’ Technical Report TR-041223, Department of Computer Science, Florida State University, December 20(#4.

The CR# Algebra and its Application in Loop Analysis and Optimization

Robert A. van Engelen
Department of Computer Science and School of Computational Science
Florida State University
FL32306, USA

Abstract gebra [3, 42]. We showed that the algorithm is more pow-
erful and efficient compared to symbolic differencing [16]
This report presents a novel family of linear-time algo- and other approaches [2, 14, 28, 39]. In [35] we extended
rithms for loop analysis based on the CR# (CR-sharp) al- the algorithm to convert common pointer arithmetic to ar-
gebra, which is a new nontrivial extension of the Chains of ray accesses (also known as array recovery [13]) to sup-
Recurrences (CR) algebra. Conventional compiler methodsport array-based data dependence testing on pointer-based
apply induction variable substitution and array recovery codes. In [38] we further improved the algorithms to ana-
translations to construct closed forms for induction vari- lyze conditional updates and more complex forms of pointer
ables and pointers prior to dependence testing and loop op-arithmetic and we implemented new methods for nonlin-
timization. In this report we take a radically different ap- ear data dependence testing [36, 37] and value range analy-
proach to symbolic analysis by turning the problem up-side- sis [8]. However, the disadvantage of the latter type of meth-

down. We convert closed forms to recurrences and computeods is the potential exponential time complexity required to
recurrence relations for (non)linear induction variables and analyze all possible flow paths in the body of a loop.

conditionally updated variables and pointers. The recur-
rence forms are used to solve a larger class of loop anal-
ysis problems such as nonlinear array dependence testin
without requiring a-priori code translations.

1. Introduction

This report presents a novel family of compiler algo-
rithms to analyze the recurrences of nonlinear induction
variables and pointers that are conditionally updated in the
control-flow graph (CFG) of a loop nest. The new CR# (CR-
sharp) algebra introduced in this report makes these algo-
rithms substantially more powerful, yet simpler to imple-
ment and more efficient compared to related work. To our
knowledge, our algorithms are the first to analyze and ac-
curately bound the sequences of conditionally updated vari-
ables and pointers in a multidimensional loop nests with a
time complexity that is linear in the number of blocks com-
prising the CFG of the loop nest.

The algorithms presented in this report are part of a new
class of algorithms for induction variable and pointer anal-
ysis. In our previous work [33, 34] we presented an algo-
rithm for induction variable analysis based on the CR al-

* Supported in part by NSF grants CCR-0105422, CCR-0208892 and
DOE grant DEFG02-02ER25543.

In this report we present extensions and efficiency improve-
gments of the aforementioned methods. More specifically,

e We present a family of new loop analysis algo-

rithms that operate on the reducible CFG of a
(multi-dimensional) loop nest without any restric-
tions on the loop structure;

The algorithms run in linear time in the number of
blocks of the CFG regardless of the complexity of the
CFG, i.e. independent of the number of possible paths
in the loop nest;

Full analysis of the recurrences of variables and point-
ers that are conditionally updated, which means that
loops that could not be analyzed by conventional meth-
ods due to control flow can now be analyzed and opti-
mized;

We introduce a nontrivial extension CR# of the CR al-
gebra with “delayed” recurrences to simplify the ma-
nipulation of recurrences of loops in the presence of
direct and indirect wrap-around variables;

We present an efficient method to compute a symbolic
bound on the number of loop iterations of a pre- or
post-test loop, where the loop exit condition may con-
tain conditionally updated variables. Our work is the
first to address this class of loop iteration problems;
We provide proof of soundness and termination of the
algorithms.

2. Motivation ematically equivalent CR expression [3, 34]. A CR form
o, = {¢o, ®1, f1}; describes a sequence of values starting

Accurate dependence testing is critical for the effec- with an initial valueg, updated in each iteration by adding
tiveness of compilers to optimize loops for vectorization (®; = +) or multiplying (®; = *) the current value by the
and parallelization, or to improve performance. Most loop “increment” or “step” functionf;. When f; is another CR
optimizations rely on exact or inexact array data depen-form this produces ahain of recurrences
dence testing [6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, o IRy
22, 23, 25, 927[29, 30, 31, 32, 40, 44]. Current depen- @i = 140,01, {91, 02, g2+, Ok {duhikikiks
dence analyzers are quite powerful and are able to solvewhich is usually written in flattened form
complicated dependence problems, e.g. using the polyhe- ®; = {¢0, 01,61, 2, -, Ok, di }i
dral model [7, 20]. However, more recently several au- - .
thors [13, 24, 26, 35, 38, 41] point at the difficulty these de- | ¢ CR coefficients) are (symbolic) constants or nested
pendence analyzers still have with nonlinear symbolic ex- CR_ forms of a different grid variable representing multi-
pressions, pointer arithmetic, and control flow in loops. variate CR (MC,R) forms ,[4]' .

Part of the problem is the application of induction vari- A CR form is essgntlally a short-hand n(_)tatlo_n for a
able substitution (IV'S) to construct closed forms for induc- ;et of recurrence relatlons_ evaluated over an iteration space
tion variables prior to array dependence testing and loop op-* ~ 0,...,n—1.The following loop _template Is perhaps the
timization [2, 14, 16, 34]. Because conditionally updated simplest way to express the meaning of a CR form:

variables do not have closed forms many compiler opti- oo = o
mizations cannot be applied [38, 41]. Another problem is e =
the complexity of current IVS methods [2, 14, 16, 28, 39] ' -
.) . . . - Clg—1 = Pp—1
that require extensive symbolic manipulation. In addition, fori=0ton—1
these algorithms cannot be easily adapted to low-level CFG- val[i] = Cro
based compiler optimizations, because of the semantic gap Cro =Cro ©1Cn

.) . . Ccrp =crp. ©20Cr
between information processed by high-level restructuring : = S
compilers and low-level code optimizing compilers. Cr—1 =Cly—1 Ok Pk

To address these concerns we take a radically different endfor
approach by turning the problem up-side-down. We con- The loop produces the sequene{i] of the CR fornt.
vert closed forms to recurrences and compute recurrence The CR form provides a powerful notation to describe
relations for (non)linear induction variables and condition- functions evaluated in an iteration space. Consider the type
ally updated variables and pointers. The recurrence formsof functions commonly encountered in the symbolic analy-
are used to solve a larger class of loop analysis problemssis performed by a compiler.
such as array-based dependence testing,
any a-priori code translations.

The remainder of this report is organized as follows. In
Section 3 we present the CR# algebra with a new formalism
for representing and manipulating “delayed” recurrences.
Section 4 presents the loop analysis algorithms with a dis-
cussion of their efficiency and proof of soundness and ter- Multivariate Polynomials are uniquely represented by

without reqUIrIngAffine functions are uniquely represented by nested CR
forms {a, +, s}, wherea is the integer-valued initial
value ands is the integer-valued stride in the direc-
tion of i. The coefficient: is a nested CR form in an-
other dimension.

mination, followed by the results of the improved algorithm nested CR forms of length, wherek is the maxi-
on dependence testing in Section 5. We summarize the re- mum order of the polynomial. Alp operations in the
sults and conclusions of the report in Section 6. CR form are additions, i.e> = +.

Geometric functionsa r? are uniquely represented by the
3. The CR# Algebra CR form{a, *,7},.

Characteristic functions of generalized induction vari-
ables (GIVs) are uniquely represented by CR
forms [33].

