors become aware of
the misbehavior, where k is a parameter which is
adaptive to the security requirement of the net-
work. To avoid false accusation, conviction of
the uncooperative node is co-signed by m differ-
ent (one-hop neighbor) nodes, where m− 1 is an
upper bound on the number of malicious nodes
in the one-hop neighborhood. We will discuss
the protocol in detail below.

4.1 Model and Assumptions

LARS addresses the problem of node coopera-
tion in self-organized mobile ad hoc networks.
In these networks, nodes may not belong to a
single authority and do not have common goals.
Some nodes may be disruptive and others may
attempt to save resources through selfish behav-
ior. In addition, these networks could be self-
organizing, meaning that the regular function of
networks solely depends on the operation of the
end-users.

In our scheme, trust in a node is associated
with its reputation value. There are three trust
levels and we use a trust value, T , to represent
the trustworthiness of a node. A node A consid-
ers another node B either

• trustworthy, with T = 1,

• untrustworthy, with T = −1, or

• trustworthy undecided, with T = 0

A trustworthy node is a regular (well-behaved)
node that can be trusted. An untrustworthy
node is a misbehaved node and should be avoid
and deprive of services. A node with unde-
cided trustworthiness is usually a new node in
the neighborhood. It may be a regular or a mis-
behaved node, depending on its future perfor-
mance.

Every node keeps a reputation table, which
associates a reputation value with each of its
neighbors. It updates the reputation table based
on direct observation only. No global reputation
value is calculated, and no indirect reputation
message is distributed.

Reputation values R are between a range
Rmin < R < Rmax, and there are two threshold,
Ru > Rmin for untrustworthy and Rt < Rmax
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for trustworthy. For a node N with reputation
value R and trust value T ,

• T = 1 (N is trustworthy), if Rt < R <

Rmax,

• T = −1 (N is not trustworthy), if Rmin <

R < Ru,

• T = 0 (N is trustworthy undecided), if Ru <

R < Rt.

A new node, either a node that just entered
the network or a node that has moved to a
new neighborhood, will be assigned a reputation
value between Ru and Rt because its trustworthi-
ness is unknown. A fade factor w is introduced
to give less weight to evidence received in the
past to allow for reputation fading.

We based our discussion on the following as-
sumptions:

• Each node has a unique, persistent and dis-
tinct identity.

• Each node knows its one-hop neighbors.

• Transmission distance of each node is the
same.

• Links between nodes are bidirectional.

• Nodes do not have a priori “trust” relation-
ship. Initially, the reputation value of every
node is set to a value between Ru and Rt.

• On-demand routing protocols, such as Dy-
namic Source Routing (DSR) [33] or Ad
hoc On-demand Distance Vector Rout-
ing(AODV) [5] are used to establish route.

• The number of malicious nodes in a one-hop
neighborhood is less than m. That is, for

each node, among all the one-hop neighbor
nodes, there are at most m − 1 malicious
nodes.

We use the following notations through the rest
of our discussion. Capitalized letters are used
to represent nodes, specifically, S stands for the
source node, D for the destination node, M is
usually a misbehaved node. Let IDX be the
identity of node X, N(X) be the set of one-hop
neighbor nodes of node X, and RY (X) be the
reputation value of node X, in node Y ’s reputa-
tion table.

4.2 Overview

Each node X maintains a reputation value for
each of its neighbors in N(X). Based on the
direct observation of the neighbors, the reputa-
tion values are updated. If the reputation value
of a neighbor node, for example M , drops be-
low the untrustworthy threshold Ru, then M is
considered misbehaved by X. X will notify its
neighbors about M ’s misbehavior by initiating a
WARNING message.

To prevent false accusations and problems
caused by inconsistent reputation values, the
WARNING message should be signed by m

nodes before it can be broadcasted to the k-hop
neighborhood. Any nodes within one-hop dis-
tance of the misbehaved node, M , can sign the
WARNING message if, in its reputation table,
M ’s reputation value has also dropped below the
untrustworthy threshold Ru. We will discuss the
problem of signing a WARNING message in 5.3.

We assume that a routing path is estab-
lished using on-demand routing protocol, such as
DSR [33] or AODV [5]. Misbehavior is possible
during the process of routing. To deal with this,
routing requests can be flooded to ensure the es-
tablishment of a route from the source node S to
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the destination node D if there exists one. We
assume that the source node and the destination
node are not malicious and focus our discussion
on the misbehavior (of intermediate nodes) dur-
ing communication between two trusted nodes.

