
Technical Report TR-041223, Department of Computer Science, Florida State University, December 2004.

The CR# Algebra and its Application in Loop Analysis and Optimization

Robert A. van Engelen∗

Department of Computer Science and School of Computational Science

Florida State University

FL32306, USA

Abstract

This report presents a novel family of linear-time algo-
rithms for loop analysis based on the CR# (CR-sharp) al-
gebra, which is a new nontrivial extension of the Chains of
Recurrences (CR) algebra. Conventional compiler methods
apply induction variable substitution and array recovery
translations to construct closed forms for induction vari-
ables and pointers prior to dependence testing and loop op-
timization. In this report we take a radically different ap-
proach to symbolic analysis by turning the problem up-side-
down. We convert closed forms to recurrences and compute
recurrence relations for (non)linear induction variables and
conditionally updated variables and pointers. The recur-
rence forms are used to solve a larger class of loop anal-
ysis problems such as nonlinear array dependence testing
without requiring a-priori code translations.

1. Introduction

This report presents a novel family of compiler algo-
rithms to analyze the recurrences of nonlinear induction
variables and pointers that are conditionally updated in the
control-flow graph (CFG) of a loop nest. The new CR# (CR-
sharp) algebra introduced in this report makes these algo-
rithms substantially more powerful, yet simpler to imple-
ment and more efficient compared to related work. To our
knowledge, our algorithms are the first to analyze and ac-
curately bound the sequences of conditionally updated vari-
ables and pointers in a multidimensional loop nests with a
time complexity that is linear in the number of blocks com-
prising the CFG of the loop nest.

The algorithms presented in this report are part of a new
class of algorithms for induction variable and pointer anal-
ysis. In our previous work [33, 34] we presented an algo-
rithm for induction variable analysis based on the CR al-

∗ Supported in part by NSF grants CCR-0105422, CCR-0208892 and
DOE grant DEFG02-02ER25543.

gebra [3, 42]. We showed that the algorithm is more pow-
erful and efficient compared to symbolic differencing [16]
and other approaches [2, 14, 28, 39]. In [35] we extended
the algorithm to convert common pointer arithmetic to ar-
ray accesses (also known as array recovery [13]) to sup-
port array-based data dependence testing on pointer-based
codes. In [38] we further improved the algorithms to ana-
lyze conditional updates and more complex forms of pointer
arithmetic and we implemented new methods for nonlin-
ear data dependence testing [36, 37] and value range analy-
sis [8]. However, the disadvantage of the latter type of meth-
ods is the potential exponential time complexity required to
analyze all possible flow paths in the body of a loop.

In this report we present extensions and efficiency improve-
ments of the aforementioned methods. More specifically,

• We present a family of new loop analysis algo-
rithms that operate on the reducible CFG of a
(multi-dimensional) loop nest without any restric-
tions on the loop structure;

• The algorithms run in linear time in the number of
blocks of the CFG regardless of the complexity of the
CFG, i.e. independent of the number of possible paths
in the loop nest;

• Full analysis of the recurrences of variables and point-
ers that are conditionally updated, which means that
loops that could not be analyzed by conventional meth-
ods due to control flow can now be analyzed and opti-
mized;

• We introduce a nontrivial extension CR# of the CR al-
gebra with “delayed” recurrences to simplify the ma-
nipulation of recurrences of loops in the presence of
direct and indirect wrap-around variables;

• We present an efficient method to compute a symbolic
bound on the number of loop iterations of a pre- or
post-test loop, where the loop exit condition may con-
tain conditionally updated variables. Our work is the
first to address this class of loop iteration problems;

• We provide proof of soundness and termination of the
algorithms.

1

2. Motivation

Accurate dependence testing is critical for the effec-
tiveness of compilers to optimize loops for vectorization
and parallelization, or to improve performance. Most loop
optimizations rely on exact or inexact array data depen-
dence testing [6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21,
22, 23, 25, 27, 29, 30, 31, 32, 40, 44]. Current depen-
dence analyzers are quite powerful and are able to solve
complicated dependence problems, e.g. using the polyhe-
dral model [7, 20]. However, more recently several au-
thors [13, 24, 26, 35, 38, 41] point at the difficulty these de-
pendence analyzers still have with nonlinear symbolic ex-
pressions, pointer arithmetic, and control flow in loops.

Part of the problem is the application of induction vari-
able substitution (IVS) to construct closed forms for induc-
tion variables prior to array dependence testing and loop op-
timization [2, 14, 16, 34]. Because conditionally updated
variables do not have closed forms many compiler opti-
mizations cannot be applied [38, 41]. Another problem is
the complexity of current IVS methods [2, 14, 16, 28, 39]
that require extensive symbolic manipulation. In addition,
these algorithms cannot be easily adapted to low-level CFG-
based compiler optimizations, because of the semantic gap
between information processed by high-level restructuring
compilers and low-level code optimizing compilers.

To address these concerns we take a radically different
approach by turning the problem up-side-down. We con-
vert closed forms to recurrences and compute recurrence
relations for (non)linear induction variables and condition-
ally updated variables and pointers. The recurrence forms
are used to solve a larger class of loop analysis problems,
such as array-based dependence testing, without requiring
any a-priori code translations.

The remainder of this report is organized as follows. In
Section 3 we present the CR# algebra with a new formalism
for representing and manipulating “delayed” recurrences.
Section 4 presents the loop analysis algorithms with a dis-
cussion of their efficiency and proof of soundness and ter-
mination, followed by the results of the improved algorithm
on dependence testing in Section 5. We summarize the re-
sults and conclusions of the report in Section 6.

3. The CR# Algebra

In this section we present our nontrivial extension CR#
(CR-sharp) of the CR algebra for the analysis and manipu-
lation of irregular functions.

3.1. Chains of Recurrences

A function or closed-form expression evaluated over a
unit-distant grid with indexi can be rewritten into a math-

ematically equivalent CR expression [3, 34]. A CR form
Φi = {φ0,�1, f1}i describes a sequence of values starting
with an initial valueφ0 updated in each iteration by adding
(�1 = +) or multiplying (�1 = ∗) the current value by the
“increment” or “step” functionf1. Whenf1 is another CR
form this produces achain of recurrences

Φi = {φ0,�1, {φ1,�2, {φ2, · · · ,�k, {φk}i}i}i}i

which is usually written in flattened form

Φi = {φ0,�1, φ1,�2, · · · ,�k, φk}i

The CR coefficientsφ are (symbolic) constants or nested
CR forms of a different grid variable representing multi-
variate CR (MCR) forms [4].

A CR form is essentially a short-hand notation for a
set of recurrence relations evaluated over an iteration space
i = 0, . . . , n−1. The following loop template is perhaps the
simplest way to express the meaning of a CR form:

cr0 = φ0

cr1 = φ1

: = :
crk−1 = φk−1

for i = 0 to n−1
val[i] = cr0
cr0 = cr0 �1 cr1
cr1 = cr1 �2 cr2
: = : : :

crk−1 = crk−1 �k φk
endfor

The loop produces the sequenceval[i] of the CR form1.
The CR form provides a powerful notation to describe

functions evaluated in an iteration space. Consider the type
of functions commonly encountered in the symbolic analy-
sis performed by a compiler.

Affine functions are uniquely represented by nested CR
forms {a,+, s}i, wherea is the integer-valued initial
value ands is the integer-valued stride in the direc-
tion of i. The coefficienta is a nested CR form in an-
other dimension.

Multivariate Polynomials are uniquely represented by
nested CR forms of lengthk, wherek is the maxi-
mum order of the polynomial. All� operations in the
CR form are additions, i.e.� = +.

Geometric functionsa ri are uniquely represented by the
CR form{a, ∗, r}i.

Characteristic functions of generalized induction vari-
ables (GIVs) are uniquely represented by CR
forms [33].

The CR forms of these and other functions can be easily de-
rived using the CR algebra simplification rules. The rules

1 This sequence is one-dimensional. A multidimensional loop nest is
constructed for multivariate CR forms.

2

do not require extensive symbolic manipulation [34], be-
cause the manipulation is similar to constant folding [1]. To
compute the CR form of an expression we replace the iter-
ation counter(s) with their CR forms and then apply the CR
rules to produce a (multivariate) CR form, e.g. as in

f(i) = 1
2
(i2 − i)⇒ 1

2
({0,+, 1}2i − {0,+, 1}i)⇒

1
2
({0,+, 1,+, 2}i − {0,+, 1}i)⇒ 1

2
{0,+, 0,+, 2}i ⇒

{0,+, 0,+, 1}i

The CR algebra is closed under the formation of a (multi-
variate) characteristic function of a GIV for induction vari-
able analysis [34]. However, the original CR algebra rules
are insufficient to compose irregular functions with excep-
tional values. Functions that start with a sequence of un-
related initial values or functions with irregular increments
cannot be represented. For more details on the original CR
algebra, we refer to [3, 5, 34, 35, 42, 43].