In this section we present our nontrivial extension CR#
(CR-sharp) of the CR algebra for the analysis and manipu-
lation of irregular functions.

The CR forms of these and other functions can be easily de-
3.1. Chains of Recurrences rived using the CR algebra simplification rules. The rules

A function or closed-form expression evaluated over a 1 This sequence is one-dimensional. A multidimensional loop nest is
unit-distant grid with index can be rewritten into a math- constructed for multivariate CR forms.

do not require extensive symbolic manipulation [34], be-
cause the manipulation is similar to constant folding [1]. To
compute the CR form of an expression we replace the iter- {0#, 1} {1LAT 4T 00T {04TH {041} {1%2) ..

ation counter(s) with their CR forms and then apply the CR 0 k\z} /1\/0\+1/é ;r//
‘\ 7

{04#,1,+,-1} ... {-1#-2,+-1} {0,+,0,+,-1} {L+041} {0,+0,+1} ...
\ / /

©

rules to produce a (multivariate) CR form, e.g. as in
f@) =56 —i) = ({0, +,1}37 = {0, +,1};) =

$({0,+,1,+,2} — {0,+,1}:) = ${0,+,0,+,2}; = i
{0,+,0,+,1};
The CR algebra is closed under the formation of a (multi- Figure 2. Snapshot of the CR# Lattice

variate) characteristic function of a GIV for induction vari-
able analysis [34]. However, the original CR algebra rules 3.3. The CR# Lattice

are insufficient to compose irregular functions with excep-

tional values. Functions that start with a sequence of un- 14 gefine a lattice on the CR forms in the CR# algebra
related initial values or functions with irregular increments e introduce three special values T, and Tx..

cannot be represented. For more details on the original CR)
algebra, we refer to [3, 5, 34, 35, 42, 43]. Definition 2 The L, T, and T elements are defined by

e | denotes an unknown quantityso < 1 < oo;

3.2. The Delay Operator of the CR# Algebra e T denotes a nonnegative unknolrs T < co;

We introduce a new operator # together with new alge- e T denotes a positive unknown< T < oo.
braic simplification rules on CR forms containing the oper-

ator. The new CR# algebra rules are shown in Figure 1. Definition 3 ThereductionoperatorR is defined by

R{¢0,01, fi}i = {Rdo,O1,Rf1}s

Definition 1 Thedelay operato# is defined by)) o]
with Rz of a non-CR (symbolic) coefficientdefined by

(z#y) =y]
—T?g ifz <0
for anyz andy. -T ifz<0
0 ifz=0
A CR form containing the delay operator will be referred Re=9 T ifz>0
to as adelayed CR formThe reason for the terminology is T x>0 ,
1 if the sign ofz is unknown

explained as follows.) , .
Consider®d; = {¢o, @1, #;, -+ O, dc}i. Note The following CR# rewrite rules are applied to reduce the

that the loop template @b, updates variabler; ; by CRformto asinglel, £T, =T, or 0 value:
Crj_1 =crj_1 #crj (Lonht = L ({¥7*7${i z 'I'T
— Iy i -
which is identical to the assignment {qb{OT’Qi’%: Z # {60, —T}h = L
orj_1 =cr; ~T4-T o= -1 AT#ETh = T
e (T4 -Th = 1 UT#-Th = -7
Therefore, the # operator introduces a one-iteration delay in =T.+ThH = 1 F ##_T{ j n
the sequence of values produced by subsequent updates

the loop. 'The rules foro and T, are similar.

The delay operator allows a set of initial values to Note that for determining the value &z whenz is sym-
take effect before the regular sequence kicks in. Thus, de-olic we can use common rules such as
layed CR forms define recurrences with out-of-sequence T

. - . TLE = it E>0

values. This serves two important purposes. First, de- L otherwise
. T if E>0
layed CR forms can be used to define any sequence ExT = T it B0

of values zq,x1,...,z, possibly followed by a poly- L otherwise

nomial, geometric, or another delayed for# as in Thge reduction operation traverses the lattice starting with a

©; = {zo, #, 21, %, -, #, 21, #, ¥, }. Secondly, induc- cR_form and stops at, £T, T, or 0. For example
tion variables that are dependent on wrap-around variables,
R{()? +, 07 =+, 1}1 - {RO, +, R{07 +7 1}1}Z = {07 +, T}’L =T

i.e. indirect wrap-around variables, can be accurately repre-
sented using delayed forms. Wrap-around variables are curThus, the sequence §6, +, 0, +, 1}; is nonnegative.

rently handled with ad-hoc techniques by existing IVS The CR# lattice shown in Figure 2 enables a grace-
methods and indirect wrap-around variables cannot be hanful degradation of information on recurrences to determine
dled. their properties such as sign and monotonicity.

CR#E

14 | {1« fixg1}s
15 {17*7fgl}i
16 {1’*7911}7;

{1+ fiyix {1, %, 01}
fi[lv*sgl}i

{1_7*791}if1
fi

O'L
(i+f1—=1)!

when: does not occur irfy

whens does not occur irfy
when: does not occur irf;

whens does not occur irf; andf; > 1
whens does not occur irf; andf; < —1

| LHS RHS Condition
1] {¢o,+,0} = ¢o
2 | {¢o,* 1} = ¢
31 {0, fi}s = 0
4 | —{éo,+, f1}i = {—¢0,+ —fi}i
5| —{¢0,*, f1}i = {—do,* f1}i
6 | {¢0,+, f1i}i = E = {¢oxE,+ fi}i whenE is i-loop invariant
7| {¢0,*% fi}s £ E = {poE E,+,d0* (f1 — 1), %, f1}: whenE andf; arei-loop invariant
8 | Ex{¢o,+, f1}i = {Ex¢o,+Exf}i whenE is i-loop invariant
9 | Ex{do,* f1}i = {Ex*¢o,* fi}i whenE is i-loop invariant
10 | E/{¢0,+, fih = 1/{¢0/E,+, f1/E}: whenE # 1 is i-loop invariant
11 | E/{do,*, fi}1 = {E/¢o,*1/f1}i whenE is i-loop invariant
12 | {po,+, fr}i £{o, +,91}i = {po Lo, + frEtg1}i ' o
13 | {bo,* fi}ti £{vo,+ g1}i = {poEo,+,{po* (fi —1),% fi}itg1}: whenf; isi-loop invariant
14 | {¢o,+, f1}i * {0, +,91}i = {0 * o, +,{bo,+, f1}i * g1 + {0, +,g1}i * f1 + fr* g1 }i
15 | {¢o,*, f1}i * {0, *,91}4 = {po*vo,* fi*g1}i
16 | {¢o,*, f1}F = {oF,~ Y whenE is i-loop invariant
17 | {go, *, fr} Voo = {Go0, %, {po,x, S} x fLOTI gy,
18 | El¢o.+.f1}s = {E% « EN}, whenE is i-loop invariant
{0+, f}i * {do,+, f1}] 7" fneZn>1
19 s+, n = _ v .
{¢0,+, f1}} {1/{¢07+7f1}in fneZmn<o
toots, (T o+ i+, %)} iF i >0
20 | {¢0,+, f1}s! = o 1
{¢o!, , (szll{% +]}+,f1}i) i iff1<0
21 | {0, +,b1,%, f2} = {¢o,* fa}i When‘% =fo—1
22 | {0, #, f1}i = N whengo = VB (see Appendix A.1 fob’ andB)
23 _{d)ov#vfl}i = {_¢0’#7_fl}i
24 | {po,#, fi}i + E = {¢orE,# fitE}; whenE is i-loop invariant
25 | Ex{¢o,#, f1}i = {Ex¢o0,#, Ex*fi1}i whenE is i-loop invariant
26 | {¢0,#, fi}i £{vo, # 01}i = A{doE£vo,# frtai}i
27 | {do,#, fritix {0, #, 911 = {Poxvo,#, fr*xg1}i _
28 | {¢o,#, fri}i {0, +,91}: = {doEvo,#, f1 £ F{vo,+,91}i}s (see Appendix A.1 forF)
29 | {¢o0,#, fr}i * {vo,+91}: = {do*vo,#, f1 * F{o,+,91}i}i (see Appendix A.1 forF)
30 | {¢o,+,¢1,#, f2} = {¢o,#, b0 + ¢1,+f2}i
31 | {¢o,* ¢1,#, f2} = {¢o,#, b0 *x $1,%f2}s
CR#1T
| LHS RHS Condition
1 [{¢o,+, fr}i = ¢o+{0,+ fi}i whengo # 0
2 | {po,* fr}i = ¢o*{l,x fi}: whengo # 1
3 {07+7_f1}i = _{0)+7f1}1'
4 {07+7f1 +gl}1 = {07+7f1}i+{07+7gl}i
5| {0,+,f1*x91}s = fix{0,+,g91}: whensi does not occur irfy
6 | {0,+, fiti = ﬁ:i wheni does not occur irf; and fi # 1
70+ MY = {04 s
8 | {0,+, 7MY, = {0,+,(fI)i) wheni does not occur irf; andgy
9| {0,+,f1}s = ixfy wheni does not occur irfy
10 | {0,+,i}; - 2
N (n«ki;l)
11 | {0,4,i"}; = Zk:_o 1 Br gn—k+1 forn € IN, By, is k* Bernoulli number
12 {17*7_f1}i = (_1)1{17*7']“1}1'
13| {1,%+} = {Lx)
=
=
=
=
=
=
=
=