Consider the scenario in which S sends a mes-
sage to D using a multi-hop path. Every time an
intermediate node, I, forwards the message, its
neighbor nodes, N(I), can overhear the forward-
ing and keep a record of the message sent and set
a timer. Due to collisions and other coincidence,
not all nodes in N(I) hear the forwarding.

If the message reaches D, then D returns an
acknowledgement, ack, back to S along the re-
verse of the same path. If S gets the ack from
D within a certain time period, it is confirmed
that the communication is successful, otherwise,
it initiates a trace process to identify a misbe-
haved node. A special trace packet is initiated
by S and sent along the same path. Neighbors
of nodes along the path which already have a
record of the message will participate in the trace
process. For every neighbor node, if a trace is
received before the timer has expired, then it
broadcasts the record and helps to find the mis-
behaved node, otherwise, the record is discarded.
We will discuss the trace algorithm in 4.4.

4.3 Calculation and Update of Repu-

tation Value

LARS uses local reputation value, where each
node maintains only reputation values of its one-
hop neighbors. The reputation value is updated
based only on its direct observation of the neigh-
bors, no second hand reputation information is
exchanged and integrated. Such scheme has cer-
tain advantages:

• Since the neighbors are all within direct

communication distance, the reputation in-
formation can be derived directly from first
hand observation. No indirect reputation
information is necessary in the calculation
and update of the reputation value, thus
avoiding the complexion discussed in 3.1.2
and 3.1.3. The reputation value is accurate
and the calculation is simple, easy and fast.

• No second hand reputation information is
distributed, thus eliminating the additional
network traffic caused by the distributed
reputation systems.

• Each node only keeps the reputation values
of its neighbor nodes. Compared to global
reputation systems, in which each node has
to keep reputation value of all the nodes, our
scheme saves a lot of storage at each node.

Every time a node participates in the network
protocol, its one-hop neighbors update its repu-
tation value accordingly. If the participation is
positive, then the reputation value is increased,
otherwise, the reputation value is decreased.

Suppose I behaves regularly. Then every time
it forwards a message, its one-hop neighbors ob-
serve the normal behavior and increase its repu-
tation value by µ. That is,

RX(I) = RX(I) + µ,X ∈ N(I)

Suppose M is a malicious node and drops the
message from its previous node, N . There are
several different cases. We use the figures be-
low to illustrate each of them. In these figures,
a circle describes the one-hop neighborhood of a
node, a solid vector describes the forwarding of a
message, a dotted vector describes the forward-
ing of a trace, a dashed vector describes non for-
warding (either a message or a trace). We do not
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show the forwarding of ack in the figures. M ’s
neighbors will update M ’s reputation as follows:

• Case 1: N has sent a message to M , but M

has failed to forward it.

Figure 4: N has sent a message to M , but M

has failed to forward it

As shown in Figure 4, for every node X in
the shaded area, which is a one-hop neigh-
bor of both N and M , X detects the misbe-
havior and reduces the reputation value of
M by α, where α > µ. That is,

RX(M) = RX(M) − α,X ∈ N(M) ∩ N(N)

• Case 2: M has not forwarded the message,
but forwarded the trace.

As shown in Figure 5, for every node X,
which is a one-hop neighbor of both N and
M , X reduces the reputation value of M by
α.

For every node X, which is a one-hop neigh-
bor of M , but not a one-hop neighbor of N ,
X realizes that M has not forwarded the
message when it gets the trace, then X will

Figure 5: M has not forwarded the message, but
forwarded the trace

reduce M ’s reputation value by α. Thus, all
one-hop neighbors of M reduce its reputa-
tion by α. That is,

RX(M) = RX(M) − α,X ∈ N(M)

• Case 3: M has not forwarded the message,
and has also dropped the trace.

Figure 6: M has not forwarded the message, and
has also dropped the trace.

As shown in Figure 6, for every node X,
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which is a one-hop neighbor of M , but not a
one-hop neighbor of N , X will not observe
M ’s misbehavior and will not update M ’s
reputation value.

For every node X in the shaded area, which
is a one-hop neighbor of both N and M , X

detects that both the message and the trace
were dropped, and reduces M ’s reputation
value by β, where β > α. That is,

RX(M) = RX(M) − β,X ∈ N(M) ∩ N(N)

• Case 4: M has not forwarded the message,
and a neighbor, M ′, colluded with M and
sent a forged record.