3.2. The Delay Operator of the CR# Algebra

We introduce a new operator # together with new alge-
braic simplification rules on CR forms containing the oper-
ator. The new CR# algebra rules are shown in Figure 1.

Definition 1 Thedelay operator# is defined by

(x#y) = y

for anyx andy.

A CR form containing the delay operator will be referred
to as adelayed CR form. The reason for the terminology is
explained as follows.

ConsiderΦi = {φ0,�1, · · · ,#j , · · · ,�k, φk}i. Note
that the loop template ofΦi updates variablecrj−1 by

crj−1 = crj−1 # crj

which is identical to the assignment

crj−1 = crj

Therefore, the # operator introduces a one-iteration delay in
the sequence of values produced by subsequent updates in
the loop.

The delay operator allows a set of initial values to
take effect before the regular sequence kicks in. Thus, de-
layed CR forms define recurrences with out-of-sequence
values. This serves two important purposes. First, de-
layed CR forms can be used to define any sequence
of values x0, x1, . . . , xk, possibly followed by a poly-
nomial, geometric, or another delayed formΨi as in
Φi = {x0,#, x1,#, · · · ,#, xk,#,Ψi}. Secondly, induc-
tion variables that are dependent on wrap-around variables,
i.e. indirect wrap-around variables, can be accurately repre-
sented using delayed forms. Wrap-around variables are cur-
rently handled with ad-hoc techniques by existing IVS
methods and indirect wrap-around variables cannot be han-
dled.

-∞ ∞+10-1 +2-2…

⊥

-T≠

-T +T

{0,+,T} {1,*,2}

{0,+,0,+,-1}

{0,#, ⊥} {-1,#,-T≠,+,-T} …

{1,+,0,#,1}

+T≠

{-1,#,-2,+,-1}

{0,+,1}

{0,+,0,+,1} ……{0,#,1,+,-1}

{0,+,-T}

…+3

Figure 2. Snapshot of the CR# Lattice

3.3. The CR# Lattice

To define a lattice on the CR forms in the CR# algebra
we introduce three special values⊥,>, and>6=.

Definition 2 The⊥,>, and>6= elements are defined by

• ⊥ denotes an unknown quantity−∞ ≤ ⊥ ≤ ∞;

• > denotes a nonnegative unknown0 ≤ > ≤ ∞;

• >6= denotes a positive unknown0 < >6= ≤ ∞.

Definition 3 ThereductionoperatorR is defined by

R{φ0,�1, f1}i = {Rφ0,�1,Rf1}i

withRx of a non-CR (symbolic) coefficientx defined by

Rx =

−>6= if x < 0
−> if x ≤ 0
0 if x = 0
> if x ≥ 0
>6= if x > 0
⊥ if the sign ofx is unknown

The following CR# rewrite rules are applied to reduce the
CR form to a single⊥,±>,±>6=, or 0 value:

{⊥,�1, f1}i ⇒ ⊥
{φ0,�1,⊥}i ⇒ ⊥
{>,+,>}i ⇒ >

{−>,+,−>}i ⇒ −>
{>,+,−>}i ⇒ ⊥
{−>,+,>}i ⇒ ⊥

{>, ∗,>}i ⇒ >
{−>, ∗,>}i ⇒ −>
{φ0, ∗,−>}i ⇒ ⊥
{>,#,>}i ⇒ >

{−>,#,−>}i ⇒ −>
{−>,#,>}i ⇒ ⊥
{>,#,−>}i ⇒ ⊥

The rules for0 and>6= are similar.

Note that for determining the value ofRx whenx is sym-
bolic we can use common rules such as

>+ E ⇒
{
> if E ≥ 0
⊥ otherwise

E ∗ > ⇒
{> if E > 0
−> if E < 0
⊥ otherwise

The reduction operation traverses the lattice starting with a
CR-form and stops at⊥,±>,±>6=, or 0. For example

R{0,+, 0,+, 1}i = {R0,+,R{0,+, 1}i}i ⇒ {0,+,>}i ⇒ >

Thus, the sequence of{0,+, 0,+, 1}i is nonnegative.
The CR# lattice shown in Figure 2 enables a grace-

ful degradation of information on recurrences to determine
their properties such as sign and monotonicity.

3

CR#
LHS RHS Condition
1 {φ0,+, 0}i ⇒ φ0

2 {φ0, ∗, 1}i ⇒ φ0

3 {0, ∗, f1}i ⇒ 0
4 −{φ0,+, f1}i ⇒ {−φ0,+,−f1}i
5 −{φ0, ∗, f1}i ⇒ {−φ0, ∗, f1}i
6 {φ0,+, f1}i ± E ⇒ {φ0 ± E,+, f1}i whenE is i-loop invariant
7 {φ0, ∗, f1}i ± E ⇒ {φ0 ± E,+, φ0 ∗ (f1 − 1), ∗, f1}i whenE andf1 arei-loop invariant
8 E ∗ {φ0,+, f1}i ⇒ {E ∗ φ0,+, E ∗ f1}i whenE is i-loop invariant
9 E ∗ {φ0, ∗, f1}i ⇒ {E ∗ φ0, ∗, f1}i whenE is i-loop invariant

10 E/{φ0,+, f1}1 ⇒ 1/{φ0/E,+, f1/E}i whenE 6= 1 is i-loop invariant
11 E/{φ0, ∗, f1}1 ⇒ {E/φ0, ∗, 1/f1}i whenE is i-loop invariant
12 {φ0,+, f1}i ± {ψ0,+, g1}i ⇒ {φ0 ± ψ0,+, f1 ± g1}i
13 {φ0, ∗, f1}i ± {ψ0,+, g1}i ⇒ {φ0 ± ψ0,+, {φ0 ∗ (f1 − 1), ∗, f1}i ± g1}i whenf1 is i-loop invariant
14 {φ0,+, f1}i ∗ {ψ0,+, g1}i ⇒ {φ0 ∗ ψ0,+, {φ0,+, f1}i ∗ g1 + {ψ0,+, g1}i ∗ f1 + f1 ∗ g1}i
15 {φ0, ∗, f1}i ∗ {ψ0, ∗, g1}i ⇒ {φ0 ∗ ψ0, ∗, f1 ∗ g1}i
16 {φ0, ∗, f1}Ei ⇒ {φE0 , ∗, f

E
1 }i whenE is i-loop invariant

17 {φ0, ∗, f1}{ψ0,+,g1}i
i ⇒ {φ0

ψ0 , ∗, {φ0, ∗, f1}g1i ∗ f
{ψ0,+,g1}i
1 ∗ fg11 }i

18 E{φ0,+,f1}i ⇒ {Eφ0 , ∗, Ef1}i whenE is i-loop invariant

19 {φ0,+, f1}ni ⇒
{
{φ0,+, f1}i ∗ {φ0,+, f1}n−1

i if n ∈ ZZ, n > 1

1/{φ0,+, f1}−ni if n ∈ ZZ, n < 0

20 {φ0,+, f1}i! ⇒

 {φ0!, ∗,
(∏f1

j=1
{φ0 + j,+, f1}i

)
}i if f1 ≥ 0

{φ0!, ∗,
(∏|f1|

j=1
{φ0 + j,+, f1}i

)−1

}i if f1 < 0

21 {φ0,+, φ1, ∗, f2} ⇒ {φ0, ∗, f2}i when φ1
φ0

= f2 − 1

22 {φ0,#, f1}i ⇒ f1 whenφ0 = VBf1 (see Appendix A.1 forV andB)
23 −{φ0,#, f1}i ⇒ {−φ0,#,−f1}i
24 {φ0,#, f1}i ± E ⇒ {φ0 ± E,#, f1 ± E}i whenE is i-loop invariant
25 E ∗ {φ0,#, f1}i ⇒ {E ∗ φ0,#, E ∗ f1}i whenE is i-loop invariant
26 {φ0,#, f1}i ± {ψ0,#, g1}i ⇒ {φ0 ± ψ0,#, f1 ± g1}i
27 {φ0,#, f1}i ∗ {ψ0,#, g1}i ⇒ {φ0 ∗ ψ0,#, f1 ∗ g1}i
28 {φ0,#, f1}i ± {ψ0,+, g1}i ⇒ {φ0 ± ψ0,#, f1 ±F{ψ0,+, g1}i}i (see Appendix A.1 forF)
29 {φ0,#, f1}i ∗ {ψ0,+, g1}i ⇒ {φ0 ∗ ψ0,#, f1 ∗ F{ψ0,+, g1}i}i (see Appendix A.1 forF)
30 {φ0,+, φ1,#, f2} ⇒ {φ0,#, φ0 + φ1,+f2}i
31 {φ0, ∗, φ1,#, f2} ⇒ {φ0,#, φ0 ∗ φ1, ∗f2}i