17 {1,*,f1}i

18 | {1,%,i}s

19 | {1,%,i+ f1}i
20 | {1,*,f1 —i}s
21 | {¢o,#, f1}i

(e

(i=0)?7d0: f1li —i—1]

(assumingf; is in closed form, replacéwith ¢ — 1in f1)

Figure 1. The Complete CR# and CR#~! Algebra Rewrite Rules

4

3.4. Monotonicity

To determining the monotonic properties of a CR form
we extract directional information by applying the reduc-
tion operator on the increment function of a CR form.

Definition 4 Themonotonicoperator M is defined by

M{¢o,+, f1}i = RA

[Réo HR(L—-1)=T.
Midox ik = s ’ otherv\}ise ?
M{po, #, fr}i = ML)XRVf1L — o)

with Mz = 0 whenz is a (symbolic) constant. The lattice
relation X returns the maximum element= x X y in the
lattice such that < x andz < y. See Appendix A.1 for the
definition ofV.

w
&
nn

—_—

a{1,*2}

Figure 3. Plot of {1,#,1,+,2}; and {1,x,2},

The monotonic operator returns directional information on ®: = {¢0,®1,- -, Ok—1, $k—1,

a CR form as a lattice elemenit (monotonically increas-
ing), T (strictly monotonically increasing);-T (mono-
tonically decreasing);- T (strictly monotonically decreas-
ing), 0 (constant), orl. (unknown). Consider for example

RO= T, M0=T

Thus, the sequence generated{By+#,0, +, 1}, is mono-
tonically increasing. Determining the monotonicity of a CR

form enables accurate value range analysis [8] and nonlin-
ear dependence testing [36] further discussed in Section 5.

3.5. CR# Alignment

Two or more CR forms of different lengths or with dif-

ferent operations can be aligned for comparison. By com-

paring the coefficient®; of a CR form we can determine
whether one of the CR forms bounds the other(s).

A delay operator can be inserted in a CR form according

to the following lemma.

Lemmal Let®; = {¢o,®1, f1}:; be a (multivariate) CR
form. Then,

©; = {po, #, FP:}
See Appendix A.1 for the definition/Bf

As a consequence of the chain property of a nested CR for
a # operator can be inserted anywhere in a CR form.

To align a (delayed) CR form of a mixed polynomial and
geometric function to a longer (delayed) CR formpper-
ators can be inserted for pairwise alignment of thapera-
tions between two or more CR forms.

Lemma 2 Let D, {¢07®17"'a®k—1a¢k‘—1a*7¢k}}i
such thatg, is invariant ofi. Then, any numbem > 0
of + operators can be inserted at thg—1)" coeffi-
cient

+, 1 (Pr—1),+, dr_1(drp—1)2,+, -

inserted

s+ Sr—1(Pp—1)™
» ¥ ¢k}z

without changing the sequence®f.

To align two CR forms of unequal length, the shorter CR
can be lengthened by adding dummy operations as follows.

Lemma3 Let &; = {¢o, ®1,¢1,02, -, Ok, ¢1}; be a
(multivariate) CR form, where,, is invariant ofi. Then,
the following identities hold

®; = {¢0,01,¢1,02, -, O, Pr, +,0};
;. = {¢0,01,¢1,02, , O, i, *, 1};
®, = {¢0,01,¢1,02, ", O, Pk, #, Pr }s

Two or more CR forms can aligned using Lemmas 1, 2,
and 3. Consider for example the alignment

3.6. CR# Bounds

Alignment allows us to compare the coefficients of CR
forms to determine bounds. It is evident that the sequence

Mof w, = {1,%,2}; dominatesd; = {1,#,1,+,2};, as is

shown in Figure 3. A mix of the sequences is generated for
variablei by the CFG of the loop shown in Figure 3. Téhe
and¥; sequences bound the values.@ur induction vari-
able analysis algorithm discussed in the next section com-
putes the bounding CR forms for recurrences in loops using
alignment and the min/max of two CR forms.

Definition 5 Theminimum of two CR forms is inductively
defined by

min({do, #, f1}i, {¥0, #, 91 }:)={min(do, 0), #, min(f1,91)}s
min({o, +, f1}i, {¥o, +, g1 }:)={min(¢o, %0), +, min(f1, g1) }
min({o, *, f1}s, {¥0,*,91}4)
{min(¢o, 10), *, min(f1, g1)}:
if po>0 A 1po>0A f1>0A g1>0
{min(¢o, o), ¥, max(f1,91)}:
if po<OAWo<OA f1>0A g1>0
) A{¢o, % fik if po<0 A o>0 A f1>0 A g1>0
{%0,*,91}4 if po>0 A 1po<OA f1>0A g1>0
{—max(|¢ol, [¥ol), *, max(|f1], [g1])}: if f1<OV g1<0
1L otherwise

where the sign of the coefficients is determined usingthe
operator. Thanaximumof two CR forms is inductively de-
fined by

max({¢o, #, f1}i, {0, #, 91 }i)=

max({¢o, +, f1}i, {t0, +, 91 }i)=

max({¢o, *, f1}i, {10, *, 91 }:)
{max(¢07¢0)7*7max(flvgl)}i

if 90>0 A wo>0A f1>0A g1>0
{max(¢o, o), *, min(f1, 91)}:

if po<OAYPo<OA f1>0A g1>0

Y {¢o,% f1}i if po>0 A Po<0 A f1>0 A g1 >0

{%o,*,91} if po<0 A Po>0 A f1>0 A g1>0

{max(|gol, [to]), + max(| 1], lgi}: if f1<0V g1<0

1L otherwise

{max(¢o, o), #, max(f1,91)}
{max(¢07 7/10)7 +7 max(fl, gl)}l

Consider for example

min({l) #7 1,4,2, %, 1}1'7 {17 #7 2,+,2,%, 2}2):{1’ #7 1,4,2, %, 1}1
max({17 #7 17 =+, 27 *, 1}’i7 {17 #7 27 =+, 27 *, 2}1):{17 #7 27 +, 27 *, 2}7,
After application of min and max the CR forms can be sim-
plified using the CR# algebra rules. Figure 3 shows a plot
of the simplified minimum and maximum CR forms.