Figure 7: M has not forwarded the message,
and a neighbor, M ′, colluded with M and sent a
forged record.

As shown in Figure 7, for every node X,
which is a one-hop neighbor of both M and
M ′, X detects the cheating and reduces
both M and M ′’s reputation by γ, where
γ > β > α.

For all other one-hop neighbors of M , we
get the same as case 2 and the reputation

value of M is reduced by α. That is,

RX(M) = RX(M)−γ,X ∈ N(M)∩N(M ′)

RX(M ′) = RX(M ′)−γ,X ∈ N(M)∩N(M ′)

RX(M) = RX(M)−α,X ∈ N(M)−N(M ′)

We have α > µ, so that the punishment is
greater than the reward, to encourage coopera-
tion. This makes it hard for a node to built its
reputation and then misbehave. Even if a node
has a good reputation, when it misbehaves, its
reputation value will drop quickly (faster than
can built it).

Also, we treat different misbehavior types dif-
ferently. If only the message is dropped, as dis-
cussed in case 1 and case 2, it might be an ac-
cidental misbehavior. But if both the message
and the trace are dropped by a node, as in case
3, then it is possibly an intentional misbehavior
and it is punished more severely. If collusion and
cheating occur, as in case 4, then the greatest
punishment is applied.

In all cases, RX(M) is updated by w, the fad-
ing factor, after a certain time interval (the fad-
ing timer), to give less weight on past experience.
That is,

Rt1+∆
X (M) = wRt1

X(M)

where ∆ is the fading timer and Rt1
X(M) is the

reputation value of M at time t1 at node X’s
reputation table.

4.4 The Trace Algorithm

As discussed in 4.2, if the source node, S, does
not get the acknowledgement from the destina-
tion node D within a certain time period, then
a trace is sent along the path and the fault trac-
ing process starts. The tracing algorithm traces
the fault to a misbehaved node which caused the
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disruption of communication. We now describe
our tracing algorithm in detail.

When an intermediate node, I, gets the trace,
it forwards the trace. The neighbors of node I

respond with the kept record if I had forwarded
the message. The response is broadcasted so
any nodes that have received the trace will get
it and can further broadcast it upstream. Any
nodes that didn’t get a trace ignore the response.
Broadcasting is used in forwarding the response
to make sure the source will get the response and
identify the misbehaved node. Finally, the re-
sponse is broadcasted to the source node. From
the responses, the source node can identify the
misbehaved node and will try to use alternative
path to avoid the misbehaved node. We will dis-
cuss how the trace algorithm works using an ex-
ample below.

When there is no misbehavior, a message is
forwarded hop by hop from S to the destination
node D. Neighbor nodes of a node along the
route keep records of the forwarded message and
wait for time T = 2nτ , where n is the number
of hops from S to D, τ is the upper bound of
the one-hop round trip. If no trace message is
received before the timer expire, then the nodes
discard the record. If the destination node, D,
receives the message and verifies it is valid, then
an acknowledgement is sent back S.

If D does not get a message, then S gets no
acknowledgement within time T = 2nτ and it
starts the trace process by sending a trace mes-
sage along the same path. Every intermediate
node on the route forwards the trace when it re-
ceives the trace. A node will not drop a trace
message because if it does so, then its neighbors
will not get the trace message and will not re-
ply with a response. As show in Figure 5, as-
sume node M is either a malicious or a selfish
node that has dropped the message. Node N

forwards the trace to node M . The neighbors of
N , overhear the trace message will broadcast the
record verifying that N had forwarded the mes-
sage. Any upstream node that gets the record
will broadcast it upstream. Since M had not
forwarded the message, then no response will be
generated from neighbors in vicinity of M . Fi-
nally, S finds out that N is the last node that
has forwarded the message and the next node of
N , node M , is the misbehaved one.

4.5 Reaction to Uncooperative Be-

havior

If a node’s reputation value drops below the
threshold, Ru, then it is considered misbehaved
and a WARNING message about the node is gen-
erated.