CR#−1

LHS RHS Condition
1 {φ0,+, f1}i ⇒ φ0 + {0,+, f1}i whenφ0 6= 0
2 {φ0, ∗, f1}i ⇒ φ0 ∗ {1, ∗, f1}i whenφ0 6= 1
3 {0,+,−f1}i ⇒ −{0,+, f1}i
4 {0,+, f1 + g1}i ⇒ {0,+, f1}i + {0,+, g1}i
5 {0,+, f1 ∗ g1}i ⇒ f1 ∗ {0,+, g1}i wheni does not occur inf1

6 {0,+, f i1}i ⇒ fi
1−1

f1−1
wheni does not occur inf1 andf1 6= 1

7 {0,+, fg1+h1
1 }i ⇒ {0,+, fg11 ∗ f

h1
1 }i

8 {0,+, fg1∗h1
1 }i ⇒ {0,+, (fg11)hi}i wheni does not occur inf1 andg1

9 {0,+, f1}i ⇒ i ∗ f1 wheni does not occur inf1
10 {0,+, i}i ⇒ i2−i

2

11 {0,+, in}i ⇒
∑n

k=0

(
n+1

k

)
n+1

Bk i
n−k+1 for n ∈ IN,Bk is kth Bernoulli number

12 {1, ∗,−f1}i ⇒ (−1)i{1, ∗, f1}i
13 {1, ∗, 1

f1
}i ⇒ {1, ∗, f1}−1

i

14 {1, ∗, f1 ∗ g1}i ⇒ {1, ∗, f1}i ∗ {1, ∗, g1}i
15 {1, ∗, fg11 }i ⇒ f

{1,∗,g1}i
1 wheni does not occur inf1

16 {1, ∗, gf11 }i ⇒ {1, ∗, g1}if1 wheni does not occur inf1
17 {1, ∗, f1}i ⇒ f i1 wheni does not occur inf1
18 {1, ∗, i}i ⇒ 0i

19 {1, ∗, i+ f1}i ⇒ (i+f1−1)!
(f1−1)!

wheni does not occur inf1 andf1 ≥ 1

20 {1, ∗, f1 − i}i ⇒ (−1)i ∗ (i−f1−1)!
(−f1−1)!

wheni does not occur inf1 andf1 ≤ −1

21 {φ0,#, f1}i ⇒ (i = 0) ?φ0 : f1[i← i− 1] (assumingf1 is in closed form, replacei with i− 1 in f1)

Figure 1. The Complete CR# and CR#−1 Algebra Rewrite Rules

4

3.4. Monotonicity

To determining the monotonic properties of a CR form
we extract directional information by applying the reduc-
tion operator on the increment function of a CR form.

Definition 4 ThemonotonicoperatorM is defined by

M{φ0,+, f1}i = Rf1
M{φ0, ∗, f1}i =

{
Rφ0 if R(f1 − 1) = >6=
⊥ otherwise

M{φ0,#, f1}i = Mf1 1 R(Vf1 − φ0)

withMx = 0 whenx is a (symbolic) constant. The lattice
relation 1 returns the maximum elementz = x 1 y in the
lattice such thatz � x andz � y. See Appendix A.1 for the
definition ofV.

The monotonic operator returns directional information on
a CR form as a lattice element> (monotonically increas-
ing), >6= (strictly monotonically increasing),−> (mono-
tonically decreasing),−>6= (strictly monotonically decreas-
ing), 0 (constant), or⊥ (unknown). Consider for example

M{0,#, 0,+, 1}i =M{0,+, 1}i 1 R(V{0,+, 1}i−0) = R1 1

R0 = >6= 1 0 = >

Thus, the sequence generated by{0,#, 0,+, 1}i is mono-
tonically increasing. Determining the monotonicity of a CR
form enables accurate value range analysis [8] and nonlin-
ear dependence testing [36] further discussed in Section 5.

3.5. CR# Alignment

Two or more CR forms of different lengths or with dif-
ferent operations can be aligned for comparison. By com-
paring the coefficientsφj of a CR form we can determine
whether one of the CR forms bounds the other(s).

A delay operator can be inserted in a CR form according
to the following lemma.

Lemma 1 Let Φi = {φ0,�1, f1}i be a (multivariate) CR
form. Then,

Φi = {φ0,#,FΦi}i

See Appendix A.1 for the definition ofF .

As a consequence of the chain property of a nested CR form
a # operator can be inserted anywhere in a CR form.

To align a (delayed) CR form of a mixed polynomial and
geometric function to a longer (delayed) CR form,+ oper-
ators can be inserted for pairwise alignment of the∗ opera-
tions between two or more CR forms.

Lemma 2 Let Φi = {φ0,�1, · · · ,�k−1, φk−1, ∗, φk}i

such thatφk is invariant of i. Then, any numberm > 0
of + operators can be inserted at the(k−1)th coeffi-
cient

0

5

10

15

20

25

30

35

0 1 2 3 4 5

{1,#,1,+,2}
{1,*,2}

j = 1

if j<n: B2

B1

B2

B3

B5

... = a[i]

i = 1

B4
i = j i = 2 * i

j = j + 2

Figure 3. Plot of {1,#, 1,+, 2}i and {1, ∗, 2}i

Φi = {φ0,�1, · · · ,�k−1, φk−1,

+, φk−1(φk−1),+, φk−1(φk−1)2,+, · · · ,+, φk−1(φk−1)m︸ ︷︷ ︸
inserted , ∗, φk}i

without changing the sequence ofΦi.

To align two CR forms of unequal length, the shorter CR
can be lengthened by adding dummy operations as follows.

Lemma 3 Let Φi = {φ0,�1, φ1,�2, · · · ,�k, φk}i be a
(multivariate) CR form, whereφk is invariant of i. Then,
the following identities hold

Φi = {φ0,�1, φ1,�2, · · · ,�k, φk,+, 0}i
Φi = {φ0,�1, φ1,�2, · · · ,�k, φk, ∗, 1}i
Φi = {φ0,�1, φ1,�2, · · · ,�k, φk,#, φk}i

Two or more CR forms can aligned using Lemmas 1, 2,
and 3. Consider for example the alignment

Φi = {1,#, 1,+, 2}i = {1,#, 1,+, 2, ∗, 1}i
Ψi = {1, ∗, 2}i = {1,#, 2, ∗, 2}i = {1,#, 2,+, 2, ∗, 2}i

3.6. CR# Bounds

Alignment allows us to compare the coefficients of CR
forms to determine bounds. It is evident that the sequence
of Ψi = {1, ∗, 2}i dominatesΦi = {1,#, 1,+, 2}i, as is
shown in Figure 3. A mix of the sequences is generated for
variablei by the CFG of the loop shown in Figure 3. TheΦi

andΨi sequences bound the values ofi. Our induction vari-
able analysis algorithm discussed in the next section com-
putes the bounding CR forms for recurrences in loops using
alignment and the min/max of two CR forms.