4. Loop Analysis Algorithms

Loops are analyzed in a reducible CFG from the inner-
most nested loops to the outermost loops. For each loop,
analysis proceeds in two phases. The first phase analyzes
the updates of the live variables in the loop to collect the
set of recurrences relations on the variables. In the sec-
ond phase the recurrence relations are solved in CR form
and stored inecset[H| for loop header block7. CR-form
bounds on the recurrences are storethityeset[H|. Anal-
ysis of outer loops require threcseks andrangeses of the
inner nested loops.

Algorithm FINDRECURRENCES$H, R)
Find recurrence relation® for loop (pre)headef!
-input: CFG withlive[H] the set of live variables &
- output: set of recurrence relatior3 in tuple form
R:=10
A :={(v,v) | v € live[H|}
S := {B:A | block B has a back edge to H}
while S # 0 do
Remove the next pair B: A from the working set S
if B has a back edge to a loop (pre)header Hycsted
and H # Hpesteq then
M ERGELOOP(Hnestedv A, S)
else
MERGE(H, B, A, S)
if B= H then R:= RU A endif
endif
enddo

Algorithm MERGE(H, B, A, S)
Update the recurrence systetrfor loop (pre)headeH!
by merging the effects of block with recurrence system
- input: loop (pre)header numbéf, block B,
recurrence systerd, and working seS
- output: updatedA andS
for each assignment v = ezpr in backward order
from the last instruction in B to the first do
UPDATE(A, v, expr)
enddo
if B # H then
for each predecessor Byeq € pred|B]
(excluding the back edges of B) do
if there is a pair Bp,,cq:A’ € S then
S := S\ {Bprea:A’} U {Bprea:(AU A")}
else
S:=SU {Bpred:A}
endif
enddo
endif

Algorithm UPDATE(A, v, expr)
Update the recurrence systetrwith v = expr
-input: recurrence system, variablev, expressiorezpr
- output: updated recurrence systefn
Handle side-effects and potential aliases (Sec. 4.9) in expr
for each (z,y) € Ado
Update (z,y) in A by replacing all v's in y with expr
enddo

Figure 4. Algorithm to Construct the Recur-
rence System of a Loop

The recsetandrangesebf a loop gives complete infor-

mation necessary for further compiler analysis, such deter-shown in Figure 5. The CFG has two back edges at (1) and
mining the number of loop iterations, for applying induction (2). The algorithm analyzes the paths in backward order
variable substitution and array recovery, for idiom recogni- through the CFG using a working s&tof blocks B asso-

tion, and for data dependence testing.

ciated with partially completed recurrence systemsrhe

initial working set contains all blocks with back edges to the

4.1. Phasel

headerH associated with the initial set of recurrence rela-

tions A := {(v,v) | v € live[H|} wherelive[H] is the

The first phase is performed by\NDRECURRENCES

set of live variables (and registers) at the loop header deter-

shown in Figure 4. The routine computes the set of recur- mined with data flow analysis [1]. For example, the first two

rence relations? of a loop with (pre)headefi .
The first step in NDRECURRENCESS to find all blocks
with back edges to the headHr, see for example the CFG

items in the working set of the example loop shown in Fig-
ure 5 are

S:{ B3:{<i7i>7<j7j>7<k7k>}7 B4:{(i7i>7<jvj>7<kvk>} }

live[B,] ={i,j, k} live[H] ={i, j,k}

{<i,i+j+k>
<jjtk>
<k k>}

Y
i
<k k>}

Figure 6. The MERGE Operation

rithm requires that the initial set of recurrence relatidghs
Figure 5. Initial Stage of Algorithm FIND- forms a partial order defined by tiveclusion relation<

RECURRENCESApplied to an Example Loop (,2) < (u,y) it v £ uandv ocours iny

The inclusion relation defines a digraph on the elements
The working set is updated as the algorithm pro- in R. The strongly connected components represent recur-
ceeds towards the loop header. The algorithm takes'€nces with periodic sequences or sequences that cannot be
one B:A pair from the working set, sayBs:A with represented by sums and products of polynomials, expo-
A = {{,1,4,)), (k.k)}. The MERGE routine merges nentials, and factorials. Section 4.5 describes a technique
the effects of a block in the working set with its recur- to break the connected components.
rence system (the merging of the effects of nested loops SOLVERECURRENCEStakes pairs fromiz in inclusion
will be discussed later in Section 4.7). The routine up- order=. The CR form solutions are computed one by one
dates the recurrence system for each instruction in the blockand substituted in the recurrence relations that depend on
in backward order starting with the last instruction. Af- them. The CR# algebra rules are used in the main loop to
ter merging, all predecessor blocks except headers arélmpllfy and normalize the CR forms after substitution to
added to the working set with the updated system. For ex-match the CR forms of the recurrence relations.

ample, merging=i+1 from block B, gives the updated sys- The recurrence relation? is a set of tuples computed in
tem A = {(i,i+1),{,)), (k,k)}. The algorithm then the first phase. For the example loop shown in Figure 5 the
proceeds with the predecessorsRyf, i.e. B, and Bs. Be- setR computed by NDRECURRENCESIS
causeBg.is aIreaQy in th(_a working set, the new recurrence R=1{ G100, 6+, G0, 60, (kK)
system is combined with the previous recurrence sys-)))
tem for B; using set union: There are three inclusion relations on tuplegin
G =G0, 6D =G0, i) < G0
S = { B2{<|7|+1>7<Jv.]>7<k7 k>}7
Bs:{(i,i), (4,0, (k,)} UL i+1), G,J), (k k))} Thus, LVERECURRENCESselects any one of the tuples
={ Ba:{{ii+1), Gd): (ko)}, Ba:A), G i41), GJ), (ko b} in R for variablesi andk to replace them with CR forms.

This process continues until the header block is reached andAfter computing the CR forms for these tuples and deleting
merged. The resulting set of recurrence relations of the ex-the original non-CR form tuples we obtain
ample loop is a set of variable-value pairs R={ (i,{io,#,1}B), (i, {io}By), (i, {io, +, 1} B,), (s),

R={ 1,60, 6+, 6,0, G0, (kK } (G, {ios #: 1} By)5 G, {io} By), (s {io, +5 13 By), G005 (ks {ko} By) 3

The MERGE routine plays a critical role for updating the At this point tuples forj are considered. The tuple in
partial recurrence systems by collecting the effects of athe deletion setD = {(j,i)} (updated by 8BSTITUTE)
block. It applies a backward search through the instructionsis discarded fromR. After computing the CR forms for
of the block to update the system. This is best illustrated (j, {io, #, 1} 5,), (j, {io} 5,), (; {i0, +, 1} 5,) and (j,j) the
with the example shown in Figure 6. In each step iBFRGE resulting solution sek is stored inrecset[H], where

the set of partial recurrence relations is updated. recset[H] = {(i, {io, #, 1} 5,), (i, {io} B,), (i, {io, +, 1} B,)
U, {ios #.i0, #, 1} B,), U, {io, #, 10} B),
42 Phase 2 <,j7{j07#7i01+7 1}B1>7 (Ja {j0}31>7 <k7{k0}31>}

The SOLVERECURRENCESalgorithm shown in Figure 7 2 For notational convenience, thg jo, andko denote the initial values
solves a set of recurrence relations in CR form. The algo- ~ °f -}, andkat the start of the loop.