Before the WARNING message is broadcasted
to the neighborhood, it should be signed by m

nodes, where m − 1 is the upper bound of ma-
licious nodes in a one-hop neighborhood. This
ensures the trustworthiness of the WARNING
message and is robust against false accusation.
There are two reasons for this requirement:

• First, due to the problem of inconsistent
reputation value as discussed in 3.1.5, dif-
ferent nodes may have different reputation
values for a same node, thus a misbehaved
node considered by node A may be consid-
ered regular by node B. But if m nodes in
the one-hop neighborhood of a node agree
it is misbehaved, then it is convicted.

• Second, requiring m nodes to sign a WARN-
ING message also prevents nodes from false
accusation. Since the number of malicious
nodes is bounded by m, malicious nodes
cannot collude to forge a valid WARNING
message to frame a regular node.
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After a WARNING message is verified, it is
broadcasted to the k-hop neighborhood of the
misbehaved node, so that all the k-hop neighbor
nodes become aware of the misbehavior and deny
service for the misbehaved node.

But the misbehaved node is not excluded from
the network forever. The objective is to let the
misbehaved node learn by punishment and be-
have well in the future. After a time-out period,
it is accepted but with the reputation value un-
changed so that it has to rebuild its reputation
again by good cooperation.

4.6 Optimization

We optimize the scheme as follows:

• To save space and energy consumption in
the neighboring nodes, in a dense network,
only k out of n neighbors keep a record of
the forwarded message, where n is the num-
ber of neighbors of the node and k is a ran-
dom number between 1 to n. Instead of
involving every neighbor of a node in the
monitoring, this scheme randomly chooses
some neighbors, called probes, to monitor
the message forwarding of a node. Every
time a node forward a message, k out of n

neighbor nodes will be randomly selected as
probes to monitor the forwarding.

The randomization has two advantages.
First, being a probe means providing
services for the network society, thus
more space, time and energy consumption.
Choosing random probe every time gets ev-
ery node involved and it is fair. Second, the
randomization will select different probe ev-
ery time, thus eliminates the cheating and
colluding problem which will caused by fixed
probes.

Every probe keeps a record of the message
sent and set a timer. If before the timer
expires, a trace is received, then the probe
broadcasts the record and helps to find the
misbehaved node; otherwise, the record is
discarded.

• We can further eliminate bandwidth usage
as follows. An upstream node does not for-
ward the responses from the neighbor probes
immediately; instead, it keeps the response
for a certain time period T = mτ , where
m is the number of hops from the node to
the destination node, τ is the upper bound
of the one-hop round trip. When the timer
expires, the node then broadcasts the lat-
est response, which may from the probe of
the next node or from another downstream
probe.

5 Implementation

We now describe the protocol in detail. Let
IDX be the identity of node X, seq the sequence
number of the message and is incremented ev-
ery time a new message is sent, t the timestamp
of the message, m the message, and MAC(m)
the keyed MAC (Message Authentication Code)
with key KSD, which is shared by S and D. To
simplify the discussion, we assume privacy is not
required and no need to encrypt the packet.

Let Route(S,D) = (S =
X0, X1, X2, · · · , Xi, · · · , Xn = D) be the route
used. Probes around node Xi are denoted by
P (Xi) = {Pi1, Pi2, · · · , Pik}. Message sent from
S is pkgs = [IDS , IDD, seq, t,m,MAC(m)],
trace message is trace = [IDS , IDD, seq],
a probe around node Xi keeps a record
Ri = [IDS , IDD, seq,MAC(m), Xi, Xi+1].
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5.1 Probe Selection Algorithm

As stated in 4.6, every time a message is for-
warded by a node, random neighbor nodes will
be served as probes to monitor the forwarding.
The probes are selected as follows. Every neigh-
bor node overhearing the forwarding finds out if
it is selected as probe by using a predefined hash
function [36] h over the sequence number seq, the
timestamp of the message, t and its own identity.
The result of the hash function is either a 0 or
a 1. If the node gets 1, then it will server as a
probe, otherwise, it ignores the message. That
is, for every neighbor node X,

• selected as probe, if h(seq, t, IDX ) = 1;

• not selected as probe, if h(seq, t, IDX ) = 0.

5.2 The Trace Algorithm

The following pseudo code show how the trace
algorithm works.