Definition 5 Theminimumof two CR forms is inductively
defined by

5

min({φ0,#, f1}i, {ψ0,#, g1}i)={min(φ0, ψ0),#,min(f1, g1)}i
min({φ0,+, f1}i, {ψ0,+, g1}i)={min(φ0, ψ0),+,min(f1, g1)}i
min({φ0, ∗, f1}i, {ψ0, ∗, g1}i)

=

{min(φ0, ψ0), ∗,min(f1, g1)}i
if φ0>0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0

{min(φ0, ψ0), ∗,max(f1, g1)}i
if φ0<0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0

{φ0, ∗, f1}i if φ0<0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0
{ψ0, ∗, g1}i if φ0>0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0
{−max(|φ0|, |ψ0|), ∗,max(|f1|, |g1|)}i if f1<0 ∨ g1<0
⊥ otherwise

where the sign of the coefficients is determined using theR
operator. Themaximumof two CR forms is inductively de-
fined by

max({φ0,#, f1}i, {ψ0,#, g1}i)={max(φ0, ψ0),#,max(f1, g1)}i
max({φ0,+, f1}i, {ψ0,+, g1}i)={max(φ0, ψ0),+,max(f1, g1)}i

max({φ0, ∗, f1}i, {ψ0, ∗, g1}i)

=

{max(φ0, ψ0), ∗,max(f1, g1)}i
if φ0>0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0

{max(φ0, ψ0), ∗,min(f1, g1)}i
if φ0<0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0

{φ0, ∗, f1}i if φ0>0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0
{ψ0, ∗, g1}i if φ0<0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0
{max(|φ0|, |ψ0|), ∗,max(|f1|, |g1|)}i if f1<0 ∨ g1<0
⊥ otherwise

Consider for example

min({1,#, 1,+, 2, ∗, 1}i, {1,#, 2,+, 2, ∗, 2}i)={1,#, 1,+, 2, ∗, 1}i
max({1,#, 1,+, 2, ∗, 1}i, {1,#, 2,+, 2, ∗, 2}i)={1,#, 2,+, 2, ∗, 2}i

After application of min and max the CR forms can be sim-
plified using the CR# algebra rules. Figure 3 shows a plot
of the simplified minimum and maximum CR forms.

4. Loop Analysis Algorithms

Loops are analyzed in a reducible CFG from the inner-
most nested loops to the outermost loops. For each loop,
analysis proceeds in two phases. The first phase analyzes
the updates of the live variables in the loop to collect the
set of recurrences relations on the variables. In the sec-
ond phase the recurrence relations are solved in CR form
and stored inrecset [H] for loop header blockH. CR-form
bounds on the recurrences are stored inrangeset [H]. Anal-
ysis of outer loops require therecset’s andrangeset’s of the
inner nested loops.

The recsetandrangesetof a loop gives complete infor-
mation necessary for further compiler analysis, such deter-
mining the number of loop iterations, for applying induction
variable substitution and array recovery, for idiom recogni-
tion, and for data dependence testing.

4.1. Phase 1

The first phase is performed by FINDRECURRENCES

shown in Figure 4. The routine computes the set of recur-
rence relationsR of a loop with (pre)headerH.

The first step in FINDRECURRENCESis to find all blocks
with back edges to the headerH, see for example the CFG

Algorithm FINDRECURRENCES(H,R)
Find recurrence relationsR for loop (pre)headerH
- input: CFG with live[H] the set of live variables atH
- output: set of recurrence relationsR in tuple form
R := ∅
A := {〈v, v〉 | v ∈ live[H]}
S := {B:A | block B has a back edge to H}
while S 6= ∅ do

Remove the next pair B:A from the working set S
if B has a back edge to a loop (pre)header Hnested

and H 6= Hnested then
MERGELOOP(Hnested, A, S)

else
MERGE(H,B,A, S)
if B = H then R := R ∪A endif

endif
enddo

Algorithm MERGE(H,B,A, S)
Update the recurrence systemA for loop (pre)headerH
by merging the effects of blockB with recurrence systemA
- input: loop (pre)header numberH, blockB,

recurrence systemA, and working setS
- output: updatedA andS

for each assignment v = expr in backward order
from the last instruction in B to the first do

UPDATE(A, v, expr)
enddo
if B 6= H then

for each predecessor Bpred ∈ pred [B]
(excluding the back edges of B) do

if there is a pair Bpred:A′ ∈ S then
S := S \ {Bpred:A′} ∪ {Bpred:(A ∪A′)}

else
S := S ∪ {Bpred:A}

endif
enddo

endif

Algorithm UPDATE(A, v, expr)
Update the recurrence systemA with v = expr
- input: recurrence systemA, variablev, expressionexpr
- output: updated recurrence systemA

Handle side-effects and potential aliases (Sec. 4.9) in expr
for each 〈x, y〉 ∈ A do

Update 〈x, y〉 in A by replacing all v’s in y with expr
enddo

Figure 4. Algorithm to Construct the Recur-
rence System of a Loop

shown in Figure 5. The CFG has two back edges at (1) and
(2). The algorithm analyzes the paths in backward order
through the CFG using a working setS of blocksB asso-
ciated with partially completed recurrence systemsA. The
initial working set contains all blocks with back edges to the
headerH associated with the initial set of recurrence rela-
tionsA := {〈v, v〉 | v ∈ live[H]} where live[H] is the
set of live variables (and registers) at the loop header deter-
mined with data flow analysis [1]. For example, the first two
items in the working set of the example loop shown in Fig-
ure 5 are

S = { B3:{〈i, i〉, 〈j, j〉, 〈k, k〉}, B4:{〈i, i〉, 〈j, j〉, 〈k, k〉} }

6

i = i + 1

j = i

i = i + k

s = a[j+1]

i = 0

a[0] = s

1

2

live[B1] = { i, j, k }

B1

B2 B3

B4

B5

Figure 5. Initial Stage of Algorithm FIND-
RECURRENCESApplied to an Example Loop

The working set is updated as the algorithm pro-
ceeds towards the loop header. The algorithm takes
one B:A pair from the working set, sayB4:A with
A = {〈i, i〉, 〈j, j〉, 〈k, k〉}. The MERGE routine merges
the effects of a block in the working set with its recur-
rence system (the merging of the effects of nested loops
will be discussed later in Section 4.7). The routine up-
dates the recurrence system for each instruction in the block
in backward order starting with the last instruction. Af-
ter merging, all predecessor blocks except headers are
added to the working set with the updated system. For ex-
ample, mergingi=i+1 from blockB4 gives the updated sys-
tem A = {〈i, i+1〉, 〈j, j〉, 〈k, k〉}. The algorithm then
proceeds with the predecessors ofB4, i.e.B2 andB3. Be-
causeB3 is already in the working set, the new recurrence
system is combined with the previous recurrence sys-
tem forB3 using set union:

S = { B2:{〈i, i+1〉, 〈j, j〉, 〈k, k〉},
B3:{〈i, i〉, 〈j, j〉, 〈k, k〉} ∪ {〈i, i+1〉, 〈j, j〉, 〈k, k〉} }

= { B2:{〈i, i+1〉, 〈j, j〉, 〈k, k〉}, B3:{〈i, i〉, 〈i, i+1〉, 〈j, j〉, 〈k, k〉} }

This process continues until the header block is reached and
merged. The resulting set of recurrence relations of the ex-
ample loop is a set of variable-value pairs

R = { 〈i, 1〉, 〈i, i〉, 〈i, i+1〉, 〈j, i〉, 〈j, j〉, 〈k, k〉 }

The MERGE routine plays a critical role for updating the
partial recurrence systems by collecting the effects of a
block. It applies a backward search through the instructions
of the block to update the system. This is best illustrated
with the example shown in Figure 6. In each step in MERGE

the set of partial recurrence relations is updated.

4.2. Phase 2

The SOLVERECURRENCESalgorithm shown in Figure 7
solves a set of recurrence relations in CR form. The algo-

i = i + j

{ < i, i >
 < j, j >
 < k, k > }

j = j + k

live[H] = { i, j, k }

i = i + j
{ < i, i + j >
 < j, j >
 < k, k > }

j = j + k

i = i + j

{ < i, i + j + k >
 < j, j + k >
 < k, k > }

j = j + k

Figure 6. The MERGEOperation

rithm requires that the initial set of recurrence relationsR
forms a partial order defined by theinclusion relation≺

〈v, x〉 ≺ 〈u, y〉 if v 6= u andv occurs iny

The inclusion relation defines a digraph on the elements
in R. The strongly connected components represent recur-
rences with periodic sequences or sequences that cannot be
represented by sums and products of polynomials, expo-
nentials, and factorials. Section 4.5 describes a technique
to break the connected components.

SOLVERECURRENCEStakes pairs fromR in inclusion
order≺. The CR form solutions are computed one by one
and substituted in the recurrence relations that depend on
them. The CR# algebra rules are used in the main loop to
simplify and normalize the CR forms after substitution to
match the CR forms of the recurrence relations.