Algorithm SOLVERECURRENCER) Algorithm BOUNDRECURRENCES$H)

Compute the solution to the recurrence sysfenm recset|[H | Computerangeset[H| for the loop with (pre)headeil

-input: recurrence syster -input: live[H] andrecset[H] for (pre)header blockl

- output: solution inrecset[H] - output: rangeset[H] with induction variable bounds

D:=90 rangeset|H| := 0

Remove strongly connected components from R (Sec. 4.5) for each variable v € live[H] do

for each (v, z) € R in the order defined by < do Use alignment (3.5) and min/max bounds (3.6) to compute
if (v,z) € D then Winin = min{® | (v, ®) € recset[H)}

R:= R\ {{v,z)} Wmax := max{® | (v, ®) € recset[H]}
else rangeset|H] := rangeset[H] U {{v, U imin, Ymax)}
Apply CR# rules to x (v is marked loop-variant in x) enddo

if = is of the form v + ¥ (¥ is CR or constant) then
P :={vo,+, ¥}
else if x is of the form v x ¥ (¥ is CR or constant) then
o = {Uo7 *, \IJ}H
else if z is of the form ¢ x v + ¥, where c is constant
or a singleton CR form and ¥ is a constant

Figure 8. Algorithm to Compute rangeset[H|

of steps where all possible paths in the loop body are tra-

or a polynomial CR form then

@ := {po,+,P1,+,*, +, Prt1, % Prt2}H, Where
¢o=wvo; ¢;=(c—1)pj_1+vYj_1; Prp2=c

else if x is variable v then

@ :={vo}y
else
@ = {vo, #,7}y
endif
SUBSTITUTE(v, @, R)
endif
enddo
recset[H] :== R

Algorithm SUBSTITUTE(v, ®, R)
Substitute all occurrences of variablavith CR form ®
in the recurrence syster
-input: variablev, CR form®, and recurrence syste®
- output: updated recurrence systef
Replace (v, z) in R with (v, @)
for each (u,y) € R such that (v, z) < (u,y) do
D := DU {(u,y)}
Create new y’ by replacing all v's in y with ®
R:=RU{(u,y)}
enddo

Figure 7. Algorithm to Compute recset[H]

versed. However, we adopt a selection order that ensures
that the algorithm is linear in the number of blocks com-
prising the CFG of the loop body. To achieve this, we keep
a countercount|[B] with each blockB in the loop body. The
counter is initialized to the number of successors of a block
minus the back edges:

count[B] := [{Bsucc € succ[B] | Bsucc is NOt a loop headéf

The countercount|By,eq] is decremented in MRGE each
time a set of recurrences is saved or combined with another
set of recurrences for blocK,..q in the working set. Only
when the counter is zero the blogk A is selected from the
working set for the next iteration inINDRECURRENCES
Because this method ensures that each block is visited only
once, FINDRECURRENCESS linear in the number of blocks

in the CFG of the loop body.

4.4, Soundness and Termination

The ANDRECURRENCESand SLVERECURRENCES
algorithms are sound and terminating.

Theorem 1 Given a reducible CFG of a loop (nest) with

Finally, the CR forms inrecset[H] are bounded using align-
ment and the application of min/max bounds (Sections 3.5
and 3.6). The CR-form bounds are storedrimgeset|[H] Proof. The header block! dominates all blocks with back
computed by BUNDRECURRENCESshown in Figure 8. edges toH by definition of a reducible CFG [1]. Because
Applied to therecset[H] of the example loop we obtain the FINDRECURRENCESstarts at blocks with back edgesib
rangeset[H| of the loop and traverses the CFG via predecessor blocks, the algorithm
{ i, {io,#,min(io, 1)} g, , {io, #, max(io+1,1),+,1} 5,) event_ually terminatgs at the dominating bldgk o

(s {jo, #, min(io, jo) } By » {jos #, max(io, jo), +> 1} 5,) It is easy to verify that SLVERECURRENCEStermi-

(ki{ko} By, {ko}B:) nates. Even though the sBtmay grow when considering
where each tripldv, Upin, Upnax) in the rangesetdefines tuples for variablev, a new finite ;et of tuples .is added to
CR-form bounds such that the sequence of values isf R for varlable_Su, u #£ v, in inclusion order defined b.
bounded by the sequences®f,;, and¥ ... Thus, tuples ink are considered only once.

(pre)header block!, FINDRECURRENCESterminates.

Theorem 2 The general recurrence form of a variable
4.3. Performance and Complexity

vV = V0
fori=0ton-1
The selection of aB:A pair from the working set in
FINDRECURRENCESaffects the performance of the algo-

rithm. A naive selection may lead to an exponential number endfor

v=a* v+ p(i)

Algorithm LooPBOUNDS(H)
<a,a+b> Compute the bound&ery,in [H anditermax[H] on the number
live[H] ={a, b, n} \1/ ___— \1/ of loop iterations of the loop with (pre)head&r
-input: rangeset[H] for (pre)header blockl
-output: 0 < itermin[H] < ttermax[H] < T
itermin[H] :== 0
itermax|[H] := T
if loop H has a single pre- or post-test exit condition then
Convert exit condition to ezpr < 0 by reordering terms
range := expr
start := 0
for each (v, Viin, Ymaz) € Tangeset|H] do
if the loop has a post-test exit condition then
Ynin := F¥min
WUnax := F¥max

{ |<a,(ao,+,T}H> | | <b, {by, # 2, + T}y, > |

5 ~ o
+
o

-

S T o
nmonon

Figure 9. Loop with Cyclic Recurrences

whereca is a numeric constant or aftloop invariant sym- start == 1
i i i ial ini endif
bolic expression and is polynomial in; expressed as a CR Replace all v's in range with interval [, Urmas]
form¥,; = {¢vg, +,v¢1,+, - -, +, ¥k }4, has the correct CR- enddo
form solution®; for v computed byYSOLVERECURRENCES Apply interval arithmetic and C R# rules to simplify range

such that range = [®min, Pmax]

©i = {0, H,01,+, s s Prt1s ks Prga i Apply CR#7 " rules to convert @,y to closed form L(I)

where Apply CR#;l rules to convert ®ax to closed form U (1)
Isolate I from L(I) and U(I) suchthat L < Tand U < I
$o = vo; ¢j = (@ —1)bj—1 +j—1; Prt2 = (if isolation is not possible, set L := 0 and U := T)
ttermin [H] := max(start, U)
Proof. See [36, 37]. O iterman [H] = max(start, L)
endif

4.5. Breaking Cyclic Recurrence Relations

Figure 10. Algorithm to Compute Loop lItera-

SOLVERECURRENCES requires the use-def depen- .
d P tion Bounds itermin[H| and itermax[H]

dences between the recurrence relationB o be acyclic.
Strongly connected components must be eliminated. Fig-
ure 9 illustrates how a cycle is broken by converting a cyclic
recurrence relation into a reduced CR form with the lat-
tice elementl” (assuming that the initial valug, > 0). In
general, cycles can be broken by replacing a variable’s up-
date with an unknown. In many cases we do not need to deln the initial stage of the boPBounDsalgorithm, the post-
termine the exact sequence of values as long as the sigiest l0op exit condition < jis rewritten intoi—j+1 < 0 by

and monotonic properties are preserved in the CR forms.reordering terms. Because the loop has a post-test condition,
In specific cases, pattern recognition can be applied to dethe CR forms of the variablésndj in the rangeset[Bs| are
termine the functions of specific (periodic) sequences, Shifted forward, that is