• Source node S:

1. S send to X1: pkgs

2. set timer T = nτ

while timer not expired

If a valid acknowledgement from D is received

Then stop the timer and return success

Else

Initial a trace message trace

set timer T = nτ

while timer not expired

If a valid response Ri is received

Then stop timer and return misbehaved(Xi+1)

• For every intermediate node Xi(1 < i < n):

Xi send to Xi+1: pkgs or trace

• For every probe node Pij(1 < i < n, 1 < j < k):

1. If overhear message forwarding from node Xi

Then keep a record Ri and set timer T = nτ

2. While timer not expired

If a trace message from S is received

Then stop timer and broadcast record Ri

R = Ri

set timer T = (n − i)τ

While timer not expired

If Rj(i < j) is received

Then R = Rj

Broadcast R

3. Discard the record

5.3 Locally Aware Reputation

We use the threshold cryptography scheme to
sign the WARNING message about a misbe-
haved node. A (k,n) threshold scheme [35] di-
vides the secret S into n pieces: S1, S2, · · · , Sn

in such a way that:

• knowledge of any k or more Si pieces makes
S computable;

• knowledge of any k − 1 or fewer Si pieces
leaves S completely undetermined (in the
sense that all its possible values are equally
likely).

Our solution makes use of the polynomial secret
sharing [35] and uses a (n,m) threshold scheme,
where n is the number of one-hop neighbor nodes
and m is the upper bound of the malicious node
in a one-hop neighborhood. Each node X holds a
personal RSA key pair, < SKX , PKX >, where
SKX is X’s private/ secret key and PKX is X’s
public key. The secret key of node X, specifically
the signing key SKX , is shared among all X’s n

one-hop neighbor nodes to a random polynomial
of order m−1, where m−1 is the upper bound of
malicious nodes in the one-hop neighbor nodes
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of X. However, SKX is not visible, known or
recoverable by any node.

In our design, a node M is considered untrust-
worthy if any m one-hop neighbor nodes claim
so. Since SKM is shared among n one-hop neigh-
bors of M , any such secret share holders notice
M ’s misbehavior can sign the WARNING mes-
sage. A WARNING message signed by SKM can
be verified by the well-known public key PKM .

For each one-hop neighbor of node M , if it
finds out that M ’s reputation value drops below
the untrustworthy threshold, then it will gener-
ate a WARNING message about M and a “par-
tial” signature on the message by applying its
share of SKM . It then broadcasts the WARN-
ING message along with the partial signature.
Any node that receives the same WARNING
message from m different nodes can verify the va-
lidity of the message by combining m partial sig-
natures together to generate the full signature.

If the WARNING message is verified, it is then
broadcasted to the k-hop neighborhood, thus
M ’s k-hop neighbors become aware of its mis-
behavior and refuse to server for it.

5.4 Simulation and Performance anal-

ysis

The objective of simulation and performance
analysis is to determine the impact of Locally
Aware Reputation System (LARS) on metrics
as described below in a mobile ad hoc network
where a part of the nodes act uncooperative. We
will simulate the protocol using entity mobility
models, assuming that in group mobility mod-
els, nodes in a group will cooperation with each
other without any enforcement.

For all the metrics, we want to investigate the
scalability in terms of number of nodes, frac-
tion of uncooperative nodes, and mobility. Using

DSR [33] as a reference, we will consider the fol-
lowing performance metrics of LARS:

• Data Packet Delivery Ratio: ratio of
the number of data packets delivered to the
destination nodes divided by the number
of data packets transmitted by the source
nodes. The data delivery ratio is directly
influenced by packet loss, which may be
caused by general network faults or unco-
operative behavior.

• Protocol Overhead: the ratio of num-
ber of extra message (such as trace and
record replied in the trace process, WARN-
ING messages) divided by number of all the
message transmitted.

• End-to-end Delay: the time needed to
send a packet successfully from the source
node to the destination node. The highest,
lowest and average end-to-end delay will be
considered.

DSR [33] is an on demand source routing pro-
tocol for mobile ad hoc network. Each packet
carries the full path (a list of intermediate nodes)
that the packet should be able to traverse in its
header. A route to a destination is requested
only when there is data to send to that destina-
tion, and a route to that destination is unknown
or expired.

The simulation will be implemented on Glo-
MoSim [38], a library-based sequential and par-
allel simulator for wireless mobile ad-hoc net-
works. We will first analyze a regular well-
behaved DSR network; second, we introduce
some uncooperative behavior to the regular DSR
network and analysis the performance; then we
enhanced DSR with the LARS protocol and
compare the performance with the regular DSR.
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Different mobility models will be used in the sim-
ulation.
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