The recurrence relationsR is a set of tuples computed in
the first phase. For the example loop shown in Figure 5 the
setR computed by FINDRECURRENCESis

R = { 〈i, 1〉, 〈i, i〉, 〈i, i+1〉, 〈j, i〉, 〈j, j〉, 〈k, k〉 }

There are three inclusion relations on tuples inR

〈i, 1〉 ≺ 〈j, i〉, 〈i, i〉 ≺ 〈j, i〉, 〈i, i+1〉 ≺ 〈j, i〉

Thus, SOLVERECURRENCESselects any one of the tuples
in R for variablesi andk to replace them with CR forms.
After computing the CR forms for these tuples and deleting
the original non-CR form tuples we obtain2

R = { 〈i, {i0,#, 1}B1 〉, 〈i, {i0}B1 〉, 〈i, {i0,+, 1}B1 〉, 〈j, i〉,
〈j, {i0,#, 1}B1 〉, 〈j, {i0}B1 〉, 〈j, {i0,+, 1}B1 〉, 〈j, j〉, 〈k, {k0}B1 〉 }

At this point tuples for j are considered. The tuple in
the deletion setD = {〈j, i〉} (updated by SUBSTITUTE)
is discarded fromR. After computing the CR forms for
〈j, {i0,#, 1}B1〉, 〈j, {i0}B1〉, 〈j, {i0,+, 1}B1〉 and 〈j, j〉 the
resulting solution setR is stored inrecset [H], where

recset [H] = {〈i, {i0,#, 1}B1 〉, 〈i, {i0}B1 〉, 〈i, {i0,+, 1}B1 〉,
〈j, {j0,#, i0,#, 1}B1 〉, 〈j, {j0,#, i0}B1 〉,

〈j, {j0,#, i0,+, 1}B1 〉, 〈j, {j0}B1 〉, 〈k, {k0}B1 〉}

2 For notational convenience, thei0, j0, andk0 denote the initial values
of i, j, andk at the start of the loop.

7

Algorithm SOLVERECURRENCES(R)
Compute the solution to the recurrence systemR in recset [H]
- input: recurrence systemR
- output: solution inrecset [H]
D := ∅
Remove strongly connected components from R (Sec. 4.5)
for each 〈v, x〉 ∈ R in the order defined by ≺ do

if 〈v, x〉 ∈ D then
R := R \ {〈v, x〉}

else
Apply CR# rules to x (v is marked loop-variant in x)
if x is of the form v + Ψ (Ψ is CR or constant) then

Φ := {v0,+,Ψ}H
else if x is of the form v ∗Ψ (Ψ is CR or constant) then

Φ := {v0, ∗,Ψ}H
else if x is of the form c ∗ v + Ψ, where c is constant

or a singleton CR form and Ψ is a constant
or a polynomial CR form then

Φ := {φ0,+, φ1,+, · · · ,+, φk+1, ∗, φk+2}H , where
φ0 = v0; φj = (c− 1)φj−1 + ψj−1; φk+2 = c

else if x is variable v then
Φ := {v0}H

else
Φ := {v0,#, x}H

endif
SUBSTITUTE(v,Φ, R)

endif
enddo
recset [H] := R

Algorithm SUBSTITUTE(v,Φ, R)
Substitute all occurrences of variablev with CR formΦ
in the recurrence systemR
- input: variablev, CR formΦ, and recurrence systemR
- output: updated recurrence systemR

Replace 〈v, x〉 in R with 〈v,Φ〉
for each 〈u, y〉 ∈ R such that 〈v, x〉 ≺ 〈u, y〉 do
D := D ∪ {〈u, y〉}
Create new y′ by replacing all v’s in y with Φ
R := R ∪ {〈u, y′〉}

enddo

Figure 7. Algorithm to Compute recset [H]

Finally, the CR forms inrecset [H] are bounded using align-
ment and the application of min/max bounds (Sections 3.5
and 3.6). The CR-form bounds are stored inrangeset [H]
computed by BOUNDRECURRENCESshown in Figure 8.
Applied to therecset [H] of the example loop we obtain the
rangeset [H] of the loop

{ 〈i, {i0,#,min(i0, 1)}B1 , {i0,#,max(i0+1, 1),+, 1}B1 〉
〈j, {j0,#,min(i0, j0)}B1 , {j0,#,max(i0, j0),+, 1}B1 〉
〈k, {k0}B1 , {k0}B1 〉 }

where each triple〈v,Ψmin,Ψmax〉 in the rangesetdefines
CR-form bounds such that the sequence of values ofv is
bounded by the sequences ofΨmin andΨmax.

4.3. Performance and Complexity

The selection of aB:A pair from the working set in
FINDRECURRENCESaffects the performance of the algo-
rithm. A naive selection may lead to an exponential number

Algorithm BOUNDRECURRENCES(H)
Computerangeset [H] for the loop with (pre)headerH
- input: live[H] andrecset [H] for (pre)header blockH
- output: rangeset [H] with induction variable bounds
rangeset [H] := ∅
for each variable v ∈ live[H] do

Use alignment (3.5) and min/max bounds (3.6) to compute
Ψmin := min{Φ | 〈v,Φ〉 ∈ recset [H]}
Ψmax := max{Φ | 〈v,Φ〉 ∈ recset [H]}
rangeset [H] := rangeset [H] ∪ {〈v,Ψmin,Ψmax〉}

enddo

Figure 8. Algorithm to Compute rangeset [H]

of steps where all possible paths in the loop body are tra-
versed. However, we adopt a selection order that ensures
that the algorithm is linear in the number of blocks com-
prising the CFG of the loop body. To achieve this, we keep
a countercount [B] with each blockB in the loop body. The
counter is initialized to the number of successors of a block
minus the back edges:

count [B] := |{Bsucc ∈ succ[B] | Bsucc is not a loop header}|

The countercount [Bpred] is decremented in MERGE each
time a set of recurrences is saved or combined with another
set of recurrences for blockBpred in the working set. Only
when the counter is zero the blockB:A is selected from the
working set for the next iteration in FINDRECURRENCES.
Because this method ensures that each block is visited only
once, FINDRECURRENCESis linear in the number of blocks
in the CFG of the loop body.

4.4. Soundness and Termination

The FINDRECURRENCES and SOLVERECURRENCES

algorithms are sound and terminating.

Theorem 1 Given a reducible CFG of a loop (nest) with
(pre)header blockH, FINDRECURRENCESterminates.

Proof. The header blockH dominates all blocks with back
edges toH by definition of a reducible CFG [1]. Because
FINDRECURRENCESstarts at blocks with back edges toH
and traverses the CFG via predecessor blocks, the algorithm
eventually terminates at the dominating blockH. 2

It is easy to verify that SOLVERECURRENCEStermi-
nates. Even though the setR may grow when considering
tuples for variablev, a new finite set of tuples is added to
R for variablesu, u 6= v, in inclusion order defined by≺.
Thus, tuples inR are considered only once.

Theorem 2 The general recurrence form of a variablev

v = v0
for i = 0 to n–1

...
v = α ∗ v + p(i)
...

endfor

8

t = a
a = a + b
b = t
n = n - 1

live[H] = { a, b, n }
< b, a >< a, a + b >

< a, {a0, +, T}H > < b, {b0, #, a0, +, T}H >

< n, n - 1 >

< n, {n0, +, -1}H >

Figure 9. Loop with Cyclic Recurrences

whereα is a numeric constant or ani-loop invariant sym-
bolic expression andp is polynomial ini expressed as a CR
formΨi = {ψ0,+, ψ1,+, · · · ,+, ψk}i, has the correct CR-
form solutionΦi for v computed bySOLVERECURRENCES

Φi = {φ0,+, φ1,+, · · · ,+, φk+1, ∗, φk+2}i

where

φ0 = v0; φj = (α− 1)φj−1 + ψj−1; φk+2 = α

Proof. See [36, 37]. 2

4.5. Breaking Cyclic Recurrence Relations

SOLVERECURRENCES requires the use-def depen-
dences between the recurrence relations inR to be acyclic.
Strongly connected components must be eliminated. Fig-
ure 9 illustrates how a cycle is broken by converting a cyclic
recurrence relation into a reduced CR form with the lat-
tice element> (assuming that the initial valueb0 ≥ 0). In
general, cycles can be broken by replacing a variable’s up-
date with an unknown. In many cases we do not need to de-
termine the exact sequence of values as long as the sign
and monotonic properties are preserved in the CR forms.
In specific cases, pattern recognition can be applied to de-
termine the functions of specific (periodic) sequences,
such as the Fibonacci function whose iterative computa-
tion is shown in the example loop.