TECSEt[B3] :{<i7 {i07 +, 1}B3>7 <.jv {j0}33>7 (Jv {j01 +, _1}33>}
mngeset[Bg] :{<i7 {i07 =+, 1}337 {i07 +, 1}33>7 (jv {j07 +, _1}337 {jO}Bg>}

such as the Fibonacci function whose iterative computa- Flio,+ 1}, = {io+1,+, 1}5,
tion is shown in the example loop. Fliotss = Hio}ns
Flio,+,=1}p; = {io—1,+,—1}p;4
4.6. Bounding the Number of Loop Iterations Thei andj variables in the condition—j+1 < 0 are re-

) placed with their shifted value ranges and simplified using
To accurately analyze a loop nest from inner loops to the 3 combination of interval arithmetic and the CR# algebra
outer loops, the number of loop iterations of the inner nestedyy|es, giving

loops are determined. ThedloPBounDs algorithm shown
in Figure 10 computes a symbolic lower bouiter ;. [] [io41, 1} 5 {io-+1, ++ 1 5] — [o—1, +» —1} 5y, Lo} a] — 1
and upper boundteryax[H] on the number of loop iter- = {io+1,+,1}B; + [~ {jo}Bs, —{io—1, +, —1}B;] — 1
ations, provided that the loop has a single pre- or post-test= [{io+1,+,1} s —{io} B; —1, {io+1, +, 1} s —{io—1,+, =1} B; —1]
; o ; = [{io—jo, +, 1} B3, {io —jo+1,+,2} 5]
exit condition and a single back edge to the loop (pre)header
H. The algorithm uses the CR# algebra rules to convert theThese CR forms describe the minimdrm,;,, and maximum
loop exit condition to CR form and exploits interval arith- @, progressions towards the exit condition, i.e. the loop
metic to determine the iteration range. terminates when the sequences reach zero. To compute the
Consider for example the loop nest shown in Fig- closed-form equivalent of this interval, we convért;,, and
ure 11(a). After applying the loop analysis algorithms on ®,,,., to closed formsL(I) andU(I) and then isolate the
the nested loop with head&; we have: variablel as follows

Algorithm MERGELOOP(Hypested, 4, 9)

Updated the recurrence systetrwith the recurrences of the

nested loop and add to the working et

-input: recset[Hnested]s 1€ min [Hnesteds 16T max[Hnested,
recurrence system, working setS

- output: updated working sef

for each (v, ®) € recset[Hpested] dO
if M® = 1 and itermin [anstcd] # itermax [anstcd} then
UPDATE(v, L, Amin)
UPDATE(v, L, Amax)
else
Apply CR#;l rules to convert ® to closed form f(I)
Replace I's in f(I) with itermin [Hnested] 9iVing L
UPDATE(v, L, Amin)
Replace I's in f(I) with itermax|[Hpestea] 9iving U
. . UPDATE(v, U, Amax)
(a) Loop Nest with (b) Triangular Loop endif
Conditional Update enddo
A= Amin U Amax
. for each predecessor block Bpcq € pred[B]
Figure 11. Example Nested Loops (excluding the back edges of B) do
if there is a pair Bpeq: A’ € S then
S = S5\ {Bprea:A’} U {Bprea:(AU A")}

LI)<0 = io—jo+I<0 = I<jo—ip else
UI)<0 = io—jotl+2I<0 = < [lo=lo=t) g_f::Su{Bpred:A}
endi
Thus, we obtainitery,,[Bs] = max(1, [2=2=1]) and enddo
itermax|[B3] = max(1, jo—io). Indeed, a closer look reveals _ _
that the number of loop iterations ranges frof%L | to n Figure 12. Merging a Nested Loop

with a minimum of one iteration whem < 1.

computed in the previous section,BRGEL OOP takes the

4.7. Multidimensional Loops recurrence relationd of the outer loop at blocB;, where

The MERGEL ooPalgorithm shown in Figure 12 is used A= {(v,v) | v € live[Ba]} = {(i,i), (n,n)}
by FINDRECURRENCES0 aggregate the updates on induc- Thys, MERGEL 0OOPcomputes
tion variables in a nested loop to update the current set of

recurrence relationd of the outer loop. MRGL OOP uses Amin N H::L% ”2} o)

the recsetand iteration bounds of the nested loop to ad- = {(, |+ztermm[33]) (n,n)}
vance the traversal of the CFG of the outer loop immedi- = {(i,i + max(1, [=552))), (n,n)}
ately to the headeH es:eq. By Omitting the blocks in the Amax = K: :>+<1) <>})

inner loop, which were already analyzed, the complexity of = {(i.i+ itermax|Bs]), (n,m)}
FINDRECURRENCESS linear in the total number of blocks = {({i,i+max(1,j—i—1)), < n)}

in the CFG of the loop nest.

The MERGELOOP algorithm computes the minimum
Apnin and maximumA,,,.. effects of the inner loop on the
recurrence system of the'outer' loop based on Fhe minimum{<| lio, +max(0, | =2)} 5., (G o+ max(0, no—1)}), (n, {no} 5,)}
itermin[Hnested] @Nd maximumiter pax[Hnested] iteration
bounds of the nested |00p If the minimum and maximum It is evident that variablés updates in the inner |00p con-
bounds differ, then the induction variables in the nested looptribute to a positive update to the variable in the outer loop
must form monotonic sequences to ensure accuracy. Thiginywhere in the rangenax(1, ["%]) to max(1,no—1)
is tested withm® # L, where® is the CR form of an makingi strictly monotonically increasing.
induction variable. To compute the aggregate value of the
updates to induction variables in the nested loop, the CR4.8. Multivariate Forms
forms of the variables need to be updated by the iteration
count, which is accomplished by converting the CR forms Multivariate CR forms for pointers and array index ex-
to closed form with indeX set to the loop bound(s). pressions are required to apply dependence testing on

For example, using theecset[Bs), itermin[Bs], and pointer access and arrays [36, 38]. To compute multi-
itermax[Bs] of the nested loop shown in Figure 11(a) and variate CR forms, we carry along ttrecsetof an inner

Block B; is merged with the union ofl,,,;,, U A,,,. to com-
pute therecset[Bs] of the outer loop, which is

10

loop in the working setS of an outer loop and up-

date it in MERGE for each assignment that is merged | "elHl={iik}
during the analysis of the outer loop. When thec- J
set of the outer loop is computed, we substitute the CR
forms (or their ranges) of the induction variables and point- k= k+i (1
: . <jj+1>
ers into Fherecses of the mner.loops. o i =— <kk+i>)
Consider for example the triangular loop in Figure 11(b). ﬁl}
Therecset[Bs] is {<ii P=i+1] ifets
<i{ip * <k k>}
- o : . kk>)
{{i, {io, +, 1} 8y), (s {io} a) (5. {50, + al{io, +, 1} 4. o} B} o)} g
When traversing through the outer loop the assignriwht N
causes, to be replaced with) in the recset[Bs] of the in- C O Ceiirt>) <kkei> D
ner loop. After computing theecsetof the outer loopjg is 0 _ vV
replaced with{0, +, 1} g, in recset|Bs] giving L<hlphiphtiy> | [<ilpt D> | | <kikgpbiphips > |

{(i={0=+71}33>7(jv{{07+71}32}33>7
(s, fs0,4,al{0, +, 1}y, {0+, 1y o } ol)} Figure 13. Nonlinear Recurrence Relations

The multivariate forms in theecseks of the inner and with an Indirect Wrap-Around Variable
outer loop enable dependence testing using our nonlin-
ear CR-based extreme value test [36, 38], such as on

al{0,+,1} B, {{0, +, 1} B, } s]- variable (marked by the oval in recurrence dependence
_ . graph in the figure) with delayed CR forfw, #, jo, +, 1 } i
4.9. Side-Effects and Aliases and k is an indirect wrap-around variable with delayed

CR form {ko, +, io, #,jo, +, 1 } & which is rewritten into

Possible side-effects on variables and variable aliasing isy io4ko. +.i0. 4. 1} by C R4 rule 30 before apply-
handled by representing unknown variable updates with lat- i{ng};tc(«)R#:]ll r7LJI|OéS. Agpﬁyir?g tth#*l rules givegrt)h):—:‘
tice elements. Thus, a variable updated with an expression,|gseq formsj for loop iteratioh > 0 !

that contains aliased variables is effectively updated with b

a positive (T or T,), a negative { T or —T.), or an un- J(Olflo) Plo o+ 1 -1

knovv_n (J_)_ guantity. Alias analysis and points-to analysis (I =0)7ko < ko +io+ (o — 1)« (1 — 1) + =1
help identify such cases. 2

whereiy, jo, andky denote the initial values of the variables

5. Applications at the start of the loop.

In this section we briefly review a number of applica- 5.2. Array Recovery
tions of the recurrence analysis algorithms for loop analysis

and optimization problems. Induction variables that are address-based pointers can
be converted to explicit array accesses, also known as ar-
5.1. Induction Variable Substitution ray recovery [13]. Array recovery is similar to IVS. That

is, when thaecsetof a loop contains one solution per vari-

IVS replaces induction variables in a loop nest with able the CR forms of the pointer variables in the set are con-
closed-form expressions. When thecsetof a loop con- verted to closed-form expressions using the inverse CR# al-
tains one solution per variable, which is guaranteed whengebra rules and pointer dereferences are replaced by array
the updates to induction variables are unconditional, theaccesses. For more details, see [35].
CR forms of the induction variables in the set are con-
verted to closed-form expressions using the inverse CR# al-5.3. Idiom Recognition
gebra rules shown in Figure 1. For more details, see [34].
In fact, our algorithm is the first to recognize and rep- Our CR-based algorithms facilitate the detection of
resent the recurrences of indirect wrap-around variables.global reductions such as sums. The CR form provides
These variables are updated with the values of wrap-aroundhe pattern of the idiom. For example, the multivariate
variables or other indirect wrap-around variables. ConsiderCR form {sg, +, a[{0, +, 1} 5,, {{0,+,1} B, } B,] } B, COM-
for example Figure 13. The recurrence dependence graplputed in Section 4.8 for the triangular loop nest shown
shows the ordering of the recurrences i0L8ERECUR- in Figure 11(b) denoteszoéj@,oﬁq a[i, j]. Depen-
RENCESto compute a solution. Variablés a wrap-around dence testing om is used to check for interference.

11

5.4. Data Dependence Testing

References

The details and results of our CR-based nonlinear de- [1] AHO, A., SETHI, R., AND ULLMAN, J. Compilers: Prin-

pendence tests are available in [36, 38]. The new algorithms
presented in this report enhance these dependence tests with
improved efficiency and accuracy with respect to bound- [2]
ing the sequences of conditionally updated variables and
pointers. The ability to determine loop bounds dependent
on conditionally updated variables also improves the accu-
racy of the dependence test. Because our nonlinear depen-

dence test directly utilizes threcsetandrangesebf a loop

without IVS or array recovery, the dependence test can be
directly applied to compute a dependence hierarchy for ar-
ray and pointer accesses in reducible CFGs with arbitrary

loop structures.

6. Conclusions

In this report we presented a set of CR-based loop anal-
ysis algorithms to support compiler analysis and optimiza-
tions that depend on induction variable analysis, such as id-
iom recognition, array date dependence testing, value range [6]
analysis, and determining the number of iterations of a loop
nest. An important property of the new algorithm is that its
complexity is linear in the number of blocks of the CFG of
a loop nest regardless of the nesting depth of the loop nest
and independent of control flow structure of the loop. We
use these algorithms at the basis of a family of compiler- [8]
related analysis algorithms for compiler optimizations re-
quiring the analysis of iterative updates to the state of vari-
ables in loop-based or recursion-based codes, e.g. for de-

pendence testing and loop optimization.

A. Appendix
A.l. TheV, F, and B Operators

Definition 6 Let®; = {¢g, ®1, ¢1,Oa, ..., Ok, ¢r }i be a
CR form. Thevalueoperator is defined by

Vo, = ¢o

Theforward shift operatois defined by

Fo; = {¢0,01,%1,02,- .-, Ok, ¥r }i
With; = ¢; ©j41 @541 forj =0,... . k=1l andyy = ¢y.
Thebackward shift operatas defined by

B®; = {¢0,01,%1,02,...,0k, Vi }i
withep; = ¢; O ¥ for j =0,..., k=1 andyy, = ¢y.
The inverse operators—! are defined by-—! = — (sub-
traction) andx—! = / (division).

The forward shift operator was introduced by Bachmann [
et al. [5]. The backward shift operator was introduced by
Van Engelen [33, 34]. ThB operator is not defined for CR

forms with the# delay operator, becaugghas no inverse.

12

ciples, Techniques and ToolsAddison-Wesley Publishing
Company, Reading MA, 1985.

AMMERGUALLAT, Z., AND HARRISON IIl, W. Automatic
recognition of induction variables and recurrence relations
by abstract interpretation. lproceedings of the ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI\White Plains, NY, 1990), pp. 283—
295.

BACHMANN, O. Chains of RecurrencesPhD thesis, Kent
State University, College of Arts and Sciences, 1996.

BACHMANN, O. Chains of recurrences for functions of two
variables and their application to surface plotting. Ho-
man Interaction for Symbolic Computati¢h996), N. Ka-
jler, Ed., Springer-Verlag.

BACHMANN, O., WANG, P.,AND ZIMA, E. Chains of re-
currences - a method to expedite the evaluation of closed-
form functions. Inproceedings of the International Sympo-
sium on Symbolic and Algebraic Computing (ISSACX-
ford, 1994), ACM, pp. 242-249.

BANERJEE, U. Dependence Analysis for Supercomputing
Kluwer, Boston, 1988.

BAasTouL, C. Code generation in the polyhedral model is
easier than you think. IRACT’13 IEEE International Con-
ference on Parallel Architecture and Compilation Techniques
(2004). to appear.

BIRCH, J.,VAN ENGELEN, R. A., AND GALLIVAN , K. A.
Value range analysis of conditionally updated variables and
pointers. Inproceedings of Compilers for Parallel Comput-
ing (CPC)(2004), pp. 265-276.

BLUME, W., AND EIGENMANN, R. Demand-driven, sym-
bolic range propagation. lproceedings of the'" Interna-
tional workshop on Languages and Compilers for Parallel
Computing(Columbus, Ohio, USA, Aug. 1995), pp. 141
160.