4.6. Bounding the Number of Loop Iterations

To accurately analyze a loop nest from inner loops to the
outer loops, the number of loop iterations of the inner nested
loops are determined. The LOOPBOUNDS algorithm shown
in Figure 10 computes a symbolic lower bounditermin[H]
and upper bounditermax[H] on the number of loop iter-
ations, provided that the loop has a single pre- or post-test
exit condition and a single back edge to the loop (pre)header
H. The algorithm uses the CR# algebra rules to convert the
loop exit condition to CR form and exploits interval arith-
metic to determine the iteration range.

Consider for example the loop nest shown in Fig-
ure 11(a). After applying the loop analysis algorithms on
the nested loop with headerB3 we have:

Algorithm LOOPBOUNDS(H)
Compute the boundsitermin[H anditermax[H] on the number
of loop iterations of the loop with (pre)headerH
- input: rangeset [H] for (pre)header blockH
- output: 0 ≤ itermin[H] ≤ itermax[H] ≤ >
itermin[H] := 0
itermax[H] := >
if loop H has a single pre- or post-test exit condition then

Convert exit condition to expr ≤ 0 by reordering terms
range := expr
start := 0
for each 〈v,Ψmin ,Ψmax 〉 ∈ rangeset [H] do

if the loop has a post-test exit condition then
Ψmin := FΨmin

Ψmax := FΨmax

start := 1
endif
Replace all v’s in range with interval [Ψmin,Ψmax]

enddo
Apply interval arithmetic and CR# rules to simplify range

such that range = [Φmin,Φmax]

Apply CR#−1
I rules to convert Φmin to closed form L(I)

Apply CR#−1
I rules to convert Φmax to closed form U(I)

Isolate I from L(I) and U(I) such that L ≤ I and U ≤ I
(if isolation is not possible, set L := 0 and U := >)

itermin[H] := max(start , U)
itermax[H] := max(start , L)

endif

Figure 10. Algorithm to Compute Loop Itera-
tion Bounds itermin[H] and itermax[H]

recset [B3] ={〈i, {i0,+, 1}B3 〉, 〈j, {j0}B3 〉, 〈j, {j0,+,−1}B3 〉}
rangeset [B3] ={〈i, {i0,+, 1}B3 , {i0,+, 1}B3 〉, 〈j, {j0,+,−1}B3 , {j0}B3 〉}

In the initial stage of the LOOPBOUNDSalgorithm, the post-
test loop exit conditioni < j is rewritten intoi− j+1 ≤ 0 by
reordering terms. Because the loop has a post-test condition,
the CR forms of the variablesi andj in therangeset [B3] are
shifted forward, that is

F{i0,+, 1}B3 = {i0+1,+, 1}B3
F{j0}B3 = {j0}B3

F{j0,+,−1}B3 = {j0−1,+,−1}B3

The i and j variables in the conditioni−j+1 ≤ 0 are re-
placed with their shifted value ranges and simplified using
a combination of interval arithmetic and the CR# algebra
rules, giving

[{i0+1,+, 1}B3 , {i0+1,+, 1}B3]− [{j0−1,+,−1}B3 , {j0}B3]− 1
= {i0+1,+, 1}B3 + [−{j0}B3 ,−{j0−1,+,−1}B3]− 1
= [{i0+1,+, 1}B3−{j0}B3−1, {i0+1,+, 1}B3−{j0−1,+,−1}B3−1]
= [{i0−j0,+, 1}B3 , {i0 − j0+1,+, 2}B3]

These CR forms describe the minimumΦmin and maximum
Φmax progressions towards the exit condition, i.e. the loop
terminates when the sequences reach zero. To compute the
closed-form equivalent of this interval, we convertΦmin and
Φmax to closed formsL(I) andU(I) and then isolate the
variableI as follows

9

i = i + 1

j = i + n

i = 0

j = j - 1

if i<j: B3

if j>0: B2

B1

B2

B3

B4

B5

B6

i = i + 1

j = j + 1

j = 0

s = s+a[i,j]

if i<j: B3

if j<n: B2

B1

B2

B3

B4

B5

B6

i = 0

(a)Loop Nest with (b) Triangular Loop
Conditional Update

Figure 11. Example Nested Loops

L(I) ≤ 0 ⇒ i0−j0 + I ≤ 0 ⇒ I ≤ j0−i0
U(I) ≤ 0 ⇒ i0 − j0+1 + 2I ≤ 0 ⇒ I ≤ b j0−i0−1

2
c

Thus, we obtainitermin[B3] = max(1, b j0−i0−1
2 c) and

itermax[B3] = max(1, j0−i0). Indeed, a closer look reveals
that the number of loop iterations ranges fromb n−1

2 c to n
with a minimum of one iteration whenn ≤ 1.

4.7. Multidimensional Loops

The MERGELOOPalgorithm shown in Figure 12 is used
by FINDRECURRENCESto aggregate the updates on induc-
tion variables in a nested loop to update the current set of
recurrence relationsA of the outer loop. MERGLOOP uses
the recsetand iteration bounds of the nested loop to ad-
vance the traversal of the CFG of the outer loop immedi-
ately to the headerHnested. By omitting the blocks in the
inner loop, which were already analyzed, the complexity of
FINDRECURRENCESis linear in the total number of blocks
in the CFG of the loop nest.

The MERGELOOP algorithm computes the minimum
Amin and maximumAmax effects of the inner loop on the
recurrence system of the outer loop based on the minimum
itermin[Hnested] and maximumitermax[Hnested] iteration
bounds of the nested loop. If the minimum and maximum
bounds differ, then the induction variables in the nested loop
must form monotonic sequences to ensure accuracy. This
is tested withMΦ 6= ⊥, whereΦ is the CR form of an
induction variable. To compute the aggregate value of the
updates to induction variables in the nested loop, the CR
forms of the variables need to be updated by the iteration
count, which is accomplished by converting the CR forms
to closed form with indexI set to the loop bound(s).

For example, using therecset [B3], itermin[B3], and
itermax[B3] of the nested loop shown in Figure 11(a) and

Algorithm MERGELOOP(Hnested, A, S)
Updated the recurrence systemA with the recurrences of the
nested loop and add to the working setS
- input: recset [Hnested], itermin[Hnested, itermax[Hnested,

recurrence systemA, working setS
- output: updated working setS
Amin := A
Amax := A
for each 〈v,Φ〉 ∈ recset [Hnested] do

if MΦ = ⊥ and itermin[Hnested] 6= itermax[Hnested] then
UPDATE(v,⊥, Amin)
UPDATE(v,⊥, Amax)

else
Apply CR#−1

I rules to convert Φ to closed form f(I)
Replace I ’s in f(I) with itermin[Hnested] giving L
UPDATE(v, L,Amin)
Replace I ’s in f(I) with itermax[Hnested] giving U
UPDATE(v, U,Amax)

endif
enddo
A := Amin ∪Amax

for each predecessor block Bpred ∈ pred [B]
(excluding the back edges of B) do
if there is a pair Bpred:A′ ∈ S then
S := S \ {Bpred:A′} ∪ {Bpred:(A ∪A′)}

else
S := S ∪ {Bpred:A}

endif
enddo

Figure 12. Merging a Nested Loop

computed in the previous section, MERGELOOP takes the
recurrence relationsA of the outer loop at blockB5, where

A := {〈v, v〉 | v ∈ live[B2]} = {〈i, i〉, 〈n, n〉}

Thus, MERGELOOPcomputes

Amin = {〈i, i〉, 〈n, n〉}
⇒ {〈i, i + I〉, 〈n, n〉}
⇒ {〈i, i + itermin[B3]〉, 〈n, n〉}
⇒ {〈i, i + max(1, b j−i−1

2
c)〉, 〈n, n〉}

Amax = {〈i, i〉, 〈n, n〉}
⇒ {〈i, i + I〉, 〈n, n〉}
⇒ {〈i, i + itermax[B3]〉, 〈n, n〉}
⇒ {〈i, i + max(1, j−i−1)〉, 〈n, n〉}

BlockB2 is merged with the union ofAmin∪Amax to com-
pute therecset [B2] of the outer loop, which is

{〈i, {i0,+,max(0, b n0−1
2
c)}B2 〉, 〈{i, i0,+,max(0, n0−1)}B2 〉, 〈n, {n0}B2 〉}

It is evident that variablei’s updates in the inner loop con-
tribute to a positive update to the variable in the outer loop
anywhere in the rangemax(1, b n0−1

2 c) to max(1, n0−1)
makingi strictly monotonically increasing.