BURKE, M., AND CYTRON, R. Interprocedural dependence
analysis and parallelization. lproceedings of the Sympo-
sium on Compiler Constructiof1986), pp. 162—175.
COLLARD, J.-F., BARTHOU, D., AND FEAUTRIER, P.
Fuzzy array dataflow analysis. proceedings of the fifth
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming(1995), pp. 92-101.

FAHRINGER, T. Efficient symbolic analysis for parallelizing
compilers and performance estimato8ipercomputing 12

3 (May 1998), 227-252.

FRANKE, B., AND O’'BOYLE, M. Compiler transformation

of pointers to explicit array accesses in DSP applications.
In proceedings of the ETAPS Conference on Compiler Con-
struction 2001, LNCS 2022001), pp. 69-85.

GERLEK, M., StoLz, E.,AND WOLFE, M. Beyond induc-
tion variables: Detecting and classifying sequences using a
demand-driven SSA formACM Transactions on Program-
ming Languages and Systems (TOPLAS)11{0an. 1995),
85-122.

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]
(23]

(24]

(25]

(26]

[27]

(28]

[29]

(30]

GOFF, G., KENNEDY, K., AND TSENG, C.-W. Practical
dependence testing. proceedings of the ACM SIGPLAN
'91 Conference on Programming Language Design and Im-
plementation (PLDI{Toronto, Ontario, Canada, June 1991),
vol. 26, pp. 15-29.

HAGHIGHAT, M. R., AND PoLYCHRONOPOULOS C. D.
Symbolic analysis for parallelizing compiler&aCM Trans-
actions on Programming Languages and Systemd {8uly
1996), 477-518.

HavLAK , P. Interprocedural Symbolic AnalysidPhD the-
sis, Dept. of Computer Science, Rice University, 1994.

HavLAK , P.,AND KENNEDY, K. Experience with interpro-
cedural analysis of array side effects. pp. 952-961.

Kuck, D. The Structure of Computers and Computations
vol. 1. John Wiley and Sons, New York, 1987.

L1, W., AND PINGALI, K. A singular loop transformation
framework based on non-singular matriceBarallel Pro-
gramming 222 (1994), 183—-205.

MAYDAN, D. E., HENNESSY, J. L.,AND LAM, M. S. Ef-
ficient and exact data dependence analysis. prisceed-
ings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PL1991), ACM
Press, pp. 1-14.

MUCHNICK, S. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, San Fransisco, CA, 1997.
PoLYCHRONOPOULOS C. Parallel Programming and Com-
pilers. Kluwer, Boston, 1988.

PsARRIS, K. Program analysis techniques for transform-
ing programs for parallel systemBarallel Computing 283
(2003), 455-469.

PsSARRIS, K., AND KYRIAKOPOULOS, K. Measuring the
accuracy and efficiency of the data dependence tests. In

13

(32]

(33]

(34]

(35]

6]

(37]

proceedings of the International Conference on Parallel and [38]

Distributed Computing Syster(®001).

PSARRIS, K., AND KYRIAKOPOULOS, K. The impact of
data dependence analysis on compilation and program paral-
lelization. Inproceedings of the ACM International Confer-
ence on Supercomputing (IC&P03).

PUGH, W. Counting solutions to Presburger formulas: How
and why. Inproceedings of the ACM SIGPLAN Confer- [
ence on Programming Language Design and Implementa-
tion (PLDI) (Orlando, FL, June 1994), pp. 121-134.

REDON, X., AND FEAUTRIER, P. Detection of recurrences
in sequential programs with loops. 5 International Par-
allel Architectures and Languages Euroff993), pp. 132—
145.

RUGINA, R., AND RINARD, M. Symbolic bounds analy-
sis of array indices, and accessed memory regiongrdn
ceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLVancouver,
British Columbia, Canada, June 2000), pp. 182-195.

SHEN, Z., LI, Z., AND YEW, P.-C. An empirical study on
array subscripts and data dependenciespraiteedings of
the International Conference on Parallel Process{i§89),

vol. 2, pp. 145-152.

13

(39]

40]

[41]

[42]

(43]

[44]

[31] Su, E., LAIN, A., RAMASWAMY, S., RLERMO, D.,

HODGES E., AND BANERJEE P. Advanced compila-
tion techniques in the PARADIGM compiler for distributed-
memory multicomputers. Inproceedings of theg™®
ACM International Conference on Supercomputing (ICS)
(Barcelona, Spain, July 1995), ACM Press, pp. 424—433.
Tu, P.,AND PADUA, D. Gated SSA-based demand-driven
symbolic analysis for parallelizing compilers. pmoceed-
ings of the9*™™ ACM International Conference on Supercom-
puting (ICS)(New York, July 1995), ACM Press, pp. 414—
423.

VAN ENGELEN, R. Symbolic evaluation of chains of recur-
rences for loop optimization. Tech. rep., TR-000102, Com-
puter Science Dept., Florida State University, 2000.

VAN ENGELEN, R. Efficient symbolic analysis for optimiz-
ing compilers. Inproceedings of the ETAPS Conference on
Compiler Construction 2001, LNCS 2022001), pp. 118-
132.

VAN ENGELEN, R., AND GALLIVAN , K. An efficient al-
gorithm for pointer-to-array access conversion for compil-
ing and optimizing DSP applications. fmoceedings of the
International Workshop on Innovative Architectures for Fu-
ture Generation High-Performance Processors and Systems
(IWIA) 2001(Maui, Hawaii, 2001), pp. 80-89.

VAN ENGELEN, R. A., BIRCH, J.,AND GALLIVAN , K. A.
Array data dependence testing with the chains of recur-
rences algebra. Iproceedings of the IEEE International
Workshop on Innovative Architectures for Future Generation
High-Performance Processors and Systems (IWJahuary
2004), pp. 70-81.

VAN ENGELEN, R. A., BIRCH, J., $H0U, Y., AND GALLI -
VAN, K. A. Array data dependence testing with the chains of
recurrences algebra. Tech. rep., TR-041201, Computer Sci-
ence Dept., Florida State University, 2004.

VAN ENGELEN, R. A., BIRCH, J., $HouU, Y., WALSH, B.,
AND GALLIVAN , K. A. A unified framework for nonlinear
dependence testing and symbolic analysigrbteedings of
the ACM International Conference on Supercomputing (ICS)
(2004), pp. 106-115.

WoOLFE, M. Beyond induction variables. 1ACM SIG-
PLAN'92 Conf. on Programming Language Design and Im-
plementatior(San Fransisco, CA, 1992), pp. 162-174.
WoLFE, M. High Performance Compilers for Parallel Com-
puters Addison-Wesley, Redwood City, CA, 1996.

Wu, P., GOHEN, A., HOEFLINGER, J., AND PADUA, D.
Monotonic evolution: An alternative to induction variable
substitution for dependence analysis. proceedings of
the ACM International Conference on Supercomputing (ICS)
(2001), pp. 78-91.

ZIMA, E. Recurrent relations and speed-up of computa-
tions using computer algebra systems. phoceedings of
DISC0O’92(1992), LNCS 721, pp. 152-161.

ZImMA, E. Simplification and optimization transformations
of chains of recurrences. proceedings of the International
Symposium on Symbolic and Algebraic Compufipn-
treal, Canada, 1995), ACM.

ZIMA, H., AND CHAPMAN, B. Supercompilers for Parallel
and Vector ComputersACM Press, New York, 1990.