4.8. Multivariate Forms

Multivariate CR forms for pointers and array index ex-
pressions are required to apply dependence testing on
pointer access and arrays [36, 38]. To compute multi-
variate CR forms, we carry along therecsetof an inner

10

loop in the working setS of an outer loop and up-
date it in MERGE for each assignment that is merged
during the analysis of the outer loop. When therec-
set of the outer loop is computed, we substitute the CR
forms (or their ranges) of the induction variables and point-
ers into therecset’s of the inner loops.

Consider for example the triangular loop in Figure 11(b).
Therecset [B3] is

{〈i, {i0,+, 1}B3 〉, 〈j, {j0}B3 〉, 〈s, {s0,+, a[{i0,+, 1}B3 , {j0}B3]}B3 〉}

When traversing through the outer loop the assignmenti=0
causesi0 to be replaced with0 in the recset [B3] of the in-
ner loop. After computing therecsetof the outer loop,j0 is
replaced with{0,+, 1}B2 in recset [B3] giving

{〈i, {0,+, 1}B3 〉, 〈j, {{0,+, 1}B2}B3 〉,
〈s, {s0,+, a[{0,+, 1}B3 , {{0,+, 1}B2}B3]}B3 〉}

The multivariate forms in therecset’s of the inner and
outer loop enable dependence testing using our nonlin-
ear CR-based extreme value test [36, 38], such as on
a[{0,+, 1}B3 , {{0,+, 1}B2}B3].

4.9. Side-Effects and Aliases

Possible side-effects on variables and variable aliasing is
handled by representing unknown variable updates with lat-
tice elements. Thus, a variable updated with an expression
that contains aliased variables is effectively updated with
a positive (> or >6=), a negative (−> or −>6=), or an un-
known (⊥) quantity. Alias analysis and points-to analysis
help identify such cases.

5. Applications

In this section we briefly review a number of applica-
tions of the recurrence analysis algorithms for loop analysis
and optimization problems.

5.1. Induction Variable Substitution

IVS replaces induction variables in a loop nest with
closed-form expressions. When therecsetof a loop con-
tains one solution per variable, which is guaranteed when
the updates to induction variables are unconditional, the
CR forms of the induction variables in the set are con-
verted to closed-form expressions using the inverse CR# al-
gebra rules shown in Figure 1. For more details, see [34].
In fact, our algorithm is the first to recognize and rep-
resent the recurrences of indirect wrap-around variables.
These variables are updated with the values of wrap-around
variables or other indirect wrap-around variables. Consider
for example Figure 13. The recurrence dependence graph
shows the ordering of the recurrences in SOLVERECUR-
RENCESto compute a solution. Variablei is a wrap-around

j = j + 1

{ < i, i >
 < j, j >
 < k, k > }

i = j

k = k + i

live[H] = { i, j, k }

j = j + 1
{ < i, i >
 < j, j + 1 >
 < k, k > }

i = j

k = k + i

j = j + 1

{ < i, j >
 < j, j + 1 >
 < k, k + i > }i = j

k = k + i

< j, j + 1 >< i, j >

< i, {i0, #, j0, +, 1}H > < j, {j0, +, 1}H >

< k, k + i >

< k, {k0, +, i0, #, j0, +, 1}H >

Figure 13. Nonlinear Recurrence Relations
with an Indirect Wrap-Around Variable

variable (marked by the oval in recurrence dependence
graph in the figure) with delayed CR form{i0,#, j0,+, 1}H

and k is an indirect wrap-around variable with delayed
CR form {k0,+, i0,#, j0,+, 1}H which is rewritten into
{k0,#, i0+k0,+, j0,+, 1}H byCR# rule 30 before apply-
ing theCR#−1

I rules. Applying theCR#−1
I rules gives the

closed forms for loop iterationI ≥ 0

i = (I = 0) ? i0 : j0 + I − 1
j = j0 + I

k = (I = 0) ? k0 : k0 + i0 + (j0 − 1) ∗ (I − 1) + I2−I
2

wherei0, j0, andk0 denote the initial values of the variables
at the start of the loop.

5.2. Array Recovery

Induction variables that are address-based pointers can
be converted to explicit array accesses, also known as ar-
ray recovery [13]. Array recovery is similar to IVS. That
is, when therecsetof a loop contains one solution per vari-
able the CR forms of the pointer variables in the set are con-
verted to closed-form expressions using the inverse CR# al-
gebra rules and pointer dereferences are replaced by array
accesses. For more details, see [35].

5.3. Idiom Recognition

Our CR-based algorithms facilitate the detection of
global reductions such as sums. The CR form provides
the pattern of the idiom. For example, the multivariate
CR form{s0,+, a[{0,+, 1}B2 , {{0,+, 1}B2}B3]}B3 com-
puted in Section 4.8 for the triangular loop nest shown
in Figure 11(b) denotes

∑
0≤j<n,0≤i<j a[i, j]. Depen-

dence testing ona is used to check for interference.

11

5.4. Data Dependence Testing

The details and results of our CR-based nonlinear de-
pendence tests are available in [36, 38]. The new algorithms
presented in this report enhance these dependence tests with
improved efficiency and accuracy with respect to bound-
ing the sequences of conditionally updated variables and
pointers. The ability to determine loop bounds dependent
on conditionally updated variables also improves the accu-
racy of the dependence test. Because our nonlinear depen-
dence test directly utilizes therecsetandrangesetof a loop
without IVS or array recovery, the dependence test can be
directly applied to compute a dependence hierarchy for ar-
ray and pointer accesses in reducible CFGs with arbitrary
loop structures.

6. Conclusions

In this report we presented a set of CR-based loop anal-
ysis algorithms to support compiler analysis and optimiza-
tions that depend on induction variable analysis, such as id-
iom recognition, array date dependence testing, value range
analysis, and determining the number of iterations of a loop
nest. An important property of the new algorithm is that its
complexity is linear in the number of blocks of the CFG of
a loop nest regardless of the nesting depth of the loop nest
and independent of control flow structure of the loop. We
use these algorithms at the basis of a family of compiler-
related analysis algorithms for compiler optimizations re-
quiring the analysis of iterative updates to the state of vari-
ables in loop-based or recursion-based codes, e.g. for de-
pendence testing and loop optimization.

A. Appendix

A.1. TheV, F , andB Operators

Definition 6 Let Φi = {φ0,�1, φ1,�2, . . . ,�k, φk}i be a
CR form. Thevalueoperator is defined by

VΦi = φ0

Theforward shift operatoris defined by
FΦi = {ψ0,�1, ψ1,�2, . . . ,�k, ψk}i

withψj = φj �j+1 φj+1 for j = 0, . . . , k−1 andψk = φk.
Thebackward shift operatoris defined by

BΦi = {ψ0,�1, ψ1,�2, . . . ,�k, ψk}i

withψj = φj �−1
j+1ψj+1 for j = 0, . . . , k−1 andψk = φk.

The inverse operators�−1 are defined by+−1 = − (sub-
traction) and∗−1 = / (division).

The forward shift operator was introduced by Bachmann
et al. [5]. The backward shift operator was introduced by
Van Engelen [33, 34]. TheB operator is not defined for CR
forms with the# delay operator, because# has no inverse.

References

[1] A HO, A., SETHI, R., AND ULLMAN , J. Compilers: Prin-
ciples, Techniques and Tools. Addison-Wesley Publishing
Company, Reading MA, 1985.

[2] A MMERGUALLAT , Z., AND HARRISON III, W. Automatic
recognition of induction variables and recurrence relations
by abstract interpretation. Inproceedings of the ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI)(White Plains, NY, 1990), pp. 283–
295.

[3] BACHMANN , O. Chains of Recurrences. PhD thesis, Kent
State University, College of Arts and Sciences, 1996.

[4] BACHMANN , O. Chains of recurrences for functions of two
variables and their application to surface plotting. InHu-
man Interaction for Symbolic Computation(1996), N. Ka-
jler, Ed., Springer-Verlag.

[5] BACHMANN , O., WANG, P., AND ZIMA , E. Chains of re-
currences - a method to expedite the evaluation of closed-
form functions. Inproceedings of the International Sympo-
sium on Symbolic and Algebraic Computing (ISSAC)(Ox-
ford, 1994), ACM, pp. 242–249.

[6] BANERJEE, U. Dependence Analysis for Supercomputing.
Kluwer, Boston, 1988.

[7] BASTOUL, C. Code generation in the polyhedral model is
easier than you think. InPACT’13 IEEE International Con-
ference on Parallel Architecture and Compilation Techniques
(2004). to appear.

[8] B IRCH, J., VAN ENGELEN, R. A., AND GALLIVAN , K. A.
Value range analysis of conditionally updated variables and
pointers. Inproceedings of Compilers for Parallel Comput-
ing (CPC)(2004), pp. 265–276.

[9] BLUME , W., AND EIGENMANN , R. Demand-driven, sym-
bolic range propagation. Inproceedings of the8th Interna-
tional workshop on Languages and Compilers for Parallel
Computing(Columbus, Ohio, USA, Aug. 1995), pp. 141–
160.

[10] BURKE, M., AND CYTRON, R. Interprocedural dependence
analysis and parallelization. Inproceedings of the Sympo-
sium on Compiler Construction(1986), pp. 162–175.

[11] COLLARD , J.-F., BARTHOU, D., AND FEAUTRIER, P.
Fuzzy array dataflow analysis. Inproceedings of the fifth
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming(1995), pp. 92–101.

[12] FAHRINGER, T. Efficient symbolic analysis for parallelizing
compilers and performance estimators.Supercomputing 12,
3 (May 1998), 227–252.

[13] FRANKE, B., AND O’BOYLE, M. Compiler transformation
of pointers to explicit array accesses in DSP applications.
In proceedings of the ETAPS Conference on Compiler Con-
struction 2001, LNCS 2027(2001), pp. 69–85.

[14] GERLEK, M., STOLZ, E., AND WOLFE, M. Beyond induc-
tion variables: Detecting and classifying sequences using a
demand-driven SSA form.ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 17, 1 (Jan. 1995),
85–122.

12

[15] GOFF, G., KENNEDY, K., AND TSENG, C.-W. Practical
dependence testing. Inproceedings of the ACM SIGPLAN
’91 Conference on Programming Language Design and Im-
plementation (PLDI)(Toronto, Ontario, Canada, June 1991),
vol. 26, pp. 15–29.

[16] HAGHIGHAT, M. R., AND POLYCHRONOPOULOS, C. D.
Symbolic analysis for parallelizing compilers.ACM Trans-
actions on Programming Languages and Systems 18, 4 (July
1996), 477–518.

[17] HAVLAK , P. Interprocedural Symbolic Analysis. PhD the-
sis, Dept. of Computer Science, Rice University, 1994.

[18] HAVLAK , P.,AND KENNEDY, K. Experience with interpro-
cedural analysis of array side effects. pp. 952–961.

[19] KUCK, D. The Structure of Computers and Computations,
vol. 1. John Wiley and Sons, New York, 1987.

[20] L I , W., AND PINGALI , K. A singular loop transformation
framework based on non-singular matrices.Parallel Pro-
gramming 22, 2 (1994), 183–205.

[21] MAYDAN , D. E., HENNESSY, J. L., AND LAM , M. S. Ef-
ficient and exact data dependence analysis. Inproceed-
ings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI)(1991), ACM
Press, pp. 1–14.

[22] MUCHNICK, S. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, San Fransisco, CA, 1997.

[23] POLYCHRONOPOULOS, C. Parallel Programming and Com-
pilers. Kluwer, Boston, 1988.

[24] PSARRIS, K. Program analysis techniques for transform-
ing programs for parallel systems.Parallel Computing 28, 3
(2003), 455–469.

[25] PSARRIS, K., AND KYRIAKOPOULOS, K. Measuring the
accuracy and efficiency of the data dependence tests. In
proceedings of the International Conference on Parallel and
Distributed Computing Systems(2001).

[26] PSARRIS, K., AND KYRIAKOPOULOS, K. The impact of
data dependence analysis on compilation and program paral-
lelization. Inproceedings of the ACM International Confer-
ence on Supercomputing (ICS)(2003).

[27] PUGH, W. Counting solutions to Presburger formulas: How
and why. Inproceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion (PLDI) (Orlando, FL, June 1994), pp. 121–134.

[28] REDON, X., AND FEAUTRIER, P. Detection of recurrences
in sequential programs with loops. In5th International Par-
allel Architectures and Languages Europe(1993), pp. 132–
145.

[29] RUGINA , R., AND RINARD , M. Symbolic bounds analy-
sis of array indices, and accessed memory regions. Inpro-
ceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI)(Vancouver,
British Columbia, Canada, June 2000), pp. 182–195.

[30] SHEN, Z., LI , Z., AND YEW, P.-C. An empirical study on
array subscripts and data dependencies. Inproceedings of
the International Conference on Parallel Processing(1989),
vol. 2, pp. 145–152.

[31] SU, E., LAIN , A., RAMASWAMY , S., PALERMO, D.,
HODGES, E., AND BANERJEE, P. Advanced compila-
tion techniques in the PARADIGM compiler for distributed-
memory multicomputers. Inproceedings of the9th

ACM International Conference on Supercomputing (ICS)
(Barcelona, Spain, July 1995), ACM Press, pp. 424–433.

[32] TU, P., AND PADUA , D. Gated SSA-based demand-driven
symbolic analysis for parallelizing compilers. Inproceed-
ings of the9th ACM International Conference on Supercom-
puting (ICS)(New York, July 1995), ACM Press, pp. 414–
423.

[33] VAN ENGELEN, R. Symbolic evaluation of chains of recur-
rences for loop optimization. Tech. rep., TR-000102, Com-
puter Science Dept., Florida State University, 2000.

[34] VAN ENGELEN, R. Efficient symbolic analysis for optimiz-
ing compilers. Inproceedings of the ETAPS Conference on
Compiler Construction 2001, LNCS 2027(2001), pp. 118–
132.

[35] VAN ENGELEN, R., AND GALLIVAN , K. An efficient al-
gorithm for pointer-to-array access conversion for compil-
ing and optimizing DSP applications. Inproceedings of the
International Workshop on Innovative Architectures for Fu-
ture Generation High-Performance Processors and Systems
(IWIA) 2001(Maui, Hawaii, 2001), pp. 80–89.

[36] VAN ENGELEN, R. A., BIRCH, J., AND GALLIVAN , K. A.
Array data dependence testing with the chains of recur-
rences algebra. Inproceedings of the IEEE International
Workshop on Innovative Architectures for Future Generation
High-Performance Processors and Systems (IWIA)(January
2004), pp. 70–81.

[37] VAN ENGELEN, R. A., BIRCH, J., SHOU, Y., AND GALLI -
VAN , K. A. Array data dependence testing with the chains of
recurrences algebra. Tech. rep., TR-041201, Computer Sci-
ence Dept., Florida State University, 2004.

[38] VAN ENGELEN, R. A., BIRCH, J., SHOU, Y., WALSH, B.,
AND GALLIVAN , K. A. A unified framework for nonlinear
dependence testing and symbolic analysis. Inproceedings of
the ACM International Conference on Supercomputing (ICS)
(2004), pp. 106–115.

[39] WOLFE, M. Beyond induction variables. InACM SIG-
PLAN’92 Conf. on Programming Language Design and Im-
plementation(San Fransisco, CA, 1992), pp. 162–174.

[40] WOLFE, M. High Performance Compilers for Parallel Com-
puters. Addison-Wesley, Redwood City, CA, 1996.

[41] WU, P., COHEN, A., HOEFLINGER, J., AND PADUA , D.
Monotonic evolution: An alternative to induction variable
substitution for dependence analysis. Inproceedings of
the ACM International Conference on Supercomputing (ICS)
(2001), pp. 78–91.

[42] ZIMA , E. Recurrent relations and speed-up of computa-
tions using computer algebra systems. Inproceedings of
DISCO’92(1992), LNCS 721, pp. 152–161.

[43] ZIMA , E. Simplification and optimization transformations
of chains of recurrences. Inproceedings of the International
Symposium on Symbolic and Algebraic Computing(Mon-
treal, Canada, 1995), ACM.

[44] ZIMA , H., AND CHAPMAN , B. Supercompilers for Parallel
and Vector Computers. ACM Press, New York, 1990.

13

